
Hierarchic Superposition:
Completeness without Compactness

Peter Baumgartner1 and Uwe Waldmann2

1 NICTA? and Australian National University, Canberra, Australia
Peter.Baumgartner@nicta.com.au

2 MPI für Informatik, Saarbrücken, Germany
uwe@mpi-inf.mpg.de

Abstract. Many applications of automated deduction and verification require
reasoning in combinations of theories, such as, on the one hand (some fragment
of) first-order logic, and on the other hand a background theory, such as some
form of arithmetic. Unfortunately, due to the high expressivity of the full logic,
complete reasoning is impossible in general. It is a realistic goal, however, to
devise theorem provers that are “reasonably complete” in practice, and the hier-
archic superposition calculus has been designed as a theoretical basis for that. In
a recent paper we introduced an extension of hierarchic superposition and proved
its completeness for the fragment where every term of the background sort is
ground. In this paper, we extend this result and obtain completeness for a larger
fragment that admits variables in certain places.

1 Hierarchic Superposition

Many applications of automated deduction and verification require reasoning in combi-
nations of theories, such as, on the one hand (some fragment of) first-order logic and on
the other hand some form of arithmetic. In hierarchic superposition [2, 3] we consider
the following scenario:

We assume that we have a background (“BG”) prover that accepts as input a set
of clauses over a BG signature ΣB = (ΞB, ΩB), where ΞB is a set of BG sorts and ΩB
is a set of BG operators. Terms/clauses over ΣB and BG-sorted variables are called
BG terms/clauses. For instance, ΞB might be {int, boolB} and ΩB might contain the
integer numbers, +, −, <, ≤, true<, true≤, and additional parameters α, β, . . . that may
be interpreted freely over the int-domain. The BG prover decides the satisfiability of
ΣB-clause sets w. r. t. a BG specification, say linear integer arithmetic (LIA).

For technical reasons, we assume that equality is the only predicate symbol in
our language and that any non-equational atom p(t1, . . . , tn) is encoded as an equation
p(t1, . . . , tn) ≈ truep. We refer to the terms that result from this encoding of atoms as
atom terms; all other terms are called proper terms. When we simply write, say, x ≤ y,
this should always be taken as a shorthand for an equation as above.

? NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

The foreground (“FG”) theorem prover accepts as inputs clauses over a signature
Σ = (Ξ,Ω), where ΞB ⊆ Ξ and ΩB ⊆ Ω. The sorts in ΞF = Ξ \ ΞB and the operator
symbols inΩF = Ω\ΩB are called FG sorts and FG operators. For instance, ΞF might be
{list, boolF} and ΩF might contain operators cons : int × list → list, length : list → int,
isempty : list → boolF, and trueisempty :→ boolF, among others. Σ-terms that are not BG
terms are called FG terms. Notice that FG terms such as length(x) can have BG sorts.

After abstracting out certain BG terms that occur as subterms of FG terms,3 the FG
prover saturates the set of Σ-clauses using the inference rules of hierarchic superposi-
tion, such as, e. g.,

Negative superposition
l ≈ r ∨C s[u] 0 t ∨ D

abstr((s[r] 0 t ∨C ∨ D)σ)

if (i) neither l nor u is a BG term, (ii) u is not a variable, (iii) σ is a simple
mgu of l and u, (iv) rσ � lσ, (v) (l ≈ r)σ is strictly maximal in (l ≈ r ∨ C)σ,
(vi) the first premise does not have selected literals, (vii) tσ � sσ, and (viii)
if the second premise has selected literals, then s 0 t is selected in the second
premise, otherwise (s 0 t)σ is maximal in (s 0 t ∨ D)σ.

These differ from the standard superposition inference rules [1] mainly in that only the
FG parts of clauses are overlapped and that any BG clauses derived during the saturation
are instead passed to the BG prover. The BG prover implements an inference rule

Close
C1 · · · Cn

�

if C1, . . . ,Cn are BG clauses and {C1, . . . ,Cn} is unsatisfiable w. r. t. the BG
specification.

As soon as one of the two provers detects a contradiction, the input clause set has been
shown to be inconsistent w. r. t. conservative extensions of the BG specification.

2 Refutational Completeness

There are two requirements for the refutational completeness of hierarchic superposi-
tion. The first one is a variant of sufficient completeness: We must be able to prove that
every ground BG-sorted FG term is equal to some BG term. Sufficient completeness
of a set of Σ-clauses is a property that is not even recursively enumerable. For certain
classes of Σ-clause sets, however, it is possible to establish sufficient completeness au-
tomatically [5, 3]: If all BG-sorted FG terms are ground, it suffices to add a definition
αt ≈ t for every BG-sorted FG term t occurring in a clause C[t], where αt is a new
parameter (BG constant); afterwards C[t] can be replaced by C[αt].

3 Abstracting out a term t that occurs in a clause C[t] means replacing C[t] by x 0 t ∨ C[x] for
a new variable x. The reverse operation is called unabstraction.

2

Since we can only pass finite clause sets to a BG prover, there is a second require-
ment for refutational completeness, namely the compactness of the BG specification. A
specification is called compact, if every set of formulas that is unsatisfiable w. r. t. the
specification has a finite unsatisfiable subset.

It is well-known that first-order logic is compact. So, if we assume that the BG
prover checks satisfiability w. r. t., say, the first-order theory of LIA4 the compactness
requirement is automatically satisfied. Unfortunately, as soon as the BG signature con-
tains parameters, satisfiability w. r. t. the first-order theory of LIA differs from satisfi-
ability w. r. t. LIA over Z. Consider the following example: Suppose that the BG sig-
nature contains the parameter α in addition to the integer numbers and the operator
symbols of LIA, and that we have a unary FG predicate symbol p and the Σ-clauses
p(0), ¬p(x)∨ x < α, and ¬p(x)∨ x+1 < y∨ p(y). Starting with these clauses, hierarchic
superposition produces a set N1 of BG clauses

0 < α,
0 + 1 < y1 ∨ y1 < α,

0 + 1 < y1 ∨ y1 + 1 < y2 ∨ y2 < α,

0 + 1 < y1 ∨ y1 + 1 < y2 ∨ y2 + 1 < y3 ∨ y3 < α,
. . .

which, after removing the universally quantified variables by quantifier elimination,
turns out to be equivalent to {0 < α, 1 < α, 2 < α, 3 < α, . . .}. Each finite subset of
N1 is satisfiable in Z, and hence in the first-order theory of LIA. By compactness of
first-order logic, N1 itself is also satisfiable in the first-order theory of LIA, for in-
stance in the non-standard model Q × Z with 0 := (0, 0), 1 := (0, 1), α := (1, 0),
(x, y) + (x′, y′) := (x + x′, y + y′), and a lexicographic ordering. On the other hand, the
set N1 is clearly unsatisfiable in Z. This leaves us two undesirable choices: If we as-
sume that the BG specification is given by LIA over Z, hierarchic superposition is not
refutationally complete – there is a contradiction, but we will never detect it. If we as-
sume that the BG specification is the first-order theory of LIA, hierarchic superposition
is refutationally complete, but we get non-standard models, that we would prefer to
exclude in most applications.

3 Completeness without Compactness

Are there classes of Σ-clause sets for which we can guarantee that hierarchic superpo-
sition is refutationally complete even if we restrict ourselves to the standard models of
linear integer or rational arithmetic? A first answer in this direction was given in [3]: If
all BG-sorted terms in a clause set are ground, clauses are appropriately preprocessed,
and some reasonable restrictions on simplifications are observed, then the hierarchic
superposition calculus can produce only finitely many different BG clauses (up to un-
abstraction and duplication of literals). Refutational completeness follows immediately.

In the current paper, we extend this result significantly by permitting also BG-sorted
variables and, in certain positions, even variables with offsets.

4 That is, the set of all first-order BG sentences that hold in LIA.

3

Theorem 1. Let N be a set of clauses over the signature of linear integer arithmetic
(with parameters α, β, etc.), such that every proper term in these clauses is either
(i) ground, or (ii) a variable, or (iii) a sum x+k of a variable x and a number k ≥ 0 that
occurs on the right-hand side of a positive literal s < x + k. If the set of ground terms
occurring in N is finite, then N is satisfiable in LIA over Z if and only if N is satisfiable
w. r. t. the first-order theory of LIA.

Proof. Let N be a set of clauses with the required properties, and let T be the finite set
of ground terms occurring in N. We will show that N is equivalent to some finite set of
clauses over the signature of linear integer arithmetic, which implies that it is satisfiable
in the integer numbers if and only if it is satisfiable in the first-order theory of LIA.

In a first step, we replace every negative ordering literal ¬s < t or ¬s ≤ t by the
equivalent positive ordering literal t ≤ s or t < s. All literals of clauses in the resulting
set N0 have the form s ≈ t, s 0 t, s < t, s ≤ t, or s < x + k, where s and t are either
variables or elements of T and k ∈ N. Note that the number of variables in clauses in
N0 may be unbounded.

In order to handle the various inequality literals in a more uniform way, we introduce
new binary relation symbols <k (for k ∈ N) that are defined by a <k b if and only if
a < b + k. Observe that s <k t entails s <n t whenever k ≤ n. Obviously, we may replace
every literal s < t by s <0 t, every literal s ≤ t by s <1 t, and every literal s < x + k by
s <k x. Let N1 be the resulting clause set.

We will now transform N1 into an equivalent set N2 of ground clauses. We start
by eliminating all equality literals that contain variables by exhaustively applying the
following transformation rules:

N ∪ {C ∨ x 0 x } → N ∪ {C }
N ∪ {C ∨ x 0 t } → N ∪ {C[x 7→ t] } if t , x
N ∪ {C ∨ x ≈ x } → N
N ∪ {C ∨ x ≈ t } → N ∪ {C ∨ x <1 t, C ∨ t <1 x } if t , x

All variables in inequality literals are then eliminated in a Fourier-Motzkin-like manner
by exhaustively applying the transformation rule

N ∪ {C ∨
∨
i∈I

x <ki si ∨
∨
j∈J

t j <n j x } → N ∪ {C ∨
∨
i∈I

∨
j∈J

t j <ki+n j si }

where x does not occur in C and one of the index sets I and J may be empty.
The clauses in N2 are constructed over the finite set T of proper ground terms,

but the length of the clauses in N2 is potentially unbounded. In the next step, we will
transform the clauses in such a way that any pair of terms s, t from T is related by at
most one literal in any clause: We apply one of the following transformation rules as
long as two terms s and t occur in more than one literal:

N ∪ {C ∨ s <k t ∨ s ≈ t } → N ∪ {C ∨ s <k t } if k ≥ 1
N ∪ {C ∨ s <0 t ∨ s ≈ t } → N ∪ {C ∨ s <1 t }
N ∪ {C ∨ s <k t ∨ s 0 t } → N if k ≥ 1
N ∪ {C ∨ s <0 t ∨ s 0 t } → N ∪ {C ∨ s 0 t }

4

N ∪ {C ∨ s <k t ∨ s <n t } → N ∪ {C ∨ s <n t } if k ≤ n
N ∪ {C ∨ s <k t ∨ t <n s } → N if k + n ≥ 1
N ∪ {C ∨ s <0 t ∨ t <0 s } → N ∪ {C ∨ s 0 t }
N ∪ {C ∨ L ∨ L } → N ∪ {C ∨ L } for any literal L
N ∪ {C ∨ s ≈ t ∨ s 0 t } → N

The length of the clauses in the resulting set N3 is now bounded by 1
2 m(m + 1), where

m is the cardinality of T . Still, due to the indices of the relation symbols <k, N3 may
be infinite. We introduce an equivalence relation ∼ on clauses in N3 as follows: Define
C ∼ C′ if for all s, t ∈ T (i) s ≈ t ∈ C if and only if s ≈ t ∈ C′, (ii) s 0 t ∈ C if and only
if s 0 t ∈ C′, and (iii) s <k t ∈ C for some k if and only if s <n t ∈ C′ for some n. This
relation splits N3 into at most (1

2 m(m + 1))5 equivalence classes.5

We will now show that each equivalence class is logically equivalent to a finite
subset of itself. Let M be some equivalence class. Since any two clauses from M differ
at most in the indices of their <k-literals, we can write every clause Ci ∈ M in the form

Ci = C ∨
∨

1≤l≤n
sl <kil tl

where C and the sl and tl are the same for all clauses in M. As we have mentioned above,
sl <kil tl entails sl <k jl tl whenever kil ≤ k jl; so a clause Ci ∈ M entails C j ∈ M whenever
the n-tuple (ki1, . . . , kin) is pointwise smaller or equal to the n-tuple (k j1, . . . , k jn) (that
is, kil ≤ k jl for all 1 ≤ l ≤ n).

Let Q be the set of n-tuples of natural numbers corresponding to the clauses in M.
By Dickson’s lemma [4], for every set of tuples in Nn the subset of minimal tuples
(w. r. t. the pointwise extension of ≤ to tuples) is finite. Let Q′ be the subset of minimal
tuples in Q, and let M′ be the set of clauses in M that correspond to the tuples in Q′.
Since for every tuple in Q \Q′ there is a smaller tuple in Q′, we know that every clause
in M \ M′ is entailed by some clause in M′. So the equivalence class M is logically
equivalent to its finite subset M′. Since the number of equivalence classes is also finite
and all transformation rules are sound, this proves our claim. ut

Corollary 2. The hierarchic superposition calculus is refutationally complete w. r. t. LIA
over Z for finite sets of Σ-clauses in which every proper BG-sorted term is either
(i) ground, or (ii) a variable, or (iii) a sum x + k of a variable x and a number k ≥ 0
that occurs on the right-hand side of a positive literal s < x + k.6

Proof. Let N be a finite set of Σ-clauses with the required properties. By introducing
definitions αt ≈ t as described above and weak abstraction we obtain a sufficiently
complete finite set N0 of abstracted clauses.

Now we run the hierarchic superposition calculus on N0 (with the same restrictions
on simplifications as in [3]). Let N1 be the (possibly infinite) set of BG clauses gener-
ated during the run. By unabstracting these clauses, we obtain an equivalent set N2 of

5 Any pair of terms s, t is related in all clauses of an equivalence class by either a literal s ≈ t, or
s 0 t, or s <n t for some n, or t <n s for some n, or no literal at all, so there are five possibilities
per unordered pair of terms.

6 Note that in the counterexample above x+1 occurs on the left-hand side of the literal x+1 < y.

5

clauses that satisfy the conditions of Thm. 1, so N2 is satisfiable in LIA over Z if and
only if N is satisfiable w. r. t. the first-order theory of LIA. Since the hierarchic superpo-
sition calculus is refutationally complete w. r. t. the first-order theory of LIA, the result
follows. ut

Analogous results hold for linear rational arithmetic. Let n be the least common
divisor of all numerical constants in the original clause set; then we define a <2i b by
a < b + i

n and a <2i+1 b by a ≤ b + i
n for i ∈ N and express every inequation literal in

terms of <k. The Fourier-Motzkin transformation rule is replaced by

N ∪ {C ∨
∨
i∈I

x <ki si ∨
∨
j∈J

t j <n j x } → N ∪ {C ∨
∨
i∈I

∨
j∈J

t j <ki•n j si }

where x does not occur in C, one of the index sets I and J may be empty, and k • n is
defined as k + n − 1 if both k and n are odd, and k + n otherwise. The rest of the proof
proceeds in the same way as before.

References

1. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and
simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

2. L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for hierarchic
first-order theories. Appl. Algebra Eng. Commun. Comput, 5:193–212, 1994.

3. P. Baumgartner and U. Waldmann. Hierarchic superposition with weak abstraction. In
M. P. Bonacina, ed., 24nd Int. Conf. on Automated Deduction, 2013, LNAI 7898, pp. 39–
57. Full version: Research Report MPI-I-2013-RG1-002, Max-Planck-Institut für Infor-
matik, Saarbrücken, Germany, June 2013, http://domino.mpi-inf.mpg.de/internet/
reports.nsf/NumberView/2013-RG1-002.

4. L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. Amer. J. Math., 35(4):413–422, 1913.

5. E. Kruglov and C. Weidenbach. Superposition decides the first-order logic fragment over
ground theories. Math. in Comp. Sci., pp. 1–30, 2012.

6

