Model Elimination, Logic Programming
and Computing Answers'

Peter Baumgartner - Ulrich Furbach - Frieder Stolzenburg
Universitat Koblenz Institut fur Informatik
Rheinau 1 D-56075 Koblenz Germany
E-mail: { peter,uli,stolzen} @informatik.uni-koblenz.de

Abstract

We demonstrate that theorem provers using model
elimination (ME) can be used as answer com-
plete interpreters fodisjunctive logic program-
ming More specifically, we introduce a mechanism
for computing answers into the restart variant of
ME. Building on this, we develop a new calculus
called ancestry restart METhis variant admits a
more restrictive regularity restriction than restart
ME, and, as a side effect, it is in particular attrac-
tive for computing definite answers. The presented
calculi can also be used successfully in the context
of automated theorem proving/e demonstrate ex-
perimentally that it is more difficult to compute
(non-trivial) answers to goals, instead of only prov-
ing theexistencef answers.

Keywords. Automated reasoning; theorem prov-
ing; model elimination; logic programming; com-
puting answers.

only be accessed by the literalg, i.e. by the head literals.
Technically, this means that only those contrapositives are al-
lowed to be used, which contain a positive literal in the head.
The approach froniLobo et al, 1992 completely ignores
this aspect by using SLI resolution which requires all contra-
positives.

There are proposals for first order proof calculi using pro-
gram clauses only in this procedural reading, e.g. Plaisted's
problem reduction formaf#laisted, 198B or the nearHorn-
Prolog family introduced by Loveland and his co-workers
[Loveland, 1991 These approaches introduce new calculi
or proof procedures, for which efficient implementations still
have to be developed. (For a thorough discussion we refer to
[Baumgartner and Furbach, 1994#ur aim was to modify
ME such that it can be used for logic programming in the
above sense. This gives us the possibility to use existing the-
orem provers for disjunctive logic programming. As a first
step towards this goal, we introduced[Baumgartner and
Furbach, 1994he restart variant of ME and proved its refu-
tational completeness. In this paper, we introduce an answer
computing mechanism into restart model elimination (proofs

The aim of this paper is twofold: Firstly, we prove that the- Of &ll stated theorems can be found in the long verbBaUM-
orem provers using model elimination (ME) can be used ggartneret al, 1993). Fgrthermore we define a var|_ant called
answer complete interpreters for disjunctive logic program-2ncestry restart MBwhich allows extended regularity check-
ming. Secondly, we demonstrate that in the context of autol"d (i-6- 100p checking) wrt. the ordinary restart ME. Addi-

mated theorem proving it is much more difficult to computetiona"y' this variant prefers proofs which allow for definite
answers.

(non-trivial) answers to goals, instead of only to prove the)
existence of answers. For the second aspect, namebmputing answers we ac-

Concerning the first aspect it is important to note that ther&@mmodated our PROTEIN systeiBaumgartner and Fur-
is a lot of work towards model theoretic semanticpo$itive bach, 1994bf0f_ answer computing as described below. We
disjunctive logic programs, and of course there are numer- demonstra.te_ with some of SmU"yan'S puzz[ésnullyan,.
ous proposals for non-monotonic extensions. However, witnt974 that it is much more difficult to compute answers in-
respect to interpretation, i.e. proof-theoretic investigations th&!€ad of only to prove unsatisfiability. For this we give a com-
situation is not so clear. At first glance one might be con-Parative study of high performance theorem provers, includ-
vinced that any first order theorem prover can be used for th'd OTTER, SETHEO and our PROTEIN system.
':l;eurg éztft\'/o‘n‘ ?I/d:ilj r('ft']\;i lzq"c‘ B\r(])f:ai‘?;’;'glrcees:n‘:;%%?wi From Tableau to Restart Model Elimination
of the clauseA; V...V A, V -B; V ...V -B,. Indeed, 1.1 Tableau Model Elimination
in [Lobo et al, 1993 SLI-resolution is used as a calculus In this subsection we use the clause notation, mirroring the
for disjunctive logic programming. From logic programming fact that we review a calculus which is, as it stands, not suited
with Horn clauses, however, we learn that for a proceduralor programming purposes. We use a ME calculus that dif-
interpretation of program clauses it is crucial that clauses cafers from the original one presented [inoveland, 1968 It

A Claustels a ITIUILSEL O el dls, usually WTILET as tie dis-

—goal . . A :
T~ /goa\ junctionL; V.. .VL,. A programis a consistent set of clauses
P -2 P -Q (thus possibly including negative clauses)cénnectioris a
! ﬁQ/\P Q/\P Vs ﬁQ/\P Q/\P pair of literals, written agK, L), which can be made com-
e LN NN AN plementary by an application of a substitutionpathis a se-
P Q -P Q| P Q ! . quence of literals, written gs = (L, ...,Ly,). Ly, is called
* * * * * * ! ~goal \ . . S
o~ the leaf of p, which is also denoted bleaf(p); similarly,
- -q | the first elemenL; is also denoted bfirst(p). The symbol
N “o" denotes the append function for literal sequences.
2P In the sequel both path sets and sets of literals are always

understood amultisets, and usual set notation will be used.
Figure 1:Model Elimination (left side) vs. Restart Model Elimina- Multisets of paths are written with caligraphic capital letters.
tion (right side). From now on we use the notatidxy V...VAm < B1 A

... A B, as arepresentation of the clause V...V Am V

. _ . —B1 V...V —Bjy. Such clauses are call@ogram clauses
is described irfLetz et al, 1993 as the base for the prover \yith head literalsA; (if present) andody literalsB;.

SETHEO. In[Baumgartner and Furbach, 199Bis calcu- We assume our clause sets to bgaal normal formi.e.

lus is discussed in detail by presenting it in & consolutionqre exists only one goal clause (a clause containing only
style[Eder, 1991 and compared to various other calculi. ME negative literals), which furthermore does not contain vari-

(in this sense) manipulates trees by extension and reductiafes. without loss of generality this can be achieved by in-
steps. In order to recall the calculus consider the clause set troducing a new clause- goal wheregoal is a new predi-

. . P - cate symbol, and by modifying every purely negative clause
{{P.Q}.{-P,Q},{-Q,P},{-P,~-Q}}, "B, V...V B, togoal < B,.... By,
A model elimination refutation is depicted in Figure 1 (left |f C = A;V...VA,, « BiA...AB, isaclause thenits
side). It is obtained by successive fanning with clauses fronpath setPc is {(L) | L € {A4,...,Am,~B1,...,~Bn}}.
the input setgxtension stepsAdditionally, itis required that Thedot productp - Q of a pathp and a path sef is defined
every inner node is complementary to one of its sons. Sucs{p o q | q € Q}. It can be interpreted as a branching of a

sons are decorated with &™in Figure 1. A dashed arrow pathp into the new paths fror)

indicates areduction stepi.e. the closing of a branch due The inference ruleextensionfrom the restart ME calcu-
to a path literal complementary to the leaf literal. Extensionjys will be defined in such a way that one is free in selecting

and reduction steps are allowed at any leaf of the tree and ffny head literal as part of a connection. For this, we introduce
extension steps any literal from an input clause can be useglhead selection function.

to form a complementary pair of literals. For example, in the

right subtree of Figure 1 (left side) the clauseP, Q} was Definition 1.1

used to extend the positive |eR, i.e. we used the program (Head selection Function)A head selection functiofiis a

clauseQ « P via the body literalP and hence did dissent fynction that maps a clausk; V...V Ap < Bi A... A

with a procedural reading of the clause. Bm With n > 1to an ator € {A,...,An}. Lis called
In the right part of Figure 1 a refutation with the modi- the selected literalof that clause byf. The head selection

fied version, theestart ME calculus, is displayed. The only functionf is required to bestable under liftingvhich means

difference is that extension steps at positive literals are nahat if f selectsLy in the instance of the claugd, Vv ...V
allowed; instead either a reduction step is carried out, or els@ , + B; A ... A By,)y (for some substitution) thenf

the root literal — which is always.goal — is copied, and selectd.in A;V...VA, « BiA...AB,,.0J
then an extension follows.

In a variant calledtrict restart model elimination noteven Note that this head selection function has nothing to do
reduction steps are allowed at positive leaves. Hence the calvith the selection function from SLD-resolution which se-
culus is forced to apply restart steps wherever possible. lects subgoals. This will be discussed later.

These simple modifications obviously allow only extension
steps with a positive, i.e. a head literal of a clause, and hendpefinition 1.2
support a procedural reading of program clauses. In the fol¢Strict Restart Model Elimination) Given a set of clause$
lowing subsection we give a formal presentation of the calcuand a head selection function.

lus along the lines diBaumgartner and Furbach, 1993 The inference rulextensiors defined as follows:
1.2 Restart Model Elimination Pui{p} AiV...VA;V...VAL < BiA...AB,
Instead of trees we now manipulate multisets of paths, where R

paths are sequences of literals. We will state some basic defi-
nitions. where

2 UAPy o dpalll TMultset, alléy vV ... vV .Aj V...V e reaucuor operauorn s perimited morn negauve ieal iit-
A, < By A ... AB,is avariable disjoint variant of a erals to positive ancestor literals only. This condition can be
clause inS; A; is the selected literal, and relaxed towards disregarding the sign, which then yields the
non-strictcalculus version. SelBaumgartner and Furbach,
199443 for a discussion of the differences. The reader aware
of this work will notice that in the present text we define the

. (leaf(p), A;) is a connection with MG, and

R=(PU{po(K) | calculus slightly different. This happens in order to conve-

Ke{A1,...,Ai1,Air1,...,Am,—By,...,~Bn}})o niently express another calculus variant defined below. _
Note that the restart ME calculus does not assume a special

The inference ruleeductionis defined as follows: selection function which determines which path is to be ex-

PU{p} tended or reducgd next: Correctness and completeness of this
where calculus follows immediately from a result [Baumgartner,
Po 1994. From the definition of the inference rule extension, it
follows immediately, that this calculus only needs those con-

1. P U {p} is a path multiset, and trapositives of clauses which contain a positive literal in their

2. there is a positive literdl in p such tha(L, leaf (p)) is heads.

tion with MG .
a connection with MGLy 2 Computing Answers

The inference ruleestartis defined as follows: In this section we introduce the notion of computed answers
P U {p} and we state an answer completeness resylt for res_tart ME.
-~ where We assume as given a progrdMmtogether with one single
PU{po(L)} qguery< Gj A ... A Gg, where theG;s are positive liter-
als. We will often abbreviate such a queryas Q, where
1. P U {p} is a path multiset, and Q stands for the conjunction &&;s. The clause s& is the

transformation oP U {<- Q} into goal normal form. In the

following definition of computed answer we collect appli-
3. L = first(p). cations of the query clause, but not applications of negative
clauses from the prograi.

2. leaf(p) is a positive literal, and

A strict restart ME derivationfrom the clause seS
consists of a sequend®y, Py, ...,Pn) and a substitution Definition 2.1
o1 -+ -on, Where (Answers)If «— Qisaqueryand,,..., 6, are substitutions
. . - for the variables fronQ, thenQ#, Vv ...V Qb is ananswer
1. Po Is a path mqusgt{(Ll), o <L“.>} consisting of (for S). An answerQ#, Vv ...V Qb is acorrect answelf
phaths olf I;angth 1, év'ftml_v ++-VLn in § (also called P EVY(Q6 V...V Qbn). Let now a restart ME refutation
thegoal claus¢, and fori=1...n of S with goal clause— goal and substitutior be given.
2. P is obtained fron;_; by means of an extension step ASsume that this refutation contains extension steps with

with an appropriate claus® from S and MGUo;, or the query, i.e. it containm-times an extension step with the
clausegoal + Qp;, wherep; is the renaming substitution of

3. P is obtained fronfP;_; by means of a reduction step this step. Leb; = Pi0|dom(p;)- TheNQoy V...V Qo is a
and MGUg;, or computed answeffor S). [

4. P; is obtained fronP;_; by means of a restart step. Theorem 2.2

The pathp is calledselected pathn all three inference (Lifting Theorem for Restart Model Elimination) Let S’

rules. A restart step followed immediately by an extension?€ & Set of ground instances of clauses taken fron; a_clause
step at the just obtained path is also calledstart extension SetS- Assume there exists a restart ME derivatibh =

! ! ! ! i ! !
step Finally, arefutationis a derivation wher@, = {}. 0 Po, Py, ..., Py, from §' with goal clauseC, € S'. Then
there exists a restart ME derivatiah = Py, Pq,...,Py

Note that in extension steps we can connect only withfrom S with some goal claus€, € S and substitutiorr
the head literals of input clauses. Since in general this resuch thaP,, is more general thaB.,. (A path seP ismore
striction is too strong, we have to “restart” the computa-generalthan a path sa® iff for some substitutiord we have
tion with a fresh copy of a negative clause. This is achieved®d = Q.)
by the restart rule, because refutations of programs in goal Furthermore, there exists a substitutibsuch thatP; is
normal form always start with-goal, i.e. the copied lit- obtained fronP;_, by an extension step with clau€g € S’
eral first(p) = —goal; furthermore, only extension steps if and only if P; is obtained fronP;_; by an extension step
are possible tengoal, introducing a new copy of a negative with a clauseC € S such thalCpod = C', wherep is the
clause (cf. Figure 1, right side). renaming substitution applied in that extension step.

e st part Of e teoretr will Dpe used ir e Proor oftre refutatorl, riafriely at its top. 1hnetrl, Dy denmuorn, actrnte
refutational completenesecause for a refutation on the answers are obtained. However, such a restriction is incom-
ground level, i.e. a derivation d?}, = {}, only the empty plete. But if restart ME is modified in such a way tteatery
path setP,, = {} can be more general), while the secondnegative literal along a branch, not only the topmost literal,
part will be used in the proof ainswer completene¢sheo- may be used for the restart step then completeness is recov-
rem 2.3). In particular, to obtain this we have to demand ered. This follows from a more general result which states
singlesubstitutiony which maps any of the claus€po used that we can restrict tglobally regularrefutations (i.e. no lit-
in extension steps to the respective clause on the ground levedral except the literal used for the restart occurs more than
Clearly, this result is harder to establish and more relevanbnce along a branch). Let us now introduce all this more for-
than a lifting result for SLI-resolution ifLoboet al, 1994 mally.
which “moves théd quantification inside”: in our words, they
state that for every application of an input clause at the groun@efinition 3.1
level there exists an application at the first-order level, andAncestry Restart Model Elimination) The calculusan-
there exists a substitution to méfis instanceo the ground cestry restart MEs the same astrict restart ME (Defini-
level. tion 1.2), except that the inference ruéstartis modified by

replacing the condition 3. by the new condition 3'.;

Theorem 2.3
(Answer completeness of restart ME)If Qf;, V ...V Qb 3'. L is a negative literal _occurring ip. In this contextL is
is a correct answer for a progrd™) then there exists a strict also called theestart literal.

restart ME refutation fron® with computed answeQo; V .)
.. .VQom such thaQo1 V. ..V Qo entailsQéy V. . .V Qe The modified rule is calledncestry restart]

l.e. The term “ancestry” in the definition is explained by the use

BVie{l,...,m}Ije{l,...,1} Qoid = Q¥;. of ancestor literals for restart steps. Note that any reduction
from apositiveleaf literal to a negative ancestor literal can be

Informally, the theorem states that for every given correcsimulated in ancestry restart ME by a restart step followed by
answer we can find a computed answer which can be instanti strict reduction step. Thus, non-strictness is “built-in” into

ated by means of singlesubstitutions to a subclause of the ancestry restart ME.
given answer (and hence implies it). Unfortunately we can Note that the ancestry restart rule includes the restart rule
notobtain a result stating that the computed answer containgince the first literal can be used for the restart as well.

less (or equal) literals than the given answer. Clearly, in terms of a proof procedure the ancestry restart
All proofs are stated in the long version of this paperryle induces a larger local search space than the restart rule.
[Baumgartneet al, 1999. On the other side, refutations may become much shorter. In-
deed, this is the rationale for our proof procedure to search

3 Definite Answers and Regularity the restart literals from the leaf towards the top. As a further

From theorem proving with ME we know that the regularity benefit of this search order pqte that a definite answer will be
enumerateteforea non-definite answer.

check is an important means for improving efficiency. Regu- X .
larity for ordinary ME means that it is never necessary to con- NOW We are going towards an appropriate completeness

struct a tableau where a literal occurs more than once alongr§SUIt wrt. definite answers. As mentioned above, this re§ult
path. Expressed more semantically, it says that it is never neShall be & consequence of a more general result concerning a
essary to repeat in a derivation a previously derived Subgoépgularlty restriction. Let us define this notion precisely:
(viewing open leaves as subgoals).

Unfortunately, regularity is\ot compatible to restart ME.
In this section we will present a variant of restart ME, the
ancestry restarvariant, which allows for extended regularity
checks. This variant is motivated by Loveland's UnH-Prolog p = -Bj----Bj A'-B}----Bj A*... A" '-B}...
[Loveland and Reed, 1992 Thenp is calledblockwise regulaiff

As an interesting side effect it turns out that this variant of-
fers considerable benefits with respect to logic programming: 1. Al # Adfor1 <i,j<n-—1,i#j (Regularity wrt.
occasionally one is interested in the question whether a given positive literals)and
program with query admits definiteanswer, i.e. an answer
which is a single conjunction of atoms, but not a disjunction.
Of course, in general, a non-definite program does not always
admit a definite answer, but some programs do. Itis the latteg additionally it holds that
class of problems we are interested in now.

The key idea to the direct computation of definite answers 3. Bl # B® for1<l<m<mn1<i<k,2<j<kpn
is to restrict the use of the query to one single application in (Global negative regularity)

Definition 3.2
(Regularity) Letp be path written as follows (thAs andBs
are atoms):

2.Bj#Bjfor1 <1<n,1<ij<k,i#j (Regu-
larity inside blocks).

tienp 1s Calictdgiobally reguial. A pPatl set 1s Calle@IOCK=- 10gIC pProgratmiming. FRU T EIN TaCliitales COIMpuling aisjunc-
wise, globally) regulaiff every path in it is (blockwise, glob- tive and definite answers. In its newest release their is also a
ally) regular. Similarly, a derivation is callg¢tlockwise, glob- flag which allows us to look for definite answers only.

ally) regular iff every of its path sets is (blockwise, globally)

regulard 5 Comparative Theorem Prover Study

Condition 1 states that all positive literals along a path areIn the sequel, we want. to tell about our experiences in com-
pairwise different, and condition 2 states that negative Iiter-pu“ng answers by using theorem provers. First of all, we

als inside blocks are pairwise different, where by a block Wehad to overcome some technical problems because theorem

mean a smallest subpath delimited by positive literals or thg_rove:s u”sually do_n_ot supply answers _beS|des yes or (pos-
Sibly) "no”. — We will illustrate our experiences with a puzzle

ends of the path. Condition 3 means that a negative literal magxample which allows for indefinite and definite answers
be equal to one of its ancestors only if it follows a positive lit- '
eral, i.e ifitis used as a restart literal. Thus we have a globag 1 Knights and Knaves

regularity condition, except for restart literals. In all example.l.he example follows problem #36 §Smullyan, 1978 A
refutations given so far, all branches are blockwise regularSimilar example is studied ifOhlbach, 198k T,he natural
However, the refutation in Figure 1 (right side) is not globally language description of the problem ’is stated below. There,
regular, as can be seen by the two occurrencesin the .the last two pieces of information 5 and 6 explicitly state

_rightmost_path._From this example we learn Fh"?lt restart ME 'Some knowledge about inferencing. We need them in order
incompatible with the global regularity restriction. Howeverto be able to cope with the information in 2 because our de-

it holds: scription language is first order.

Theorem 3.3 S 1. On an island, there live exactly two types of peo-
(Completeness of Ancestry Restart Model Elimination) ple: knights and knaves. 2. Knights always tell the
Letf be a head selection function aBdbe an unsatisfiable truth and knaves always lie. 3. | landed on the is-
clause set ingoal-normal form. Then there exists a glob- land. met two inhabitants. asked one of them: "Is
ally regular ancestry restart ME refutation®tarting with one of you a knight?” and he answered me. 4. What
+ goal and selection functiofl can be said about the types of the asked and the

other person depending on the answer | get? — 5.
We assume, that either a proposition or its negation
is true. 6. If the disjunction of two propositions is
Theorem 3.4 true then at least one of them must be true.

We can use this result to obtain the desired completeness
result for definite answers.

(Answer completeness of ancestry restart MEncestry In our formalization of the problem below, the formulae in

restart ME is answer complete in the sense of Theorem 2.3. 54 5 express the corresponding pieces of information from
In particular, ifQ8 is a correct definite answer for a program above. Depending on the case considered, we choose one of
PZ then there exists an ancestry restart ME refutation Bom the formulae (a) or (b) in 3. We view the fact that a person
with computed answeQo such thaQod = Q@, for some yapieg a question as that he says that the thing in question is
substitutions. Furthermore, the input claug®al < QIS 4t e using the binary predicatays (instead of a ternary
used exactly once, namely at the first extension stép-0f o dicate). Formula 4 can be considered as the query. We have
goal. to express the pieces of information 5 and 6 explicitly by in-

The last theorem enables us to enumerate definite answet{?duc'ng the unary predicaterue. The transformation of

only, by simply restricting the use gjoal < Q to one exten- the formulae below into clausal form is straightforward and

sion step at the beginning. So we have the desirable propertié@irefore omlltteq here. It consists of 11 clauses. —The symbol
of loop checking by regularity and the computation of definite¥ denoteexclusive or

answers. 1. true(isa(Q, knight))Vtrue(isa(Q, knave))

4 Implementation 2. says(P,S) — (true(S) ¢ true(isa(P,knight)))

All variants and refinements of ME discussed so far, i.e. the 3. (a)says(asked, o) ("yes”)
restart, strict and ancestry variants (possibly with selection (b) says(asked, not(s)) ("no”)
function), loop checking by regularity and factorization, are where
implemented in the PROTEIN systdBaumgartner and Fur- e = or(isa(asked, knight), isa(other, knight))
bach, 1994b It is a first order theorem prover based on the
Prolog technology theorem proving (PTTP) technique, imple- 4: —true(isa(asked, X)) V ~true(isa(other, Y))
mented in E(;LiPSe-ProI_og. _ 5. true(not(C))Vtrue(C)

Since ME is a goal-oriented, linear and answer complete
calculus, it is well suited as an interpreter for disjunctive 6. true(or(A,B)) < (true(A) V true(B)))

vve Lall prave the quety it many diiierefit ways. As a LOT - pProver | Answer | Time (s) Settings

sequence we get many trivial and hence useless answers. TheOTTER trivial 2.1 | plain hyper-resolution
(most) trivial one — a four part disjunction — can be obtained indefinite 0.4 | hyper-resolution + factor.
in both cases. We only need formula 1 and the query in order definite %0 several trials

to infer it. But it only says that each of both persons are eithet SETHEO | trivial 05 with constraints

. . indefinite 1.0 with constraints
knights or k_nave_s._ In case (a) (if the asked person says yes) we definite 0.6 with constraints
can get an indefinite answer consisting of only three disjunctS. PROTEIN | trivial 05 any setting
In the other case (b) there exists a definite answer. It follows a indefinite 0o planME
list of these possible answers wh&gY is an abbreviation defini 20;12-?; restart|+_se,\l/.”f5unct|on

. . erinite . plain
of true(isa(asked, X)) A true(isa(other,Y)). 38.4 ancestry restart
1. knave/knave V knave/knight V knight /knave Vv
knight /knight (trivial) Figure 2: Timings

2. knave/knave V knight /knave V knight /knight
(indefinite) We generate answers with SETHEO by using global vari-
. - ables. The answers are kept in a list. By this and other tech-
3. knave/knight (definite) nical tricks, we find the ingefinite ansxer within 1.0s and
Before turning to our experiments we want to mentionthe defin?te answer within 0.6s. That .is quite _go_od anq may
some interesting facts. Firstly, answer completeness requird® explained by the subgoal reordering heuristics built into
that we are able to compute the indefinite and definite answe?E THEO, which are not (yet) incorporated into our sys-
in the respective cases. Secondly, to derive these answers J@m- But in addition, SETHEO also has subsumption con-
need a clause set which is not minimal unsatisfiable; notic§traints which are used in the default setting. It is not quite
that the clauses of 1 and 4 together are (minimal) unsatisfplear, whether these constraints des’_tro_y answer completeness
able yielding the trivial answer. Thirdly, 9 extension steps ardn SETHEO. — Table 2 shows the timings for OTTER and
needed to derive the indefinite or the definite answer respeE THEO. All timings are measured on a Sparc 10. The sym-
tively, while only 7 extension steps are needed to derive th&0! oo denotes the fact that no proof was found within 1 hour;
trivial answer (in both cases). — These remarks indicate that ffhat is true for OTTER applied to case (b) of our example.

should be more difficult to find the more precise answers. PROTEINis answer complete; that has been stated in this
] paper. It finds out the indefinite and definite answer for the
5.2 Experimental Results respective case. The table in Figure 2 also shows some tim-

We tried to get the answers from above automatically by usings for finding these answers with PROTEIN. We tried both,
ing the theorem proving systems OTTHERIcCune, 1994 plain and restart ME. In case of the restart variant we also
which is a resolution-style theorem proving program codedried its refinements: with or without ancestry restart or se-
in C for first order logic (with equality), SETHE(Letz et lection function (no contrapositives). We tried to compute the
al., 1993 which is a top-down prover for first order predi- desired answers with settings where all solutions are com-
cate logic based on the calculus of the so-called connectioputed in case (a) (indefinite answer). For the case (b) (definite
tableaux which generalizes weak ME, implemented in C, anéinswer) we used the setting where only definite answers are
PROTEIN[Baumgartner and Furbach, 1994hich we al- searched for. By this, we get a significant speed up of the
ready introduced in Section 4. — We used the clause orderingearch. — As one can see, using restart helps for this problem,
given by the problem description, but our experiments showsince plain ME does not find the desired answers quickly, al-
that the (run time) results depend on the ordering. though it does so for trivial answers. But it is not quite clear
OTTER has some problems with computing answers bewhich flags should be used in addition.
cause it enumerates resolvents but not all (refutational) We investigated more puzzle examples fré&mullyan,
proofs. Especially during the subsumption test, it did not take1 97¢. All our experiments corroborate the following facts:
the answer literals into account which are provided for com+esolution has difficulties in solving puzzles because of the
puting answers. Thatis the reason why OTTER with (forwardproblem with subsumption; model elimination is better suited
and backward) subsumptionm®t answer complete. An ex- although it could not solve all puzzles that we tested. For
ample which illustrates this is case (a) where the search stogxample, OTTER needs 281.8s on puzzle #35 while PRO-
after finding 15 times only the trivial answer with binary res- TEIN only needs 153.1s. Further investigations are necessary.
olution. However, we find a proof by using hyper-resolutionlt seems that also a model generation approach is very ade-
with factorization immediately within 0.4s. — There is a solu- quate[Manthey and Bry, 1988for these kind of problems
tion to the problem with subsumption; it can be shown that webecause they often allow for finite models. Last but not least,
only have to take the answer literals into account during theve want to point out that both, OTTER and SETHEO do not
subsumption steps. Unfortunately, it is not (yet) possible tasupport a procedural reading of program clauses — they need
test OTTER in this setting and find out whether this improvesall contrapositives — but PROTEIN does; and that is useful if
the behaviour, because it is not built in. we want to use logic as a real programming language.

U CLUIlILIUSIVLN Liviceune, 1994 Vvilllam vv. ivictune. Ul ITER 5.U reference man-
. .. ual and guide. Technical Report ANL-94/6, National Laborgt

To conclude, it seems to be very promising to use ME as a Argonne, IL, January 1994

base calculus for computing answers in disjunctive logic profonibach, 1985 Hans Jirgen Ohlbach. Predicate logic hacker

gramming. In this paper, we introduce (among others) the an- tricks. Journal of Automated Reasoninty435-440, 1985.

cestry restart variant which is quite well suited for this pur-[Plaisted, 1988 D. Plaisted. Non-Horn Clause Logic Program-

pose. We also give some practical evidence. Nevertheless,ming Without ContrapositivesJournal of Automated Reasoning

. 4:287-325, 1988.
further investigation is necessary in order to find out yet mor‘meullyan 1978 Raymond M. SmullyanWhat is the name of this

efficient calculi and to incorporate nonmonotonic extensions. py41k> The riddle of Dracula and other logical puzzl@rentice-
Hall, Englewood Cliffs, NJ, 1978.
Acknowledgements [Sutcliffeet al, 1994 G. Sutcliffe, C. Suttner, and T. Yemenis. The
. . . TPTP problem library. IfProc. CADE-12 Springer, 1994.
We would like to thank Francois Bry, Jirgen Dix, Bertram
Fronhofer, Reinhold Letz and William W. McCune for help-
ful discussions, and Olaf Menkens and Dorothea Schafer for

their implementational work.

References

[Baumgartner and Furbach, 1998. Baumgartner and U. Furbach.
Consolution as a Framework for Comparing Calculournal of
Symbolic Computatiqri6(5), 1993. Academic Press.

[Baumgartner and Furbach, 1994B. Baumgartner and U. Fur-
bach. Model Elimination without Contrapositives and itsphip
cation to PTTP. Journal of Automated Reasoning3:339-359,
1994. Short version in: Proceedings of CADE-12, SpringeALN
814, 1994, pp 87-101.

[Baumgartner and Furbach, 1994B. Baumgartner and U. Fur-
bach. PROTEIN: APROver with a TheoryExtensionlnterface.

In A. Bundy, editor,Automated Deduction — CADE-120lume
814 of LNAI, pages 769-773. Springer, 1994.

[Baumgartneet al, 1995 Peter Baumgartner, Ulrich Furbach, and
Frieder Stolzenburg. Model elimination, logic programgand
computing answers. Fachberichte Informatik 1/95, Unitétrs
Koblenz-Landau, Koblenz, 1995.

[Baumgartner, 1994P. Baumgartner. Refinements of Theory
Model Elimination and a Variant without Contrapositives.A.G.
Cohn, editor]11th European Conference on Artificial Intelligence,
ECAI 94 Wiley, 1994. (Long version in: Research Report 8/93,
University of Koblenz, Institute for Computer Science, Kaoiz,
Germany).

[ECRC, 1994 ECRC GmbH, MiinchenECLIiPSe 3.4: User Man-
ual — Extensions User Manualanuary 1994.

[Eder, 1991 E. Eder. Consolution and its Relation with Resolution.
In Proc. IJCAI '91 1991.

[Letzetal, 1994 R. Letz, J. Schumann, S. Bayerl, and W. Bibel.
SETHEO: A High-Performance Theorem Provdournal of Au-
tomated Reasonin@(2), 1992.

[Loboetal, 1994 Jorge Lobo, Jack Minker, and Arcot Rajasekar.
Foundations of Disjunctive Logic ProgramminilIT Press, Cam-
bridge, MA, London, England, 1992.

[Loveland and Reed, 1992D. Loveland and D. Reed. Near-Horn
Prolog and the Ancestry Family of Procedures. TechnicabRep
CS-1992-20, Department of Computer Science, Duke Uniyersi
Durham, North Carolina, December 1992.

[Loveland, 1968 D. Loveland. Mechanical Theorem Proving by
Model Elimination.JACM, 15(2), 1968.

[Loveland, 1991 D. Loveland. Near-Horn Prolog and Beyond.
Journal of Automated Reasoning1-26, 1991.

[Manthey and Bry, 1948 Rainer Manthey
and Francois Bry. SATCHMO: a theorem prover implemented in
Prolog. In Ewing Lusk and Ross Overbeek, editémceedings
of the 9th International Conference on Automated Deduction
gonne, lllinois, USA, May 198®ages 415-434. Springer, Berlin,
Heidelberg, New York, 1988. LNCS 310.

