
Model Elimination, Logic Programming
and Computing Answers

�

Peter Baumgartner � Ulrich Furbach � Frieder Stolzenburg
Universität Koblenz� Institut für Informatik
Rheinau 1� D–56075 Koblenz� Germany

E-mail:
�
peter,uli,stolzen�@informatik.uni-koblenz.de

Abstract

We demonstrate that theorem provers using model
elimination (ME) can be used as answer com-
plete interpreters fordisjunctive logic program-
ming. More specifically, we introduce a mechanism
for computing answers into the restart variant of
ME. Building on this, we develop a new calculus
called ancestry restart ME. This variant admits a
more restrictive regularity restriction than restart
ME, and, as a side effect, it is in particular attrac-
tive for computing definite answers. The presented
calculi can also be used successfully in the context
of automated theorem proving. We demonstrate ex-
perimentally that it is more difficult to compute
(non-trivial) answers to goals, instead of only prov-
ing theexistenceof answers.

Keywords. Automated reasoning; theorem prov-
ing; model elimination; logic programming; com-
puting answers.

The aim of this paper is twofold: Firstly, we prove that the-
orem provers using model elimination (ME) can be used as
answer complete interpreters for disjunctive logic program-
ming. Secondly, we demonstrate that in the context of auto-
mated theorem proving it is much more difficult to compute
(non-trivial) answers to goals, instead of only to prove the
existence of answers.

Concerning the first aspect it is important to note that there
is a lot of work towards model theoretic semantics ofpositive
disjunctive logic programs, and of course there are numer-
ous proposals for non-monotonic extensions. However, with
respect to interpretation, i.e. proof-theoretic investigations the
situation is not so clear. At first glance one might be con-
vinced that any first order theorem prover can be used for the
interpretation of disjunctive logic programs, since a program
clause� � � � � � � �� 	
� � � � � �
� is a representation
of the clause� � � � � � � �� �

 � � � � � �

� . Indeed,
in [Lobo et al., 1992] SLI-resolution is used as a calculus
for disjunctive logic programming. From logic programming
with Horn clauses, however, we learn that for a procedural
interpretation of program clauses it is crucial that clauses can

only be accessed by the literals� �, i.e. by the head literals.
Technically, this means that only those contrapositives are al-
lowed to be used, which contain a positive literal in the head.
The approach from[Lobo et al., 1992] completely ignores
this aspect by using SLI resolution which requires all contra-
positives.

There are proposals for first order proof calculi using pro-
gram clauses only in this procedural reading, e.g. Plaisted's
problem reduction formats[Plaisted, 1988], or the nearHorn-
Prolog family introduced by Loveland and his co-workers
[Loveland, 1991]. These approaches introduce new calculi
or proof procedures, for which efficient implementations still
have to be developed. (For a thorough discussion we refer to
[Baumgartner and Furbach, 1994a].) Our aim was to modify
ME such that it can be used for logic programming in the
above sense. This gives us the possibility to use existing the-
orem provers for disjunctive logic programming. As a first
step towards this goal, we introduced in[Baumgartner and
Furbach, 1994a] the restart variant of ME and proved its refu-
tational completeness. In this paper, we introduce an answer
computing mechanism into restart model elimination (proofs
of all stated theorems can be found in the long version[Baum-
gartneret al., 1995]). Furthermore we define a variant called
ancestry restart MEwhich allows extended regularity check-
ing (i.e. loop checking) wrt. the ordinary restart ME. Addi-
tionally, this variant prefers proofs which allow for definite
answers.

For the second aspect, namelycomputing answers, we ac-
commodated our PROTEIN system[Baumgartner and Fur-
bach, 1994b] for answer computing as described below. We
demonstrate with some of Smullyan's puzzles[Smullyan,
1978] that it is much more difficult to compute answers in-
stead of only to prove unsatisfiability. For this we give a com-
parative study of high performance theorem provers, includ-
ing OTTER, SETHEO and our PROTEIN system.

1 From Tableau to Restart Model Elimination
1.1 Tableau Model Elimination
In this subsection we use the clause notation, mirroring the
fact that we review a calculus which is, as it stands, not suited
for programming purposes. We use a ME calculus that dif-
fers from the original one presented in[Loveland, 1968]. It

�� �� � �goal

��
����

��
�

�

��
�� �

� �
�

� �
�

�� ��
�� �

� �
�

� �
�

��
�goal

�� � �

Figure 1:Model Elimination (left side) vs. Restart Model Elimina-
tion (right side).

is described in[Letz et al., 1992] as the base for the prover
SETHEO. In[Baumgartner and Furbach, 1993] this calcu-
lus is discussed in detail by presenting it in a consolution
style[Eder, 1991] and compared to various other calculi. ME
(in this sense) manipulates trees by extension and reduction
steps. In order to recall the calculus consider the clause set

��� � � � � �
� � � � � �
� � � � � �
� �
� �� �
A model elimination refutation is depicted in Figure 1 (left

side). It is obtained by successive fanning with clauses from
the input set (extension steps). Additionally, it is required that
every inner node is complementary to one of its sons. Such
sons are decorated with a “	” in Figure 1. A dashed arrow
indicates areduction step, i.e. the closing of a branch due
to a path literal complementary to the leaf literal. Extension
and reduction steps are allowed at any leaf of the tree and for
extension steps any literal from an input clause can be used
to form a complementary pair of literals. For example, in the
right subtree of Figure 1 (left side) the clause

�
� � � �
was

used to extend the positive leaf
�

, i.e. we used the program
clause

� 	 �
via the body literal

�
and hence did dissent

with a procedural reading of the clause.
In the right part of Figure 1 a refutation with the modi-

fied version, therestart ME calculus, is displayed. The only
difference is that extension steps at positive literals are not
allowed; instead either a reduction step is carried out, or else
the root literal — which is always

��
 — is copied, and
then an extension follows.

In a variant calledstrict restart model elimination not even
reduction steps are allowed at positive leaves. Hence the cal-
culus is forced to apply restart steps wherever possible.

These simple modifications obviously allow only extension
steps with a positive, i.e. a head literal of a clause, and hence
support a procedural reading of program clauses. In the fol-
lowing subsection we give a formal presentation of the calcu-
lus along the lines of[Baumgartner and Furbach, 1993].

1.2 Restart Model Elimination

Instead of trees we now manipulate multisets of paths, where
paths are sequences of literals. We will state some basic defi-
nitions.

A clauseis a multiset of literals, usually written as the dis-
junction� �� � � ���� . A programis a consistent set of clauses
(thus possibly including negative clauses). Aconnectionis a
pair of literals, written as�� � � �, which can be made com-
plementary by an application of a substitution. Apathis a se-
quence of literals, written as� � �� � � � � � � �� �. �� is called
the leaf of � , which is also denoted by
��� �� �; similarly,
the first element� � is also denoted by���� �� �. The symbol
“ �” denotes the append function for literal sequences.

In the sequel both path sets and sets of literals are always
understood asmultisets, and usual set notation will be used.
Multisets of paths are written with caligraphic capital letters.

From now on we use the notation� � � � � � � �� 	
 � �
� � � �
� as a representation of the clause� � � � � � � �� �

 � � � � � �

� . Such clauses are calledprogram clauses
with head literals� � (if present) andbody literals
�.

We assume our clause sets to be ingoal normal form, i.e.
there exists only one goal clause (a clause containing only
negative literals), which furthermore does not contain vari-
ables. Without loss of generality this can be achieved by in-
troducing a new clause	
��
 where
��
 is a new predi-
cate symbol, and by modifying every purely negative clause

 � � � � � �

� to
��
 	
� � � � � �
� .

If � � � � � � � �� �� 	
� � � � ��
� is a clause then its
path set� � is

��� � � ! �� � � � � � ��� �

 � � � � � �

� ��
.

Thedot product� " # of a path� and a path set# is defined
as

�� � $ $! #�
. It can be interpreted as a branching of a

path� into the new paths from
�

The inference ruleextensionfrom the restart ME calcu-
lus,will be defined in such a way that one is free in selecting
any head literal as part of a connection. For this, we introduce
a head selection function.

Definition 1.1
(Head selection Function)A head selection function� is a
function that maps a clause� � � � � � � �� 	
 � � � � � �

� with % & ' to an atom� ! �� � � � � � ��� �

. � is called
the selected literalof that clause by� . The head selection
function � is required to bestable under liftingwhich means
that if � selects�(in the instance of the clause�� � � � � � �
�� 	
� � � � � �
� �((for some substitution() then �
selects� in � � � � � � � � � 	
� � � � � �
� .

Note that this head selection function has nothing to do
with the selection function from SLD-resolution which se-
lects subgoals. This will be discussed later.

Definition 1.2
(Strict Restart Model Elimination) Given a set of clauses)
and a head selection function.

The inference ruleextensionis defined as follows:

� * �� � � � � � � � � � � � � � � � �� 	
� � � � � �
�+

where

1. � * �� �
is a path multiset, and� � � � � � � � � � � � � �

�� 	
 � � � � � �
� is a variable disjoint variant of a
clause in); � � is the selected literal, and

2. �
��� �� � �� � � is a connection with MGU� , and

3. + � �� * �� � �� � � ! �� � � � � � �� ��� �� �� � � � � � ��� �

 � � � � � �

� ����
The inference rulereductionis defined as follows:

� * �� �
� � where

1. � * �� �
is a path multiset, and

2. there is a positive literal� in � such that�� �
��� �� �� is
a connection with MGU� .

The inference rulerestart is defined as follows:

� * �� �
� * �� � �� �� where

1. � * �� �
is a path multiset, and

2.
��� �� � is a positive literal, and

3. � � ���� �� �.
A strict restart ME derivationfrom the clause set)

consists of a sequence�� � � � � � � � � � � � � and a substitution
� � " " " �� , where

1. � � is a path multiset
��� � � � � � � � ��� ��

consisting of
paths of length 1, with� � � � � � � �� in) (also called
thegoal clause), and for

� � ' � � �%
2. � � is obtained from� ��� by means of an extension step

with an appropriate clause� from) and MGU� �, or

3. � � is obtained from� ��� by means of a reduction step
and MGU� �, or

4. � � is obtained from� ��� by means of a restart step.

The path� is calledselected pathin all three inference
rules. A restart step followed immediately by an extension
step at the just obtained path is also called arestart extension
step. Finally, arefutationis a derivation where� � � ��

.

Note that in extension steps we can connect only with
the head literals of input clauses. Since in general this re-
striction is too strong, we have to “restart” the computa-
tion with a fresh copy of a negative clause. This is achieved
by the restart rule, because refutations of programs in goal
normal form always start with

��
, i.e. the copied lit-
eral ���� �� � �

��
; furthermore, only extension steps
are possible to

��
, introducing a new copy of a negative
clause (cf. Figure 1, right side).

The reduction operation is permitted from negative leaf lit-
erals to positive ancestor literals only. This condition can be
relaxed towards disregarding the sign, which then yields the
non-strictcalculus version. See[Baumgartner and Furbach,
1994a] for a discussion of the differences. The reader aware
of this work will notice that in the present text we define the
calculus slightly different. This happens in order to conve-
niently express another calculus variant defined below.

Note that the restart ME calculus does not assume a special
selection function which determines which path is to be ex-
tended or reduced next. Correctness and completeness of this
calculus follows immediately from a result in[Baumgartner,
1994]. From the definition of the inference rule extension, it
follows immediately, that this calculus only needs those con-
trapositives of clauses which contain a positive literal in their
heads.

2 Computing Answers
In this section we introduce the notion of computed answers
and we state an answer completeness result for restart ME.
We assume as given a program

�
together with one single

query	 � � � � � � � � � , where the� �s are positive liter-
als. We will often abbreviate such a query as	 �

, where�
stands for the conjunction of� �s. The clause set) is the

transformation of
� * �	 � �

into goal normal form. In the
following definition of computed answer we collect appli-
cations of the query clause, but not applications of negative
clauses from the program

�
.

Definition 2.1
(Answers)If 	 �

is a query and� � � � � � � �� are substitutions
for the variables from

�
, then

�� � � � � � � � �� is ananswer
(for)). An answer

� � � � � � � � ��� is acorrect answerif� � � ��� � � � � � � � �� �. Let now a restart ME refutation
of) with goal clause	
��
 and substitution� be given.
Assume that this refutation contains� extension steps with
the query, i.e. it contains� -times an extension step with the
clause
��
 	 �	 �, where

	 � is the renaming substitution of
this step. Let� � � 	 ��
�� �
 ��. Then

�� � � � � � � ��� is a
computed answer(for)).

Theorem 2.2
(Lifting Theorem for Restart Model Elimination) Let) �
be a set of ground instances of clauses taken from a clause
set). Assume there exists a restart ME derivation� � �� �� � � �� � � � � � � �� from) � with goal clause� �� !) �. Then
there exists a restart ME derivation� � � � � � � � � � � � � �
from) with some goal clause� � !) and substitution�
such that

� � is more general than
� �� . (A path set

�
is more

generalthan a path set
�

iff for some substitution� we have� � � �
.)

Furthermore, there exists a substitution� such that
� �� is

obtained from
� ���� by an extension step with clause� � !) �

if and only if
� � is obtained from

� ��� by an extension step
with a clause� !) such that�	� � � � �, where

	
is the

renaming substitution applied in that extension step.

The first part of the theorem will be used in the proof of
refutational completeness(because for a refutation on the
ground level, i.e. a derivation of

� �� � ��
, only the empty

path set
� � � ��

can be more general), while the second
part will be used in the proof ofanswer completeness(Theo-
rem 2.3). In particular, to obtain this we have to demandone
singlesubstitution� which maps any of the clauses�	� used
in extension steps to the respective clause on the ground level.
Clearly, this result is harder to establish and more relevant
than a lifting result for SLI-resolution in[Lobo et al., 1992]
which “moves the� quantification inside”: in our words, they
state that for every application of an input clause at the ground
level there exists an application at the first-order level, and
there exists a substitution to mapthis instanceto the ground
level.

Theorem 2.3
(Answer completeness of restart ME)If

�� � � � � � � �� �
is a correct answer for a program

�
, then there exists a strict

restart ME refutation from) with computed answer
�� � �

� � ����� such that
�� � � � � ����� entails

�� � � � � ���� �,
i.e.

�� � � ! �'� � � � � � � �� ! �'� � � � �
� �� �� � ��� �
Informally, the theorem states that for every given correct

answer we can find a computed answer which can be instanti-
ated by means of asinglesubstitution� to a subclause of the
given answer (and hence implies it). Unfortunately we can
not obtain a result stating that the computed answer contains
less (or equal) literals than the given answer.

All proofs are stated in the long version of this paper
[Baumgartneret al., 1995].

3 Definite Answers and Regularity
From theorem proving with ME we know that the regularity
check is an important means for improving efficiency. Regu-
larity for ordinary ME means that it is never necessary to con-
struct a tableau where a literal occurs more than once along a
path. Expressed more semantically, it says that it is never nec-
essary to repeat in a derivation a previously derived subgoal
(viewing open leaves as subgoals).

Unfortunately, regularity isnot compatible to restart ME.
In this section we will present a variant of restart ME, the
ancestry restartvariant, which allows for extended regularity
checks. This variant is motivated by Loveland's UnH-Prolog
[Loveland and Reed, 1992].

As an interesting side effect it turns out that this variant of-
fers considerable benefits with respect to logic programming:
occasionally one is interested in the question whether a given
program with query admits adefiniteanswer, i.e. an answer
which is a single conjunction of atoms, but not a disjunction.
Of course, in general, a non-definite program does not always
admit a definite answer, but some programs do. It is the latter
class of problems we are interested in now.

The key idea to the direct computation of definite answers
is to restrict the use of the query to one single application in

the refutation, namely at its top. Then, by definition, definite
answers are obtained. However, such a restriction is incom-
plete. But if restart ME is modified in such a way thatevery
negative literal along a branch, not only the topmost literal,
may be used for the restart step then completeness is recov-
ered. This follows from a more general result which states
that we can restrict toglobally regularrefutations (i.e. no lit-
eral except the literal used for the restart occurs more than
once along a branch). Let us now introduce all this more for-
mally.

Definition 3.1
(Ancestry Restart Model Elimination) The calculusan-
cestry restart MEis the same asstrict restart ME (Defini-
tion 1.2), except that the inference rulerestart is modified by
replacing the condition 3. by the new condition 3' .:

3' . � is a negative literal occurring in� . In this context� is
also called therestart literal.

The modified rule is calledancestry restart.

The term “ancestry” in the definition is explained by the use
of ancestor literals for restart steps. Note that any reduction
from apositiveleaf literal to a negative ancestor literal can be
simulated in ancestry restart ME by a restart step followed by
a strict reduction step. Thus, non-strictness is “built-in” into
ancestry restart ME.

Note that the ancestry restart rule includes the restart rule
since the first literal can be used for the restart as well.

Clearly, in terms of a proof procedure the ancestry restart
rule induces a larger local search space than the restart rule.
On the other side, refutations may become much shorter. In-
deed, this is the rationale for our proof procedure to search
the restart literals from the leaf towards the top. As a further
benefit of this search order note that a definite answer will be
enumeratedbeforea non-definite answer.

Now we are going towards an appropriate completeness
result wrt. definite answers. As mentioned above, this result
shall be a consequence of a more general result concerning a
regularity restriction. Let us define this notion precisely:

Definition 3.2
(Regularity) Let � be path written as follows (the�s and
s
are atoms):

� �

 �� " " "

 �� �� �

 �� " " "

 ���� � " " "����

�� " " "

���
Then� is calledblockwise regulariff

1. � � 	� �� for '
 � ��
 % � ',
� 	� �

(Regularity wrt.
positive literals)and

2.
 �� 	�
 �� for '

 %, '
 � ��
 � �, � 	� �
(Regu-

larity inside blocks).

If additionally it holds that

3.
 �� 	�
�� for '

 �
 %, '
 �
 ��, �
 �
 ��
(Global negative regularity)

then� is calledglobally regular. A path set is called(block-
wise, globally) regulariff every path in it is (blockwise, glob-
ally) regular. Similarly, a derivation is called(blockwise, glob-
ally) regular iff every of its path sets is (blockwise, globally)
regular.

Condition 1 states that all positive literals along a path are
pairwise different, and condition 2 states that negative liter-
als inside blocks are pairwise different, where by a block we
mean a smallest subpath delimited by positive literals or the
ends of the path. Condition 3 means that a negative literal may
be equal to one of its ancestors only if it follows a positive lit-
eral, i.e if it is used as a restart literal. Thus we have a global
regularity condition, except for restart literals. In all example
refutations given so far, all branches are blockwise regular.
However, the refutation in Figure 1 (right side) is not globally
regular, as can be seen by the two occurrences of
�

in the
rightmost path. From this example we learn that restart ME is
incompatible with the global regularity restriction. However
it holds:

Theorem 3.3
(Completeness of Ancestry Restart Model Elimination)
Let � be a head selection function and) be an unsatisfiable
clause set in
��
-normal form. Then there exists a glob-
ally regular ancestry restart ME refutation of) starting with
	
��
 and selection function� .

We can use this result to obtain the desired completeness
result for definite answers.

Theorem 3.4
(Answer completeness of ancestry restart ME)Ancestry
restart ME is answer complete in the sense of Theorem 2.3.
In particular, if

�� is a correct definite answer for a program�
, then there exists an ancestry restart ME refutation from

�
with computed answer

�� such that
�� � � �� , for some

substitution� . Furthermore, the input clause
��
 	 �
is

used exactly once, namely at the first extension step of	
��
.
The last theorem enables us to enumerate definite answers

only, by simply restricting the use of
��
 	 �
to one exten-

sion step at the beginning. So we have the desirable properties
of loop checking by regularity and the computation of definite
answers.

4 Implementation
All variants and refinements of ME discussed so far, i.e. the
restart, strict and ancestry variants (possibly with selection
function), loop checking by regularity and factorization, are
implemented in the PROTEIN system[Baumgartner and Fur-
bach, 1994b]. It is a first order theorem prover based on the
Prolog technology theorem proving (PTTP) technique, imple-
mented in ECLiPSe-Prolog.

Since ME is a goal-oriented, linear and answer complete
calculus, it is well suited as an interpreter for disjunctive

logic programming. PROTEIN facilitates computing disjunc-
tive and definite answers. In its newest release their is also a
flag which allows us to look for definite answers only.

5 Comparative Theorem Prover Study
In the sequel, we want to tell about our experiences in com-
puting answers by using theorem provers. First of all, we
had to overcome some technical problems because theorem
provers usually do not supply answers besides ”yes” or (pos-
sibly) ”no”. – We will illustrate our experiences with a puzzle
example which allows for indefinite and definite answers.

5.1 Knights and Knaves
The example follows problem #36 in[Smullyan, 1978]. A
similar example is studied in[Ohlbach, 1985]. The natural
language description of the problem is stated below. There,
the last two pieces of information 5 and 6 explicitly state
some knowledge about inferencing. We need them in order
to be able to cope with the information in 2 because our de-
scription language is first order.

1. On an island, there live exactly two types of peo-
ple: knights and knaves. 2. Knights always tell the
truth and knaves always lie. 3. I landed on the is-
land, met two inhabitants, asked one of them: ”Is
one of you a knight?” and he answered me. 4. What
can be said about the types of the asked and the
other person depending on the answer I get? – 5.
We assume, that either a proposition or its negation
is true. 6. If the disjunction of two propositions is
true then at least one of them must be true.

In our formalization of the problem below, the formulae in
1 and 2 express the corresponding pieces of information from
above. Depending on the case considered, we choose one of
the formulae (a) or (b) in 3. We view the fact that a person
denies a question as that he says that the thing in question is
not true using the binary predicate���� (instead of a ternary
predicate). Formula 4 can be considered as the query. We have
to express the pieces of information 5 and 6 explicitly by in-
troducing the unary predicate����. The transformation of
the formulae below into clausal form is straightforward and
therefore omitted here. It consists of 11 clauses. – The symbol�� denotesexclusive or.

1. ���� ���� �� � �% �
���� ������ ���� �� ��%�����
2. ���� �� �)� � ����� �)� � ���� ���� �� ��% �
�����
3. (a)���� �����	 �
� (”yes”)

(b) ���� �����	 � %�� �
�� (”no”)
where
 � �� ���� �����	 ��% �
��� � ��� ������ ��% �
����

4.
���� ���� �����	 �� �� �
���� ���� ������ �� ��
5. ���� �%�� �� �� ������ �� �
6. ���� ��� �� �
 �� � ����� �� � � ���� �
 ���

We can prove the query in many different ways. As a con-
sequence we get many trivial and hence useless answers. The
(most) trivial one – a four part disjunction – can be obtained
in both cases. We only need formula 1 and the query in order
to infer it. But it only says that each of both persons are either
knights or knaves. In case (a) (if the asked person says yes) we
can get an indefinite answer consisting of only three disjuncts.
In the other case (b) there exists a definite answer. It follows a
list of these possible answers where

� ��
is an abbreviation

of ���� ���� �����	 �� �� � ���� ���� ������ �� ��.
1. �%�����%��� � �%�����% �
�� � �% �
����%��� �

�% �
����% �
�� (trivial)

2. �%�����%��� � �% �
����%��� � �% �
����% �
��
(indefinite)

3. �%�����% �
�� (definite)

Before turning to our experiments we want to mention
some interesting facts. Firstly, answer completeness requires
that we are able to compute the indefinite and definite answer
in the respective cases. Secondly, to derive these answers we
need a clause set which is not minimal unsatisfiable; notice
that the clauses of 1 and 4 together are (minimal) unsatisfi-
able yielding the trivial answer. Thirdly, 9 extension steps are
needed to derive the indefinite or the definite answer respec-
tively, while only 7 extension steps are needed to derive the
trivial answer (in both cases). – These remarks indicate that it
should be more difficult to find the more precise answers.

5.2 Experimental Results
We tried to get the answers from above automatically by us-
ing the theorem proving systems OTTER[McCune, 1994]
which is a resolution-style theorem proving program coded
in C for first order logic (with equality), SETHEO[Letz et
al., 1992] which is a top-down prover for first order predi-
cate logic based on the calculus of the so-called connection
tableaux which generalizes weak ME, implemented in C, and
PROTEIN[Baumgartner and Furbach, 1994b] which we al-
ready introduced in Section 4. – We used the clause ordering
given by the problem description, but our experiments show
that the (run time) results depend on the ordering.

OTTER has some problems with computing answers be-
cause it enumerates resolvents but not all (refutational)
proofs. Especially during the subsumption test, it did not take
the answer literals into account which are provided for com-
puting answers. That is the reason why OTTER with (forward
and backward) subsumption isnot answer complete. An ex-
ample which illustrates this is case (a) where the search stops
after finding 15 times only the trivial answer with binary res-
olution. However, we find a proof by using hyper-resolution
with factorization immediately within 0.4s. – There is a solu-
tion to the problem with subsumption; it can be shown that we
only have to take the answer literals into account during the
subsumption steps. Unfortunately, it is not (yet) possible to
test OTTER in this setting and find out whether this improves
the behaviour, because it is not built in.

Prover Answer Time (s) Settings
OTTER trivial 2.1 plain hyper-resolution

indefinite 0.4 hyper-resolution + factor.
definite � several trials

SETHEO trivial 0.5 with constraints
indefinite 1.0 with constraints
definite 0.6 with constraints

PROTEIN trivial 0.5 any setting
indefinite � plain ME

41.4 restart + sel. function
definite 2022.8 plain ME

38.4 ancestry restart

Figure 2: Timings

We generate answers with SETHEO by using global vari-
ables. The answers are kept in a list. By this and other tech-
nical tricks, we find the indefinite answer within 1.0s and
the definite answer within 0.6s. That is quite good and may
be explained by the subgoal reordering heuristics built into
SETHEO, which are not (yet) incorporated into our sys-
tem. But in addition, SETHEO also has subsumption con-
straints which are used in the default setting. It is not quite
clear, whether these constraints destroy answer completeness
in SETHEO. – Table 2 shows the timings for OTTER and
SETHEO. All timings are measured on a Sparc 10. The sym-
bol� denotes the fact that no proof was found within 1 hour;
that is true for OTTER applied to case (b) of our example.

PROTEINis answer complete; that has been stated in this
paper. It finds out the indefinite and definite answer for the
respective case. The table in Figure 2 also shows some tim-
ings for finding these answers with PROTEIN. We tried both,
plain and restart ME. In case of the restart variant we also
tried its refinements: with or without ancestry restart or se-
lection function (no contrapositives). We tried to compute the
desired answers with settings where all solutions are com-
puted in case (a) (indefinite answer). For the case (b) (definite
answer) we used the setting where only definite answers are
searched for. By this, we get a significant speed up of the
search. – As one can see, using restart helps for this problem,
since plain ME does not find the desired answers quickly, al-
though it does so for trivial answers. But it is not quite clear
which flags should be used in addition.

We investigated more puzzle examples from[Smullyan,
1978]. All our experiments corroborate the following facts:
resolution has difficulties in solving puzzles because of the
problem with subsumption; model elimination is better suited
although it could not solve all puzzles that we tested. For
example, OTTER needs 281.8s on puzzle #35 while PRO-
TEIN only needs 153.1s. Further investigations are necessary.
It seems that also a model generation approach is very ade-
quate[Manthey and Bry, 1988] for these kind of problems
because they often allow for finite models. Last but not least,
we want to point out that both, OTTER and SETHEO do not
support a procedural reading of program clauses – they need
all contrapositives – but PROTEIN does; and that is useful if
we want to use logic as a real programming language.

6 Conclusion
To conclude, it seems to be very promising to use ME as a
base calculus for computing answers in disjunctive logic pro-
gramming. In this paper, we introduce (among others) the an-
cestry restart variant which is quite well suited for this pur-
pose. We also give some practical evidence. Nevertheless,
further investigation is necessary in order to find out yet more
efficient calculi and to incorporate nonmonotonic extensions.

Acknowledgements
We would like to thank François Bry, Jürgen Dix, Bertram
Fronhöfer, Reinhold Letz and William W. McCune for help-
ful discussions, and Olaf Menkens and Dorothea Schäfer for
their implementational work.

References
[Baumgartner and Furbach, 1993] P. Baumgartner and U. Furbach.

Consolution as a Framework for Comparing Calculi.Journal of
Symbolic Computation, 16(5), 1993. Academic Press.

[Baumgartner and Furbach, 1994a] P. Baumgartner and U. Fur-
bach. Model Elimination without Contrapositives and its Appli-
cation to PTTP. Journal of Automated Reasoning, 13:339–359,
1994. Short version in: Proceedings of CADE-12, Springer LNAI
814, 1994, pp 87–101.

[Baumgartner and Furbach, 1994b] P. Baumgartner and U. Fur-
bach. PROTEIN: APROver with aTheoryExtensionInterface.
In A. Bundy, editor,Automated Deduction – CADE-12, volume
814 ofLNAI, pages 769–773. Springer, 1994.

[Baumgartneret al., 1995] Peter Baumgartner, Ulrich Furbach, and
Frieder Stolzenburg. Model elimination, logic programming and
computing answers. Fachberichte Informatik 1/95, Universität
Koblenz-Landau, Koblenz, 1995.

[Baumgartner, 1994] P. Baumgartner. Refinements of Theory
Model Elimination and a Variant without Contrapositives. In A.G.
Cohn, editor,11th European Conference on Artificial Intelligence,
ECAI 94. Wiley, 1994. (Long version in: Research Report 8/93,
University of Koblenz, Institute for Computer Science, Koblenz,
Germany).

[ECRC, 1994] ECRC GmbH, München.ECLiPSe 3.4: User Man-
ual – Extensions User Manual, January 1994.

[Eder, 1991] E. Eder. Consolution and its Relation with Resolution.
In Proc. IJCAI '91, 1991.

[Letzet al., 1992] R. Letz, J. Schumann, S. Bayerl, and W. Bibel.
SETHEO: A High-Performance Theorem Prover.Journal of Au-
tomated Reasoning, 8(2), 1992.

[Loboet al., 1992] Jorge Lobo, Jack Minker, and Arcot Rajasekar.
Foundations of Disjunctive Logic Programming. MIT Press, Cam-
bridge, MA, London, England, 1992.

[Loveland and Reed, 1992] D. Loveland and D. Reed. Near-Horn
Prolog and the Ancestry Family of Procedures. Technical Report
CS-1992-20, Department of Computer Science, Duke University,
Durham, North Carolina, December 1992.

[Loveland, 1968] D. Loveland. Mechanical Theorem Proving by
Model Elimination.JACM, 15(2), 1968.

[Loveland, 1991] D. Loveland. Near-Horn Prolog and Beyond.
Journal of Automated Reasoning, 7:1–26, 1991.

[Manthey and Bry, 1988] Rainer Manthey
and François Bry. SATCHMO: a theorem prover implemented in
Prolog. In Ewing Lusk and Ross Overbeek, editors,Proceedings
of the 9th International Conference on Automated Deduction, Ar-
gonne, Illinois, USA, May 1988, pages 415–434. Springer, Berlin,
Heidelberg, New York, 1988. LNCS 310.

[McCune, 1994] William W. McCune. OTTER 3.0 reference man-
ual and guide. Technical Report ANL-94/6, National Laboratory,
Argonne, IL, January 1994.

[Ohlbach, 1985] Hans Jürgen Ohlbach. Predicate logic hacker
tricks. Journal of Automated Reasoning, 1:435–440, 1985.

[Plaisted, 1988] D. Plaisted. Non-Horn Clause Logic Program-
ming Without Contrapositives.Journal of Automated Reasoning,
4:287–325, 1988.

[Smullyan, 1978] Raymond M. Smullyan.What is the name of this
book? The riddle of Dracula and other logical puzzles. Prentice-
Hall, Englewood Cliffs, NJ, 1978.

[Sutcliffeet al., 1994] G. Sutcliffe, C. Suttner, and T. Yemenis. The
TPTP problem library. InProc. CADE-12. Springer, 1994.

