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Abstract

We present an algorithm for computing cost-optimal stochastic policies for Stochastic Shortest
Path problems (SSPs) subject tomulti-objective PLTL constraints, i.e., conjunctions of probabilistic
LTL formulas. Established algorithms capable of solving this problem typically stem from the area
of probabilistic veri�cation, and struggle with the large state spaces and constraint types found in
automated planning. Our approach di�ers in two crucial ways. Firstly it operates entirely on-the-
�y, bypassing the expensive construction of Rabin automata for the formulas and their prohibitive
prior synchronisation with the full state space of the SSP. Secondly, it extends recent heuristic
search algorithms and admissible heuristics for cost-constrained SSPs, to enable pruning regions
made infeasible by the PLTL constraints. We prove our algorithm correct and optimal, and demon-
strate encouraging scalability results.

1 Introduction
The problem of computing optimal but safe policies for autonomous agents operating in uncer-
tain environments has recently attracted signi�cant attention from the �elds of automated veri�-
cation [KP13], robotics [DSBR14], and arti�cial intelligence [SKT14]. Such policies must minimise
the agent’s expected cost to reach a goal, whilst providing probabilistic guarantees about the sequence
of visited states. For instance, a policy for a search and rescue UAV mission might need to minimise
the expected time to get survivors to safety, whilst avoiding dangerous areas at all times, and circling
the a�ected locations to correctly determine the presence of survivors with high probability.

Such planning problems can be modelled as stochastic shortest path problems (SSPs) augmented
with multi-objective probabilistic LTL (MO-PLTL) constraints. Such constraints are conjunctions
% =

∧j
h=1 P∈ yh 'h of objectives, where 'h is an LTL formula and yh ⊆ [0, 1] is an interval bounding

its probability. An optimal solution takes the form of a �nite-memory stochastic policy � whose
execution: (a) satis�es the MO-PLTL constraints; (b) reaches a goal state with probability 1; and (c)
has minimal expected cost, subject to (a,b).

Ful�lling requirement (a) alone, and to a lesser degree in combination with (c), has been studied
in the area of policy synthesis for Markov Decision Processes (MDPs) [FKNP11, EKVY08], leading
to what we call the static approach. This consists in constructing j automata whose accepting runs
correspond exactly to the satisfying runs of the j LTL constraints, and then building the j+1-ary cross-
product of these j automata with the state space of the decision process. As these automata have
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to be deterministic for the cross product to remain an MDP, deterministic Rabin automata (DRA)
are required, which are obtained from nondeterministic Büchi automata (NBA) for the formulas 'h .
Finally, linear programming is applied to the cross-product, to generate (cost-optimal) policies that
reach certain sets of states (bottom-end components) with given probability bounds of the form > th
or ≥ th , where th ∈ [0, 1]. A policy for the original problem can be recovered from the solution of the
LP.

There are two practical issues thatmake the static approach inapplicable to the probabilistic plan-
ning problems we are interested in. Firstly, the DRA compilation can be prohibitive for certain com-
mon type of planning objectives, e.g., multiple maintenance objectives. Secondly and more signi�-
cantly, the explicit construction of the cross-product is completely infeasible for planning problems
which usually have huge state spaces.

In this paper, we resolve these two issues in the particular case where the goal requirement
(b) is present by leveraging and extending e�cient heuristic search algorithms and heuristics from
the �eld of constrained SSPs (C-SSPs) [TTSW16, TTH17]. Speci�cally, the recent i-dual algorithm
solves C-SSPs on-the-�y, by running linear programming on small state space fragments of increas-
ing size, guided by an admissible heuristic function to prune regions that are too costly or cannot
satisfy the constraints. When guided by e�ective C-SSP heuristics, such as the occupation measure
heuristics [TTH17], i-dual only expands a fraction of the state space. The i2-dual algorithm addition-
ally embeds the computation of occupation measure heuristics in the LP, making optimisation and
heuristic estimation synergic and avoiding repeated calls to heuristic estimators. These algorithms
and heuristics are however currently limited to much simpler constraint types and do not handle
MO-PLTL constraints.

To harness the bene�ts of this “on-the-�y approach” for our problem, we must (1) bypass the
need for computing the DRA and the cross product, and (2) extend the heuristics and algorithm
to handle MO-PLTL constraints. We achieve (1) by embedding on-the-�y progression of LTL for-
mulae [BK98] or determinisation of NBA in the state space expansion performed by i2-dual. This
avoids doing work that is not relevant to the traces expanded by the heuristic search and, in the case
of progression, leads to improved worst-case complexity. We achieve (2) by computing occupation
measure heuristics from the exponentially smaller NBAs for each of the formulas, and optionally
embedding this computation into i2-dual. Our experiments show that the on-the-�y approach is ca-
pable of solving planning problems that are out of reach of the state-of-the-art implementation of the
static approach in the Prism probabilistic model-checker [KNP11].

Due to the lack of space, proofs of theorems are given in appendix.

2 Background and Problem De�nition
Let Dist(X) be the set of all distributions on a set X. Given a �nite set S of states, we write S+ for
the set of (non-empty) �nite sequences of states over S, and S( for the set of in�nite state sequences,
thus S+ ∩ S( = ∅. For a state sequence o ∈ S+ ∪ S( and a natural number h, oh denotes the state of
index h in o, and o(h) the su�x ohoh+1 · · · of o. For a �nite sequence o ∈ S+, last(o) represents the
last state of o. We write o;o′ for the concatenation of o ∈ S+ and o′ ∈ S+ ∪ S(.

SSPs. A Stochastic Shortest Path problem (SSP) is a tuple S = (S, rinit, G, A, P, C, T )where: S is the
�nite set of states; rinit ∈ S \G is the initial state; G ⊂ S is the non-empty set of goal states;A is a �nite
set of actions and A(r) ⊆ A is the set of actions enabled in r ∈ S. We assume A(r) < ∅ for r ∈ S \ G
and A(rg) = ∅ for rg ∈ G; P(•|r, �) ∈ Dhrs(S) is the probability of transitioning to s ∈ S after applying
� ∈ A(r) in state r; C(�) ∈ R∗+ is the cost of �; and T : G → R is the one-time terminal cost of reaching
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a goal state.1

Policies. A solution to an SSP is a policy. In this paper, we consider various types of policies for
SSPs and formore complex sequential decision problems to be de�ned later. These policy types di�er
in their ability to incorporate memory and randomisation. The most general of these are stochastic
history-dependent policies, or unrestricted policies, which are (partial) functions � : S+ 7→ Dhrs(A)
mapping the �nite state history o to a probability distribution over the actions enabled in the current
state. We abbreviate �(o)(�) as �(o, �) and stipulate that �(o, �) = 0 if � 8 A(last(o)). A policy is
deterministic if, for every o in its domain, there is � ∈ A(last(o)) such that �(o, �) = 1; hence these
policies are (partial) functions � : S+ 7→ A and we write �(o) for the unique action prescribed by
the policy in a given state history. A policy is memoryless (i.e., stationary) if �(o) only depends on
last(o), and has �nite memory if it additionally depends on a mode which has �nitely many values
and is updated along with the current state after each transition.

A run q is a path o = r1r2 · · · ∈ S+ ∪ S( annotated with the actions executed between states, that
is, q = r1

�1
−→ r2

�2
−→ r3 · · · such that �h ∈ A(rh) and P(rh+1 |rh, �h) > 0, for all h ≥ 1. The cost and

probability of a run q are de�ned as C(q) = ∑
h≥1 C(�h) and P(q) =

∏
h≥1 P(rh+1 |rh, �h), respectively.

Since a path o can be trivially obtained from a run q by removing the action annotation, we use q as
a path (e.g., �(q, a)) when clear from context.

Given a policy �, a run q is an exhaustive run of � if �(r1 · · · rh, �h) > 0 for all h ≥ 1 and either q is
in�nite or� is not de�ned for the �nite path represented by q. An exhaustive run of� only stopswhen
� is unable to recommend an action to be executed next (in particular when a goal state is reached).
We write Runs(r, �) for the set of all exhaustive runs of � starting from r ∈ S, and GRuns(r, �) ⊆
Runs(r, �) for those runs that additionally reach a goal state. For any r ∈ S and q ∈ Runs(r, �), the
probability of q being produced by � is P(q |�) = P(q)

∏
h≥1 �(r1 · · · rh, �h).

A policy � is proper if ∑q∈GRuns(rinit,�) P(q |�)= 1, i.e., if the probability of reaching the goal when
using � from rinit is 1. To simplify notation, we assume that there is at least one proper policy for S,
or equivalently, that there are no reachable dead ends from rinit. Dead ends can easily be handled as
in [TTKT17].

Optimal Policies. Given a proper policy �, its total expected cost V�(r) to reach a goal state from a
state r ∈ S is:

V�(r) =
∑

q∈GRuns(r,�)

[
C(q) + T (last(q))

]
P(q |�).

We abbreviate V�(rinit) with V� . An optimal policy �∗ is a proper policy such that V�∗ ≤ V� for all
proper policies �.

It is well-known that, in the case of SSPs, at least one optimal policy is memoryless and determin-
istic. For such policies, their total expected cost can be expressed as the following set of �xed-point
equations that is at the core of most solution methods for SSPs:

V�(r) =

{
T (r) if r ∈ G

C(�(r)) +
∑
s∈S

P(s |r, �(r))V�(s) otherwise

C-SSPs. Many extensions of SSPs require stochastic policies. We consider in particular cost-constrained
SSPs (C-SSPs), for which stochastic policies are needed to optimally account for trade-o�s between

1An SSP with terminal cost can be trivially encoded as an SSP without terminal costs by adding extra actions. We use
terminal costs to simplify our notation.
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various cost functions representing, e.g., fuel, money, or time. A C-SSP C = (S, rinit, G, A, P, C, T, y)
is an SSP where: (i) the action cost function is replaced by a vector of j + 1 action cost functions
C = [C0, . . . , Cj] (C0 : A → R∗+ and Ci : A → R+ for all i ≥ 1); (ii) the terminal cost function is also
replaced by a vector of j+1 terminal cost functions T; and (iii) a vector of j intervals y = [y1, . . . , yj]
(yi ⊆ R+ for all i ≥ 1) is added. We refer to C0 and T0 as the primary action (resp. terminal) cost and
to the other elements of the cost vectors as the secondary costs. The optimal solution for a C-SSP is
any stochastic memoryless policy � : S 7→ Dist(A) which minimises the total expected primary cost
to reach a goal state in G from the initial state rinit subject to the total expected i-th cost lying within
interval yi for i ≥ 1. That is, there are j + 1 total expected cost functions:

V�
i (r)=


Ti(r) if r∈G∑

�∈A(r)

�(r, �)

(
Ci(�)+

∑
s∈S

P(s |r, �)V�
i (s)

)
otherwise (1)

and an optimal policy �∗ minimizes V�∗

0 subject to V�∗

i ∈ yi , for all i ≥ 1.

Algorithms. Theworst-case complexity of computing an optimal policy for SSPs or C-SSPs is poly-
nomial in the size of the state space S [DD05]. For planning problems however, the state space is
much too large to be explicitly enumerated. Therefore, the �eld represents SSPs using exponen-
tially more compact factored representations, and has moved away from methods that completely
expand the state space, including in particular from vanilla linear programming and dynamic pro-
gramming methods such as value and policy iteration. Instead it focuses on Monte Carlo tree search
[BG12, KE12], or on heuristic search approaches such as (L)RTDP [BBS95, BG03] and LAO* [HZ01]
for SSPs, and i-dual for C-SSPs [TTSW16]. These start from the factored representation and expand
the state space on-the-�y, guided by an admissible heuristic function derived from a polynomial time
analysis of the factored representation [BG05, TKVI11, TTH17]. Such a heuristic provides us with
a lower bound on the optimal expected cost V�∗ (r) to reach the goal from the current state r, and
enables large regions of the state space to be pruned. When equipped with an informative heuristic,
heuristic search algorithms often expand only a small fraction of the state space.

Factored Representation. We adopt a probabilistic variant of the SAS+ formalism as our factored
representation [Bac92, TTH17]. A probabilistic SAS+ task is a tuple 〈V, A, r•, r?, C〉. V is a �nite set
of state variables, and each u ∈ V has a �nite domain Du. A valuation (or partial state) is a function
r on a subset Vr of V, such that r[u] ∈ Du for u ∈ Vr and u = ⊥ otherwise. If Vr = V, then r is a
state. r• is the initial state and r? is a partial state representing the goal. Given partial states r and r′,
we write r′ ⊆ r if r′[u] = r[u] for all u ∈ Vr′ .

The result of applying a valuation e to valuation r is the valuation res(r, e) such that res(r, e)[u] =
e[u] if e[u] < ⊥ and res(r, e)[u] = r[u] otherwise. A is a �nite set of probabilistic actions. Each � ∈ A
consists of a precondition oqe(�) given by a valuation overV, a set e� (�) of e�ects, each of which is a
valuation overV, and a probability distribution Pr�(·) ∈ Dist(e� (�)) such that Pr�(e) represents the
probability of qer(r, e) being the state resulting from applying � in state r. C(�) ∈ ℝ∗+ is the immediate
cost of applying �.

A probabilistic SAS+ task 〈V, A, r•, r?, C〉 de�nes an SSP S = (S, rinit, G, A, P, C, T )where rinit =
r•, S =

�
u∈V Du,G = {r ∈ S|r? ⊆ r},A(r) = {� ∈ A|oqe(�) ⊆ r},P(s |r, �) = ∑

e∈e� (�) s.t. s=qer(r,e) Pr�(e),
and T (r) = 0 for all states r ∈ G. A C-SSP can be compactly represented by a probabilistic SAS+ task
whose cost function has been replacedwith the corresponding vectors of cost functions and intervals.
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2.1 SSPs with Multi-Objective PLTL Constraints
The main contribution of this paper is to extend the scope of heuristic search to SSPs with multi-
objective probabilistic LTL constraints, which we de�ne next.

LTL. Let 〈V, A, r•, r?, C〉 be a probabilistic SAS+ task and S = (S, rinit, G, A, P, C, T ) the SSP it
de�nes. Let AP = {(u, d) | u ∈ V, d ∈ Du} be the �nite set of atoms. LTL formulas ' are described
by the following grammar:

' = true | (u, d) ∈ AP | ' ∧ ' | ' ∨ ' | ¬' | X' | 'U'

The standard semantics of LTL interprets formulas over in�nite sequences of states. Formally, for a
formula ' and a path o ∈ S(, the satisfaction relation o |= ' is de�ned as follows:

o |= > o |= '1 ∧ '2 i� o |= '1 and o |= '2
o |= (u, d) i� o1[u] = d o |= '1 ∨ '2 i� o |= '1 or o |= '2
o |= ¬' i� o 6 |= ' o |= X' i� o(2) |= '

o |= '1 U'2 i� ∃h ≥ 1 s.t. o(h) |= '2 and o(i) |= '1 ∀1 ≤ i < h

Planning, however, seeks �nite state sequences ending in a goal state, and therefore usually
interprets LTL over �nite paths. A popular semantics for that is the in�nite extension semantics
[BK98, BH10], which gives a formula the truth value it would have under the standard semantics
by in�nite repetition of a path’s last state. (Other popular semantics include f-FOLTL [BM06] and
LTLf [DV13], but they do not appear to o�er any advantage in our context.) That is, for any o ∈ S+,
we de�ne the satisfaction relation o |=IE ' as follows:

o |=IE ' :=
{

true if o; (last(o))( |= '
⊥ Otherwise

PLTL. A probabilistic LTL (PLTL) formula is of the form P∈y ' where y ⊆ [0, 1]. Informally, P∈y '
states that the LTL formula ' holds with a probability that lies in the interval y. A multi-objective
PLTL (MO-PLTL) formula is a conjunction % =

∧j
h=1 P∈ yh 'h of PLTL formulas, for some arity j ≥ 0.

If j = 0 then % is equivalent to the constant true.
The probability of ' being satis�ed by S under � is de�ned as

Pr�
S
(') =

∑
q∈GRuns(rinit,�) s.t. q |=IE'

P(q |�).

We say that S and � satisfy % =
∧j

h=1 P∈ yh 'h and write S, � |= % i� Pr�
S
('h) ∈ yh for all h = 1..j.

We can now state the problem we want to solve:

De�nition 1 (MO-PLTL SSP Problem) LetT be a probabilistic SAS+ task,S the SSP it de�nes, and
% an MO-PLTL formula. Find an optimal policy �∗ for S and %, i.e., S, �∗ |= % and V�∗ ≤ V� for all
unrestricted proper policies � for S such that S, � |= %. Return failure if no unrestricted proper policy
� for S exists such that S, � |= %.

3 RelatedWork
Algorithms that can be used for the MO-PLTL SSP problem (Def. 1) are given in [KP13, FKNP11,
EKVY08]. The overall approach is similar to single-LTL policy synthesis in that it constructs a prod-
uct automaton and reduces to certain reachability problems determined by the end-components of
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that automaton. These algorithms can be used for both synthesis and model checking, i.e., to check
that all policies satisfy the given MO-PLTL formula %; see, e.g., [KP13]. They are based on building
NBAs for each LTL formula 'h followed by transformation into DRAs. Both steps require, worst-case
exponential time and space each, and are together double-exponential in |%| (and polynomial in |S |).
Also, they accept single-sided bounds only, > th or ≥ th , where th ∈ [0, 1]. Our interval bounds “∈ yh”
can be compiled away into that form at the cost of doubling the size of %. This can worsen the overall
costs, hence, to double-exponential in 2|%| which can be problematic even for small %.

It is important to note that the mentioned algorithms solve the more general problem of policy
synthesis for MDPs as opposed to SSPs, that is, probabilistic problems with no goal states. This prob-
lem is known to be complete for double-exponential time [CY95]. Indeed, we can show that our
tailored SSP synthesis algorithm is strictly less complex (Theorem 4) and no extra penalty needs to
be paid for accepting intervals.

It could be argued that MO-PLTL in the context of SSPs is closer to synthesis for probabilistic LTL
over �nite traces. Indeed, automata-based approaches to planning problems for LTL constraints over
�nite trace semantics have been proposed in [DV13, DV15]. These techniques could be employed
for MO-PLTL policy synthesis following the architecture outlined above (cf. [KP13]). However, this
would again incur double-exponential worst-time costs, for building NFAs and determinising them
afterwards.

In yet another approach [LPH15, LPH17] consider syntactic co-safeMO-PLTL constraints, which
are reachability queries and can be represented by DFAs of double-exponential size in the size of the
contraints. Notice that ourMO-PLTL constraints are not restricted in that way and allow for, e.g., the
formulation ofmaintenance goals (see below for examples).

The existence of goals make MO-PLTL SSPs amenable (also) to heuristic search that builds only
a small fraction of the state space on-the-�y. Our approach extends existing work from the planning
community on deterministic and non-deterministic planning with LTL constraints to the probabilis-
tic case. Relevant work include in particular compilation approaches which translate LTL and �nite
LTL variants into various types of automata whose states, transitions and accepting conditions are
then incorporated as additional variables, actions, or constraints in the factored planning problem
description [Ede06, BM06, TB15, CTM+17]. The two key advantages of these approaches and ours
are: a) they deal with exponentially more compact non-deterministic automata, leaving to the plan-
ner the choice of how to resolve the non-determinism, and b) they use e�cient planning algorithms
(e.g. planning via heuristic search), which do not explicitly generate the whole state space.

The use of progression as an alternative to automata to generate modes originated in the TLPlan
planner [BK98]. Progression has been used in the probabilistic planning setting, for instance to ac-
commodate non-Markovian rewards [TGS+06], but not to handle PLTL constraints.

4 MO-PLTL SSPs as Constrained SSPs
This section contains our formal framework for translating MO-PLTL SSPs into Constrained SSPs
(C-SSPs) to be solved for �nite-memory policies. The translation abstracts from howMO-PLTL con-
straints are dealt with. We then describe two instances of this framework which respectively use
automata and progression to represent the policy modes.

In this section let T be a probabilistic SAS+ task, S the SSP it de�nes, and % =
∧j

h=1 P∈ yh 'h an
MO-PLTL formula.

Finite-Memory Policies. [BK08] A stochastic �nite-memory policy for an SSP S is a DFA ��n =

(M, start, mod, act)where:M is a �nite set ofmodes, start ∈ M is an initial mode, mod: M × S 7→ M
is the mode transition function, and act : M × S 7→ Dist(A) is the action probability function such
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that, for all 〈l, r〉 ∈ M ×S, act(l, r)(�) ≥ 0 only if � ∈ A(r) and 0 otherwise. A �nite-memory policy
��n can be used whenever an unrestricted policy � is required by de�ning �(r1 · · · rm) = act(lm, rm)
wherel1 = start andlh = mod(lh−1, rh) for h = 2..m.2

Below we de�ne modesMh and components starth and modh , for h = 1..j. These are compounded
into a partial �nite-memory policy (M, start,mod, ·) for S, where M = M1 × · · · × Mj, start =

〈start1, . . . , startj〉, andmod(〈l1, . . . , lj〉, r) = 〈mod1(l1, r), . . . , modj(lj, r)〉. Then we compile
into a C-SSP C× such that any optimal policy �∗

C×
for C× can be used as the act-component for the

�nite-memory policy:

De�nition 2 (Product C-SSP C×) GivenanMO-PLTLSSPS = (S, rinit, G, A, P, C, T )and (M, start,mod, ·)
as above, the product C-SSP C× is the C-SSP (S×, r×init, G

×, A, P×, C×, T×, y) with j secondary costs
where: the state space S× = M × S; the initial state r×init = 〈start, rinit〉; the goal set G× = M × G;
A(〈l, r〉) = A(r) for alll ∈ M; the transition probability function is P×(〈m, s〉|〈l, r〉, �) = P(s |r, �) if
� ∈ A(r) and m = mod(l, s), otherwise 0; the main action cost C×0 = C, and C×h (�) = 0 for all � ∈ A
and h ∈ 1..j; T ×0 (•) = 0 and, for h ∈ 1..j, T ×h (〈l, r〉) = 1 if 〈l, r〉 ∈ Accepth and 0 otherwise; and yh is
the probability interval for 'h in %.

The mentioned sets Accepth ⊆ G×, de�ned below, are mode speci�c. Informally, 〈l, r〉 ∈ Accepth
means that 'h is IE-satis�ed by all �nite runs of S from rinit to the goal r.

As C× is an ordinary C-SSP, any o�-the-shelf C-SSP solver can be used to compute an optimal
policy�∗

C×
forC×. Moreover,�∗

C×
is stationary and stochastic [Alt99], that is,�∗

C×
maps states 〈l, r〉 ∈

S× to probability distributions over the set of actionsA(r). Thus,�∗
C×
can be used as action probability

function, i.e., act(l, r)(�) = �∗
C×
(〈l, r〉, �).

4.1 Büchi AutomatonMode
In this section we instantiate our C-SSP framework with NBA-based modes. Unlike the policy syn-
thesis methods in “Related Work”, we avoid NBA determinisation at up-front exponential costs by
using heuristic search and on-the-�y determinisation of the NBA.

In order to employ existing LTL to NBA algorithms we need to equip the given formula with IE-
semantics: for an LTL formula ' let 'IE = ' ∧ F (∧a ∈AP(a → G a) ∧ (¬a → G¬a)), which is a
faithful encoding of ' wrt. the IE-semantics in standard LTL [BH10]. Let B'IE denote an NBA for
'IE . Then it follows that B'IE accepts a run q i� q = o; (last(o))( and o |=IE ', for some �nite path o.

In more detail, let B'IE = (Q, S, ∆, Qinit, F), where: Q is the �nite set of states; S is the input
alphabet (i.e., the set of states of the given SSP S); ∆ : Q × S → 2Q is the non-deterministic transition
function; Qinit ⊆ Q are the initial states; and F ⊆ Q is the acceptance set. As a non-standard notion,
we say that a state p ∈ Q is accepting with r ∈ S i� (1) starting from p some strongly connected
component scc ⊆ Q is reachable by 0 ormore transitionswith r only, (2) scc∩F < ∅, and (3)∆(p′, r′) =
∅ for all p′ ∈ SCC(p) and r′ ∈ S with r < r.3 Now we can characterize satisfaction in a pleasant way:

Lemma 3 Let o ∈ S+ be a path with o1 = rinit, ' an LTL formula and B'IE as de�ned above. Then
o |=IE ' i� starting from some state in Qinit and following the states in o a state p ∈ Q is reachable that
is accepting with last(o).

For each LTL formula 'h of the given MO-PLTL constraint % we need one NBA, denoted by
B'IE

h
= (Qh, S, ∆h, Qinit, h, Fh). The Büchi-Automata based �nite-memory policy (NBA policy) is �NBA =

2The literature usually de�nes the mode transition function mod dependent on the source state rh−1, not the target state
rh , i.e.,lh = mod(lh−1, rh−1). This change is theoretically inconsequential, but technically more convenient for us.

3In words, condition 3 says that the only transitions among any states in scc are with r.
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(MNBA, startNBA,modNBA, �∗C× )where:MNBA
h = 2Qh (the powerset of theNBAstate space); startNBAh =⋃

p∈Qinit ∆h(p, rinit); modNBAh (l, r) =
⋃

p∈l ∆h(p, r); �∗C× is an optimal solution for C× obtained using
Mprog, startprog,modprog and Accepth = {〈l, r〉 ∈ G× | some p ∈ lh is accepting with r}.

To save space we do not spell out soundness and completeness results. They are analogous to
Theorems 5 and 6 below. The main di�erence is in the de�nition of Accepth , which, as per Lemma 3
correctly identi�es IE-satisfaction of 'h .

4.2 Formula Progression Mode
By CNF(', r) we denote the conversion of the LTL formula ' into conjunctive normal form with
on-the-�y simpli�cation by evaluating non-temporal formulas in r ∈ S. Thanks to simpli�cation
and equivalences like '1 U'2 ≡ '2 ∨ ('1 ∧X ('1 U'2)), every formula in CNF(', r) is an X-formula.
This allows us to take CNF(', r) to successor states by means of an unX-operator, which strips each
formula in CNF(', r) of its X-operator. By Σ('h) we denote a certain set of formulas obtained from
the h-th PLTL constraint 'h (of size quadratic in the size of 'h .) See the appendix for details.

The progression-based �nite-memory policy is �prog = (Mprog, startprog,modprog, �∗C× ) where:
M

prog
h = 2Σ('h)3 ; startprog

h = CNF('h, rinit); modprog
h (l, r) = CNF(unX(l), r); and �∗C× is an optimal

solution for C× obtained using Mprog, startprog,modprog and Accepth = {〈l, r〉 ∈ G× | r |=IE lh}.
Notice that �prog exists i� C× has a solution.

Notice that, every mode is a set of sets formulas of size at most 3 over an a priori �xed domain
Σ('h)whose size is polynomial in the size of '. This is possible thanks to a polynomial “Tseitin-style”
CNF transformation [Tse68].

Theorem 4 (Complexity) Let S be an SSP, % an MO-PLTL constraint, and C× the C-SSP obtained
usingMprog, startprog, andmodprog. Then there is a linear program LPC×whose solution, if any, de�nes
the optimal policy �∗C× for C×. LPC×can be obtained in time and space at most O(|S |) · (2O(|% |)

7
).

The mentioned linear program LPC×and the mapping of its solution to the solution of C× is de�ned
in the Appendix. We emphasize that Theorem 4 is a marked improvement over using generic model-
checking algorithms of double-exponential complexity (see “Related Work”). Our qualitative main
results are as follows.

Theorem 5 (Soundness) If �prog exists then it is an optimal policy forS and %, i.e.,S, �prog |= % and
V�prog

≤ V� for all unrestricted proper policies � such that S, � |= %.

Theorem 6 (Completeness) If � is an unrestricted proper policy forS such thatS, � |= % then �prog

exists and is a proper policy such that �prog |= % and V�prog
≤ V� .

Theorems 5 and 6 entail solvability of theMO-PLTLSSPProblem (Def. 1). ByTheorem4, LPC×can
be used for that. Finally, we need to add that the complexity results in this section are valid in the con-
text of the progression mode but not when NBAs are used, whether to compute modes or heuristics
as we do in the next section.

5 Heuristic Search Algorithms
In the previous sections, we showed that an MO-PLTL SSP can be compiled into a Constrained SSP
(C-SSP) and, in this section, we leverage this result in order to solve MO-PLTL SSPs using heuristic
search algorithms for C-SSPs.
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Traditionally, C-SSPs are solved as a single LP representing all the (reachable) search space at once
similarly to Value Iteration [D’E63, Alt99]. In the AI community this LP is referred as the dual LP for
(C-)SSPs and its variables are the policy’s occupationmeasureswr,a representing the expected number
of times action a ∈ A(r) will be executed in state s. The main advantage of the dual formulation is
that the expectation of any functionf : S×A→ ℝ (e.g., the cost functionsCi) over the policy encoded
by w can be easily computed by∑

r,a wr,af(r, a).
Another important feature of the dual formulation that we exploit in this section is that it can be

interpreted as a probabilistic �ow problem, where wr,a describes the �ow leaving state r via action a .
Using this interpretation, we can see the dual LP as a �ow problem where the expected total cost to
reach a goal (sink) from the initial state (source) is minimised.

The drawback of this single dual LP approach is the same as that of Value Iteration, namely, the
whole reachable search space of the problem must the computed a priori, making this approach not
viable for large problems. To address this issue, i-dual [TTSW16] and its successor i2-dual [TTH17]
were introduced. Both algorithms solve C-SSPs using heuristic search by generating and solving
increasingly large LPs.

5.1 i2-dual for Product C-SSPs
In our context, given a Product C-SSP C× = (S×, r×init, G

×, A, P×, C×, T×, y) and T the SAS+ task
associated with C× as input, i2-dual incrementally generates and explores larger partial problems of
C× starting from r×init. Given a set Ŝ ⊆ S× of explored states and a set Γ ⊆ Ŝ of fringe states of the
search, the partial problem solved by i2-dual is shown in LP1 where, for readability, we abbreviate
in(〈l, r〉) as in(l, r), out(〈l, r〉) as out(l, r) and w〈l,r〉,� as wl,r,�. The constraints of LP1 can be
categorized as follows (Fig. 1):

Probabilistic FlowNetwork (C3–C6). Representation of the states explored so far using occupa-
tion measures.

Multiplexer (C7–C8). These constraints extract the �ow from Γ and, for each SAS+ variable u ∈
V, they redirect a copy of this �ow to the appropriate state d ∈ Du of the projection of T onto u.
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〈m0, s0〉

Proj onto v0

Proj onto vn

C9-C12

Multiplexer
Non-det

Proj onto Ψk

Proj onto Ψ0

C7, C8
Multiplexer

Explored
states so far
C1-C6

...

...

Tying C13, C25

C21 – C23

LP2

Γ

Figure 1: Representation of the �ow network solved in each iteration of i2-dual (non-shaded network
– LP1) and of our novel algorithm PLTL-dual (full network – LP3).

min
w

∑
〈l,r〉∈Ŝ,�∈A(r)

wl,r,�C
×
0 (�) +

∑
〈l,r〉∈Ŝ∩G×

in(l, r)T ×0 (〈l, r〉) +
∑

d∈Du′,�∈A

wu
′

d,�C
×
0 (�) (LP1)

s.t. wl,r,� ≥ 0 ∀〈l, r〉 ∈ Ŝ, � ∈ A(r) (C1)
wud,� ≥ 0 ∀u ∈ V, d ∈ Du, � ∈ A (C2)
in(l, r) =

∑
〈m,s〉∈Ŝ,�∈A(r′)

wm,s,�P
×(〈l, r〉|〈m, s〉, �) ∀〈l, r〉 ∈ Ŝ (C3)

out(l, r) =
∑

�∈A(r)

wl,r,� ∀〈l, r〉 ∈ Ŝ \ G× (C4)

out(start, rinit) − in(start, rinit) = 1 (C5)
out(l, r) − in(l, r) = 0 ∀〈l, r〉 ∈ Ŝ \ G× (C6)
ou0 (g) =

∑
〈l,r〉∈Ŝ∩G×

in(l, r) ∀u ∈ V (C7)

ou0 (d) =
∑

〈l,r〉∈Γ,r[u]=d

in(l, r) ∀u ∈ V, d ∈ Du (C8)

hmu(d) =
∑

d′∈Du,�∈A∪{ag }

wud′,�P(d |d
′, �) ∀u ∈ V, d ∈ Du ∪ {g} (C9)

ntsu(d) =
∑

�∈A∪{ag }

wud,� ∀d ∈ Du(C10)

ntsu(d) − hmu(d) = ou0 (d) ∀u ∈ V, d ∈ Du(C11)
hmu(g) = 1 ∀u ∈ V(C12)∑

dh ∈Duh

wuh
d,�

=
∑

di ∈Dui

w
ui
d,�

∀uh, ui ∈ V, � ∈ A(C13)∑
〈l,r〉∈Ŝ∩Acceos(h)

hm(l, r) ∈ yh ∀h ∈ {1, . . . , j}(C14)

Projection Occupation Measure Heuristic (C9–C12). For each SAS+ variable u ∈ V, these
constraints represent the projection ofT onto u. This projection is an SSP in itself over the state space
Du ∪ {g} where g represents the sink of the overall problem (see [TTH17] for formal de�nition). The
variables wu

d,�
are the occupation measures for the projection onto u. The projections are used for
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obtaining a lower bound on the expected cost of reaching the goal set G× of the overall problem from
Γ.

Tying constraints (C13). These constraints tie the projections onto the di�erent u ∈ V together.
In order to avoid the complexity of the original problem, the projections are tied using the following
relaxation: for all � ∈ A, the expected number of times action a is applied over the entire projection
must be the same for every projection.

PLTLConstraint (C14). These linear constraints enforce the PLTL constraints. The left-hand side
of the constraints follows from the de�nition of C×h and T ×h . Due to the lack of domain-independent
lower bounds for PLTL constraints, i2-dual can only handle intervals yh that are right-closed and
�nishing at 1, thus P∈ yh 'h is represented using two constraints: P∈ [y

h
,1] 'h and P∈ [1−yh,1] ¬'h .

The objective function of LP1 minimises the expected primary cost of reaching the fringe Γ and
the goal states in Ŝ (�rst and second summation, respectively) plus the heuristic estimate to solve the
problem from the states reached in Γ to the goal set G× of the original problem (third summation).
Due to the tying constraints (C13), any variable u′ ∈ V can be used in the third summation. Notice
the updates in the search space explored so far and the heuristics estimates happens together and in
the same LP, thus the search and heuristic computation work in unison instead of the searchmethod
driving the heuristic computation.

Once LP1 is solved, the fringe states reachable by its optimal solution are expanded and a new
iteration of i2-dual is performed. i2-dual stops when all the �ow injected in the initial state reaches
the goal set G×. The optimal policy �∗

C×
is encoded in the optimal solution w∗ of LP1 in the last

iteration of i2-dual: �∗
C×
(〈l, r〉, �) =

w∗l,r,�
out(l,r) for all 〈l, r〉 ∈ S× and � ∈ A(r) such that out(l, r) > 0.

5.2 Heuristic for PLTL Constraints
Since the secondary action costs C×h of C× are always zero, the heuristics embedded in i2-dual is
unable to estimate the probability of 'h being true; therefore, i2-dual performs heuristic search only
for the primary cost. As we show in our experiments, this approach is not enough to solve large MO-
PLTL SSPs. We address this issue by introducing a heuristic for the PLTL constraints, i.e., a function
that can prioritize the search on S× according to a given PLTL constraint 'h .

Formally, a heuristic for'h is any function ℎ'h : S× → ℝ+ that estimates the probability of 'h being
satis�ed. ℎ'h is an admissible heuristic if, for all r× ∈ S×, ℎ'h (r×) ≥ max�∈Π∗ V�

h (r
×) where Π∗ is the

set of optimal policies for C× and V�
h is the policy � value function for the secondary cost associated

with 'h (Eq. 1). Thus, the trivial admissible heuristic for 'h is the always-1 function. In this paper,
we consider only admissible heuristics because they do not prune feasible solutions from the search,
thus, the soundness, completeness and optimally guarantees of i2-dual are preserved.

In order to be able to integrate our novel heuristic to i2-dual and take advantage of the unison
search property of i2-dual, we propose a heuristic based on projections onto the Non-deterministic
Büchi Automaton (NBA) of each LTL formula. To get a good estimate from an NBA projection, we
need to handle both the non-determinism of the NBA transitions as well as the probabilistic e�ects
of the SAS+ actions. We accomplish this by modelling the NBA projection as a relaxed SSP over the
NBA states.

Formally, let Bh = (Qh, S, ∆h, &init, h, Fh) be the NBA for the PLTL constraint 'h . Given an e�ect
e of a probabilistic SAS+ action � ∈ A and r ∈ S, e is consistent with r if res(oqe(�), e) ⊆ r. We
call Comp(e, p) the set of successor states of p ∈ Qh compatible with e�ect e of action �. Formally
Comp(e, p) = {p′ ∈ Qh |∃(p, r, p

′) ∈ ∆h, e is consistent with r}.
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The relaxed SSP representing the projection of C× onto Bh is S'h = (Qh, &start, Fh, B'h , P'h ) whose
set of states Qh is that of Bh and whose set of goal states Fh is the set of accepting states of Bh . This
relaxed SSP has a non-deterministic initial state &start ⊆ Qh , i.e., no probability distribution over
&start is given. B'h is the set of actions and B'h (p) = {��,o |o ∈

�
e∈e� (�) Comp(e, p)} is the set of

actions applicable in any p ∈ Qh . Lastly, P'h (p′ |p, ��,o) =
∑

e∈e� (�),o[e]=p′ Pr�(e), is the probability of
transitioning from p to p′ after applying ��,o ∈ B'h (p), where o[e] is the element in the e-th coordi-
nate of o. S'h does not have a cost function and we are interested in �nding a solution to S'h that
maximizes the probability of reaching the goal set, that is, the accepting states of Bh .

Our heuristic for a PLTL constraint, called the NBA projection heuristic and denoted by ℎ'hBA for
the h-th PLTL constraint, is formally presented in LP2. ℎ'hBA takes as input a non-empty subset &start
of Qh and returns an upper bound on the probability of 'h being true when &start is used as the non-
deterministic initial state of Bh .

min
w'h ,o'h

∑
p∈Qh\Fh

w
'h
p,�sink (LP2)

s.t. w
'h
p,�
≥ 0 ∀p ∈ Qh, � ∈ B

'h (p) ∪ {�sink} (C15)

o
'h
p ≥ 0 ∀p ∈ &start (C16)

w
'h
p,�sink +

∑
�∈B'h (p)

w
'h
p,�
−

∑
p′∈Qh

�∈B'h (p′)

P(p |p′, �)w
'h
p′,�

= o
'h
p ∀p ∈ &start (C17)

w
'h
p,�sink +

∑
�∈B'h (p)

w
'h
p,�
−

∑
p′∈Qh

�∈B'h (p′)

P(p |p′, �)w
'h
p′,�

= 0 ∀p ∈ Qh\&start (C18)

∑
p∈&start

o
'h
p =

∑
p∈Qh

w
'h
p,�sink = 1 (C19)

The variables of LP2 are: the occupation measures w'hp,� for this projection; and the input �ows
o
'h
p representing how the �ow injected into the network is distributed within the states p ∈ &start of
the non-deterministic initial state. While w'hp,� is analogous to wud,� of LP1, o

'h
p have no counterpart

since they encode the non-deterministic initial state of Bh .
Notice that an arti�cial action�sink is used in LP2 (C15, C17, C18 andC19). This action represents

the deterministic transition from a state p ∈ Qh to the sink and it is applicable in all states (C17 and
C18). The source and sink constraints C19 enforces that 1 unit enters and leaves the network. C18
is the set of �ow preservation constraints that, for all states p 8 &start, forces the �ow leaving p to
the sink and other states p′ ∈ Qh to equal the �ow entering p. Similarly, C17 is the �ow preservation
constraint for source states.

The objective function of LP2 minimises the �ow going into the sink from the non-accepting
states of Bh , thus it maximises the probability of reaching an accepting state p ∈ Fh from &start. The
admissibility of ℎ'hBA is formalized by Theorem 7 and its proof is based on the fact that the trivial
admissible heuristic for the PLTL constraints is the always-1 function and that the LP can move the
�ow from any state p ∈ Qh to a state p′ ∈ Fh except when p is part of a non-accepting bottom end
component of Bh . We refer to the Appendix for the complete proof.

Theorem 7 ℎBA
'h
is an admissible heuristic for 'h .

As the insights for the proof for Theorem 7 suggest, LP2 is encoding the problem of avoiding
the non-accepting bottom end components of Bh . Although there are more e�cient ways of solv-
ing this problem (e.g., a look-up table), our encoding as a projection of the MO-PLTL SSP over 'h
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pays o� by being able to be integrated to i2-dual. The integration is done by tying the actions in the
projection onto each 'h to the projections onto the state variables u ∈ V of the probabilistic SAS+
task. By tying all projections together, both SAS+ and 'h projections, we force them to reach a relaxed
agreement over their solutions for reaching the original set of goals G× from the current fringe states
Γ. This agreement provides better heuristic estimates for both the primary cost function and PLTL
constraints.

5.3 PLTL-dual
Our last contribution is the integration ofℎ'hBA to i

2-dual. The obtained algorithm, PLTL-dual, consists
of the same iterative procedure as i2-dual but LP1 is replaced by LP3. We assume that themode space
is the NBA mode. A visual representation of LP3 is presented in Figure 1 and its constraints can be
categorized as:

i2-dual constraints (C3 – C13). All constraints except the PLTL constraint (C14)

Non-deterministic Multiplexer (C21 – C23). The non-deterministic counterpart of the state
variable multiplexer (C7 – C8). This multiplexer represents the non-deterministic distribution of
�ow from the mode lh to the states p ∈ lh . Γ'h = {lh ∈ Mh |∃〈m, r〉 ∈ Γ s.t. mh = lh} represents all
the observed NBA modeslh of 'h in the fringe Γ and D(lh, Γ

'h ) denotes the NBA states p ∈ lh not
present in any other mode mh ∈ Γ'h , formally,D(lh, Γ

'h ) = lh \ (∪mh ∈Γ'h |mh<lh
mh).

NBA Projection Heuristic (C17–C18). The �ow preservation constraints for ℎ'hBA for each 'h .

PLTLsink constraint (C24). The replacement of the sink constraint ofℎ'hBA. The new sink extracts
the same amount of �ow that the non-deterministic multiplexer injected in each NBA projection.

NBA Tying constraints (C25). These constraints tie the NBA projections to the state variable
projections. Any state variable u ∈ V can be used in these constraints since all state variables are
already tied together by C13.

PLTL constraints (C26). These constraints replace C14 and contain the heuristic estimation pro-
vided by ℎ'hBA.
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min
w

∑
〈l,r〉∈Ŝ,�∈A(r)

wl,r,�C
×
0 (�) +

∑
〈l,r〉∈Ŝ∩G×

in(l, r)T ×0 (〈l, r〉) +
∑

d∈Du′,�∈A

wu
′

d,�C
×
0 (�) (LP3)

s.t. wr,� ≥ 0, wud,� ≥ 0, w'hp,� ≥ 0, o'hp ≥ 0 (C20)
constraints C3 – C13∑

〈l,r〉∈Γ |lh={p}

in(l, r) ≤ o
'h
p ≤

∑
〈l,r〉∈Γ | p∈lh

in(l, r) ∀h ∈ {1, . . . , j}, p ∈ Qh (C21)∑
p∈D(l,Γ'h )

o
'h
p ≤

∑
〈m,r〉∈Γ | mh=l

in(m, r) ≤
∑
p∈l

o
'h
p ∀h ∈ {1, . . . , j}, l ∈ Γ'h (C22)∑

p∈Qh

o
'h
p =

∑
〈l,r〉∈Γ

in(l, r) ∀h ∈ {1, . . . , j} (C23)∑
p∈Qh

w
'h
p,�sink =

∑
〈l,r〉∈Γ

in(l, r) ∀h ∈ {1, . . . , j} (C24)

constraints C17 – C18 ∀h ∈ {1, . . . , j}∑
d∈Du

wud,� =
∑
p∈Qh

w
'h
p,� ∀h ∈ {1, . . . , j}, � ∈ A (C25)∑

〈l,r〉∈Ŝ∩Accept(h)
hm(l, r) +

∑
p∈Fh

w
'h
p,�sink ∈ yh ∀h ∈ {1, . . . , j} (C26)

LP3 assumes that the mode for each PLTL constraint 'h is the NBA Bh associated with 'h . This
presents two key computational advantages: (i) theNBAprojection heuristics do not need to compute
Bh since they were already computed to be used as modes; and (ii) the non-deterministic multiplexer
can easily relate the modelh ⊆ Qh and the NBA projection states p ∈ Qh since they are de�ned over
the same set Qh of Bh . Nonetheless, PLTL-dual can be used with any mode as long as a translation
from the non-NBA modelh to a subset of Qh is provided for each PLTL constraint.

6 Experiments
In this section we empirically evaluate our heuristic search algorithms and compare their perfor-
mancewith that of Prism, a state-of-the-artmodel-checker implementing the static approach [KNP11].
We enforce a 30-minutes and 4-Gb cut-o� for all experiments, and report results averaging 30 runs
of each algorithm for each problem taken from the following two domains.

Factory. This domain features an assembly linewithmmachines, where eachmachinelh produces
a part oh starting from the part oh−1 produced by machine lh−1. There are actions for turning a
machine on or o� (cost 1), and for producing oh using machinelh oncelh is on and oh−1 is available.
This makes oh−1 unavailable. The jmachinesl2 . . .lj+1 are unreliable and fail to produce the new
part oh 20% of the time, but still make oh−1 unavailable. Production cost for reliable (resp. unreliable)
machines is 5 (resp. 3). Initially, all machines are o� and o0 is available. In the goal, the machines
are o� again and part om has been produced. The two MO-PLTL constraints (P=1) are that (1)l1 is
eventually started, and (2) oncelh−1 stops for good,lh has to be on, and then the same hand-shake
applies to the nextmachine down the line and so on: G (nm(l1) ⇒ (nm(l1)U (nm(l2)∧G¬nm(l1)∧
(nm(l2)U (nm(l3) ∧G¬nm(l2) ∧ . . . ∧ (nm(lm−1) ∧ U (nm(lm) ∧G¬nm(lm))) . . .))))).

Wall-e. In this domain, Wall-e and Eve are in a corridor with m distinct locations k1 . . . km and m
rooms q1 . . . qm. Location kh is connected to room qh and to locations kh−1 and kh+1. Wall-e and Eve can
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be in any of these locations and rooms, either separately or together. They can move to a connected
location, enter or exit a connected room, either separately or together. All actions are deterministic
and have cost 1, except exiting a room together which has cost 5 and fails with 10% probability. Wall-e
starts in k1 and Eve in q2, and the goal has Wall-e in km. The MO-PLTL constraints specify that: (1)
they must eventually be together (P ≥0.5); (2) once they’re together they remain together (P=1); (3)
Eve must be at most 3 steps away from a room until they are together (P ≥0.8); (4) Eve visits the �rst
3 rooms q1, q2, q3 (P=1); and (5) Wall-e never visits any room twice, except possibly qm (P ≥0.8).

Algorithms. The algorithms considered are: (a) PLTL-dual, that is, i2-dual with the NBA mode
and NBA projection heuristic; (b) PLTL-dual(100), which is like PLTL-dual except that the NBA
projection heuristic is only used for NBAs with less than 100 states – for the other formulas, the
trivial heuristic is used; (c) i2-dual with the NBA mode and the trivial heuristic for all formulas; (d)
i2-dualwith the progressionmode and the trivial heuristic for all formulas; and (e) themulti-objective
version of Prism with the -lp option.4 In our implementation, we use ltl3ba to produce the NBAs.

Results. The graphs in Figure 2 show the time spent by each algorithm on problems from the
Factory domain (log scale) with m = 2..8 machines including j = 0..(m−1) unreliable machines, and
from the Wall-e domain with m = 4..7 rooms. We �nd it convenient to analyse the results by means
of answering the following questions:

What is the bestmode? To answer this question, we need to compare bothmodes using the same
heuristics, i.e., the trivial heuristics. In this case, the progression mode outperforms the NBA mode
in the Wall-e domain (25% faster for m = 7) while being statistically tied in the Factory domain. The
reason for this performance advantage is that progression uses the observed information so far to
simplify its search space thus reducing the overall number of states expanded, e.g., 8% less expanded
states in Wall-e #7.

Is theNBAprojectionheuristic e�ective? Yeswhen the formulas are not trivial to check and the
NBAs are not too large. The �rst condition is usual for heuristic search algorithms because, in easy
search problems, a less accurate but cheap to compute heuristic is good enough. Constraint (2) of the
Factory domain is an example of a constraint trivial to check since turning on amachine in thewrong
order violates it. The second condition is an issue because large NBAs result in projections with a
large number of LP variables. For instance, the NBA for constraint (5) ofWall-e #6 has 112 states and
its projection uses 19863 LP variables. This represents about 40% of the total LP variables in the last
LP solved by PLTL-dual in Wall-e #6. An example of good guidance provided by the NBA projection
heuristic is constraint (3) of the Wall-e domain. This constraint has a small NBA (11 states) and
violations can be detected early by using a look-ahead of size 3. Since the NBA projection heuristic
performs search in the mode space, it is able to do early pruning for this constraint while the trivial
heuristic, which cannot look beyond the current state, is unable to do.

What is thebest algorithm? Although progression is the bestmodewhenusing the trivial heuris-
tic, the best algorithm is PLTL-dual(100): it is statistically tied with i2-dual with progression for the
large Factory problems (m = 8) while it dominates all other algorithms in the Wall-e domain. As ex-
pected, the static approach employed by Prism is outperformed by our heuristic search approaches
due to the prohibitive size of the DRA required by it. For instance, the DRA for constraint (2) of
Factory #4,3 and constraint (5) of Wall-e #5 has, respectively, 29979 and 2857 states while their NBA
has only 13 and 48 states, respectively.

4Without this option, Prism produces an error on both domains.
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7 Conclusion and Future Work
Wehave provided the�rst heuristic search algorithm for SSPswithMO-PLTL constraints, anddemon-
strated both practical and in certain cases worst-case complexity improvements over state-of-the-art
algorithms. Our approach performs an on-the-�y translation of the MO-PLTL SSP into a C-SSP,
which is solved by extending recent heuristic search approaches for C-SSPs and guiding them using
novel linear programming heuristics for MO-PLTL constraints. In the future, we plan to improve
our NBA heuristics, design heuristics that work together with progression, and extend the scope of
heuristic search to SSPs with larger subsets of PCTL*.

Acknowledgement
This research was funded by AFOSR grant FA2386-15-1-4015.

16



2,
0

2,
1

3,
0

3,
1

3,
2

4,
0

4,
1

4,
2

4,
3

5,
0

5,
1

5,
2

5,
3

5,
4

6,
0

6,
1

6,
2

6,
3

6,
4

6,
5

7,
0

7,
1

7,
2

7,
3

7,
4

7,
5

7,
6

8,
0

8,
1

8,
2

8,
3

8,
4

10 1

100

101

102

103

NBA + NBA heur
NBA + NBA heur (100)
NBA + trivial heur
Prism
Prog. trivial heur

Factory

4 5 6 7
0

200

400

600

800
NBA + NBA heur
NBA + NBA heur (100)
NBA + trivial heur
Prism
Prog. trivial heur

Wall­e

Figure 2: Time in seconds to solve: factory problems m, j (m ∈ 2..8, j ∈ 0..(m−1)); andWall-e problem
for m ∈ 4..7.

17



A Additional Concepts and Proofs
In this appendix we �ll in formal details left open in the main part and provide proofs for the sound-
ness and completeness results, Theorems 5 and 6.

A.1 Büchi AutomatonMode
Lemma 3 Let o ∈ S+ be a path with o1 = rinit, ' an LTL formula and B'IE as de�ned above [in the
main part of the paper]. Then o |=IE ' i� starting from some state in Qinit by following the states in o a
state p ∈ Q is reachable that is accepting with last(o).

Proof. ⇒-direction: assume o |=IE ', equivalently o; (last(o)() |= '. By correctness of the construc-
tion B'IE accepts q = o; (last(o)(). By de�nition of acceptance, the post�x last(o)( must visit a state
from F in�nitely often. Let p′ be that state. Trivially, p′ is contained in some strongly connected
component scc. Again by acceptance the state p′ is reachable from p by transitions with last(o) only,
proving (1). Because q is accepted, (2) follows. For (3) let r = last(o) and assume, to the contrary, that
scc has a transition di�erent to r. This entails there is an accepting run visiting the states of scc but
that in�nitely often alternates between r and some other r′ ∈ S. But then that run cannot satisfy the
subformula F (∧a ∈AP(a → G a) ∧ (¬a → G¬a)).
⇐-direction: assume p ∈ Q is accepting with last(o). With the de�nition of accepting state it

is easy to see that o; (last(o)() is an accepting run of B'IE . It follows o; (last(o)() |= ' and hence
o |=IE '. �

A.2 Formula Progression
Our main data structure for formula progression is that of a set formula. Formally, a set formula is
a set Γ = {Ψ1, . . . , Ψm} of sets of (LTL) formulas. It represents a conjunction of disjunctions, i.e., it
stands for the formula form(Γ) := ∧

Ψ∈Γ
∨

'∈Ψ '. Any formula ' can trivially be cast as an equivalent
set formula by taking Γ = {{'}}. By a slight abuse of notation we call each Ψ ∈ Γ a clause (of Γ) and
each ' ∈ Ψ a literal.5 We say that Ψ is a Σ-clause, or that Ψ has domain Σ i� Ψ ⊆ Σ. Similarly, we say
that Γ has domain Σ i� every clause in Γ has domain Σ. We need this notion of domain below, where
we show that Σ can be “small”, polynomial in the size of ', and that clauses can be bound to contain
at most three literals.

Standard formula progression as de�ned in [BK98] recursively descends into a given LTL formula
'with respect to a current state r. Essentially, it evaluates atemporal subformulas to true or false with
respect to the state r, and it expands temporal subformulas using (well-known) equivalences such as
'1 U'2 ≡ '2 ∨ ('1 ∧ X ('1 U'2)). The recursion terminates at the logical constants true and false
and at X-formulas.

In contrast to [BK98] we are interested in a complete algorithm. This requires being able to de-
tect loops as formula progression proceeds from state to state, which is trivial with the set formula
representation. Such a progression algorithm can be based on naïve CNF (conjunctive normal form)
transformation. It takes an initial LTL formula ' and starting from {{'}} converts it to a set for-
mula representing the CNF of ' by applying certain transformation rules as long as possible. The
rules are a combination of the distributivity law for Boolean operators, the expansion law for the
U-operator, and rules for simpli�cation by evaluation of atemporal subformulas (as in [BK98]). As-
sociativity, commutativity an idempotence of Boolean operators is dealt with implicitly, by properties

5Usually, a literal is an atomic formula or the negation of an atomic formula.
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of sets. The rule application stops at X-formulas. The resulting set formula will be stripped all its X-
operators before it is passed on to the next state, where progression from that state continues. See
Section A.2.3 for details.

While this algorithm works in principle, it has the serious drawback of exponentially increasing
the given set-formula in the worst case. This is because the expansion law ('1 ∧ '2) ∨ ' ≡ ('1 ∨
') ∧ ('2 ∨ '), which is needed along the way to obtain a CNF, duplicates its subformula '. This
phenomenon can be avoided by a “Tseitin-syle” CNF transformation which has been well-known
in the automated theorem proving literature for a long time [Tse68]. See [AW13] for more recent
developments.

Our progression algorithm below is essentially the rule-based algorithm outlined above, however
with Tseitin-style CNF transformation supplanting naïve CNF transformation. The underlying idea
is to de�ne, or name, a complex subformula, such as '1∧'2 in ('1∧'2)∨', in terms of a fresh propo-
sitional variableA'1∧'2 that uniquely stands for (“names”) that subformula. The formula ('1∧'2)∨'
then becomes the conjunction of A'1∧'2 ∨ ' and the “de�nitions” ¬A'1∧'2 ∨ '1 and ¬A'1∧'2 ∨ '2.
Notice that this transformation eliminates the o�ending conjunction ('1 ∧ '2) without duplicating
subformulas. The Tseitin-style algorithm returns a formula that is equi-satis�able with (but usually
not equivalent to) the given formula and runs in time and space linear in the size of the input formula.

A.2.1 Tseitin-Style CNF transformation

In this section we de�ne our Tseitin-Style CNF transformation, and in Section A.2.3 belowwe de�ne
progression on top of it. The overall goal is to make sure progression is tightly controlled: (1), that no
“new” subformulas are ever derived, ones that are not already a subformula of the initial formula,
(2) that the set of names ever needed is “small”, polynomial in the size of the initial formula, and (3)
that the length of clauses is suitably bound a priori, which is three in our case.

For a formula', sub(')denotes the set of all subformulas of'. Formally, sub(>) = {>}, sub((u, d)) =
{(u, d)}, for (u, d) ∈ AP, sub(X') = {X'} ∪ sub('), sub(¬') = {¬'} ∪ sub('), and sub('1 ◦ '2) =
{'1 ◦ '2} ∪ sub('1) ∪ sub('2), for ◦ ∈ {∧, ∨, U}. Let · be the complement operator, i.e., for negated
formulas ¬' = ' and otherwise ' = ¬'. De�ne

cl′(') = sub(') ∪ {%, X%, X%, | % ∈ sub(')}, and (Closure of sub(') under · and X)
cl(%) = cl′(') ∪ {'1 ∧ '2 | '1, '2 ∈ cl′(')} . (Closure of cl′(') under conjunction)

Let ' be an LTL formula, the initially given constraint. Recall thatAP = {(u, d) | u ∈ V, d ∈ Du} is a
�nite set of atoms and every state r is equipped with an evaluation function [·] so that r[u] ∈ Du. We
need to extend AP to be able to name (sub)formulas of '. De�neV' = V ∪ {u% | % ∈ cl(')} as the
extension of the variablesV by the designated variables u% for each % ∈ cl('). Each u% is Boolean,
i.e., Du% = {true, false}. We commonly write A% as a shorthand for the pair (u%, true) and say that
A% is the name of %. De�ne

N(') = {A% | % ∈ cl(')}, (Names for closure of ')
Σ(') = N(') ∪ {¬A% | A% ∈ N(')} ∪ cl('). (Domain obtained from ')

The intuition is that a nameA% is de�ned to be true in a stateoh of a given runo if and only ifo(h) |= %.
See Section A.2.3 below for details.
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Progression is formalized with the help of the relation⇒r between set formulas as follows:

{{}} ] Γ⇒r {{}} if Γ < ∅ (Triv)
{{>} ] Ψ} ] Γ⇒r Γ (>)
{{¬>} ] Ψ} ] Γ⇒r {Ψ} ∪ Γ (¬>)
{{(u, d)} ] Ψ} ] Γ⇒r Γ if (u, d) ∈ AP and r[u] = d (Eval1)
{{(u, d)} ] Ψ} ] Γ⇒r {Ψ} ∪ Γ if (u, d) ∈ AP and r[u] < d (Eval2)
{{¬(u, d)} ] Ψ} ] Γ⇒r {Ψ} ∪ Γ if (u, d) ∈ AP and r[u] = d (Eval3)
{{¬(u, d)} ] Ψ} ] Γ⇒r Γ if (u, d) ∈ AP and r[u] < d (Eval4)
{{¬¬'} ] Ψ} ] Γ⇒r {{'} ∪ Ψ} ∪ Γ (¬¬)

{{'1 ∨ '2} ] Ψ} ] Γ⇒r {{A'1∨'2 } ∪ Ψ,

{¬A'1∨'2, '1, '2}} ∪ Γ

(∨)

{{¬('1 ∨ '2)} ] Ψ} ] Γ⇒r {{¬A'1∨'2 } ∪ Ψ,

{A'1∨'2, '1},

{A'1∨'2, '2}} ∪ Γ

(¬∨)

{{'1 ∧ '2} ] Ψ} ] Γ⇒r {{A'1∧'2 } ∪ Ψ,

{¬A'1∧'2, '1},

{¬A'1∧'2, '2}} ∪ Γ

(∧)

{{¬('1 ∧ '2)} ] Ψ} ] Γ⇒r {{¬A'1∧'2 } ∪ Ψ,

{A'1∧'2, '1, '2}} ∪ Γ

(¬∧)

{{'1 U'2} ] Ψ} ] Γ⇒r {{A'1 U'2 } ∪ Ψ,

{¬A'1 U'2, '2, A'1∧X ('1 U'2)},

{¬A'1∧X ('1 U'2), '1},

{¬A'1∧X ('1 U'2), X ('1 U'2)}} ∪ Γ

(U)

{{¬('1 U'2)} ] Ψ} ] Γ⇒r {{¬A'1 U'2 } ∪ Ψ,

{A'1 U'2, '2},

{A'1 U'2, ¬A'1∧X ('1 U'2)},

{A'1∧X ('1 U'2), Ψ1, X¬('1 U'2)}} ∪ Γ

(¬U)

{{¬X'} ] Ψ} ] Γ⇒r {{X'} ∪ Ψ} ∪ Γ (¬X)

The singled-out literal in the left-hand side of the rule is called the pivot.
In the de�nition of⇒r above we left its domain unspeci�ed. The following lemma is a �rst step

and helps by clarifying that⇒r preserves the domain Σ(').

Lemma 9 Let Γ1 be a set formula with domain Σ('), for some LTL formula '. If Γ1 ⇒r Γ2 then Γ2 has
domain Σ(').

Proof. Assume Γ1 ⇒r Γ2. We need to check all rules in⇒r and argue in each case that every clause
in Γ2 has domain Σ('). In doing that, we argue with closure properties such as “Σ(Ψ) is closed under
subterms” by which we mean the fact that sub(') ⊆ Σ(Ψ).

For the rules (Triv)–(Eval4) the proof is trivial, as they either remove clauses or remove literals
from clauses. For the rule (¬¬) use the fact that Σ(') is closed under subformulas. For the rules
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(∨)–(¬∧) use the fact that Σ(') is closed under subformulas, naming subformulas, and complement
of subformulas. An important detail here is that no rule can ever be applied to a pivot containing
a name from N(Ψ). This is because names or their negation are introduced in top-level positions of
clauses only, i.e., as literals, and they are never a pivot. It is, hence, enough to include in Σ(Ψ) names
in a non-recursive way, as de�ned.

The argumentation is similar for the rules (U) and (¬U). This works because Σ(') is additionally
closed under pre�xing subformulas with X and forming conjunctions. Notice these rules di�er from
the other rules in that instead of decomposing a formula they add an operator X in front of it. How-
ever, they can be applied only to non-X formulas, which is why closingΣ(') under one-time pre�xing
with X is enough. The case of the (¬X) follows again from Σ(') being closed under subformulas and
complementation. �

Lemma 10 (Termination of⇒I) The rule system⇒r is terminating. That is, there is no in�nite se-
quence Γ1 ⇒r Γ2 ⇒r Γ3 · · · , for no set formula Γ1 and no state r.

Proof. Consider any sequence Γ1 ⇒r Γ2 ⇒r Γ3 · · · . We show it must be terminating. We can ignore
the (Triv) rule as it obviously terminates the sequence. Each of the rules (>) – (¬∧) replaces some
clause Ψ ∈ Γh by some clauses Ψ1, . . . , Ψj ∈ Γh+1. The clauses Ψi are either proper subsets of Ψ, or
a formula in Ψ is replaced by a proper subformula (the (¬¬) rule), or a (possibly negated) formula
'1 ◦ '2 where ◦ ∈ {∨, ∧} is removed in terms of names from cl+(') and introducing de�nitions
for these names, all possibly negated. Notice that the formulas '1 and '2 are moved into di�erent
clauses, modulo negation, but not duplicated. Clearly, hence, the rule system (>) – (¬∧) is terminat-
ing. Formally, it is straightforward to de�ne a well-wounded ordering that shows that theses rules
work in a strictly order-decreasing way.

The argumentation extends to the rules (U) and (¬U). If (U) is applied to '1 U'2, which removes
it, the result contains the formulas X ('1 U'2), '1 and '2. The �rst formula can be ignored because
its X-operator shields it from further expansion. The formulas '1 and '2 are again both proper sub-
formulas of '1 U'2. Similarly for the (¬U) rule. �

Lemma 10 justi�es to talk about normal forms. Let⇒∗r denote the re�exive-transitive closure of
⇒r. If Γ is a set formula we write ∆ = CNF(Γ, r) i� Γ⇒∗r ∆ and no rule of⇒r is applicable to ∆.6 For
an LTL formula ' let CNF(', r) = CNF({{'}}, r).

We say that a set formula Γ is in 3-CNF i� |Ψ| ≤ 3 for every clause Ψ ∈ Γ.

Lemma 11 (Basic facts about⇒r) Let Γ be a 3-CNF set formula with domain Σ('), for some LTL
formula Ψ. If ∆ = CNF(Γ, r) then ∆ is a 3-CNF set formula with domain Σ(').

Proof. Suppose ∆ = CNF(Γ, r). The domain preservance claim follows immediately from Lemma 9.
That∆ is in 3-CNF follows from the fact thatΓ is in 3-CNF and that the rule system⇒r either removes
clauses, shrinks clauses or adds clauses with length at most 3. �

A.2.2 Complexity

As usual, the size of ', denoted as |' | , is the number of operators occurring in '. Although quite
obvious, we show that the size of Σ(') is polynomial in the size of '.

Lemma 12 |Σ(')| ∈ O(|' |2).
6This is a slight abuse of notation, as we have not shown that⇒∗r is con�uent.
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Proof. The cardinality of the set sub(') is bound by |sub(')| ≤ 2|' |. This (well-known) fact is easily
shown by induction on the formula structure. Obviously, then, |cl′(')| ≤ 8|' | and |cl(')| ≤ 8|' | +
8|' | · 8|' | = 8|' | + 64|' |2 ∈ O(|' |2). It follows |Σ(')| ≤ 2|N(')| + |cl(')| = 2|cl(')| + |cl(')| ∈ O(|' |2).
�

Lemma 13 (Complexity of CNF Transformation) Let Γ be a 3-CNF set formula Γ with domain
Σ(') and ∆ = CNF(Γ, r). Then the following holds:

1. ∆ is derived with O(|' |) rule applications.

2. |∆| ∈ O(|Σ(')|3) (= O(|' |6)).

Proof. (1) The number of rule applications to obtain ∆ from Γ is bound linearly by the number of
subformulas occurring in Γ that are also contained in sub('), which is of size O(|' |). To see this,
observe that the rule system⇒r does not duplicate subformulas and the pivot is always from sub(').
In the worst case every removal of a negated formula made with a binary operator ◦ ∈ {U, ∧, ∨}, of
which there can be only linearly many wrt. |' |, leads to two complemented immediate subformulas
of that formula. That is, the number of operators and subformulas shrinks or remains the same. In
the latter case a binary operator has been treated in for a negation operator. The negated formulas
may need another sweep of rule applications, but again at most linearly many wrt. |' |.

(2) FromLemma 11we know that∆ is in 3-CNF and has domainΣ('). Every clauseΨ ∈ ∆, hence,
has at most three literals, each taken from Σ('). There are O(|Σ(')|3) di�erent clauses with at most
3 literals and domain Σ('), which bounds, in particular the size of ∆ to O(|Σ(')|3). With Lemma 12
it follows O(|Σ(')|3) = O(|' |6). �

With Lemma 13 we see that ∆ = CNF(Γ, r) can be obtained in polynomial space and time wrt.
|' |.7 As said in the proof of (2), there are O(|Σ(')|3) = O(|' |6) di�erent clauses with at most 3 literals
and domain Σ('). There are, hence, O(2 |' |6 ) di�erent 3-CNF set formulas. This will allow us to prove
that our synthesis algorithmhas a time and space complexity of the same order, amarkedly improved
result over the double-exponential complexity of the established algorithms.

A.2.3 Progression of CNF Formulas

It is not di�cult to see that a set formula∆ = CNF(%, r) is either the set {{}}, which stands for “false”,
or for every Ψ ∈ ∆ and every ' ∈ Ψ, the formula ' is an X-formula. The second case includes the
possibility that ∆ = {}, which stands for “true”. Let us call set formulas of this form, where every
literal is an X-formula, expanded.

De�ne the operator unX on expanded set formulas for stripping o� the outermost X-operators as
follows: unX({{}}) = {{}}, andunX({Ψ1, . . . , Ψm}) = {unX(Ψ1), . . . , unX(Ψm)}, where unX({X'1, . . . , X'l}) =
{'1, . . . , 'l}, where m, l ≥ 1.

Notice that an expanded set formula ∆ is equivalent to X unX(∆) thanks to the equivalences
X ('1 ∨ '2) ≡ (X'1) ∨ (X'2) and X ('1 ∧ '2) ≡ (X'1) ∧ (X'2).

In other words, unX(∆) takes ∆ to the next state. By progression we mean the combined applica-
tion of unX and CNF, in this order. More precisely:

De�nition 14 (Progression) Let ' be an LTL formula and o be a path. The progression of ' along
7The set operations can be done in time linear wrt. |Σ(') |.
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o is the sequence prog(', o) := (Γh)h≥1, where

Γ1 = CNF({{'}}, o1),

Γ2 = CNF(unX(Γ1), o2),

Γ3 = CNF(unX(Γ2), o3), . . .

If o is �nite, then so is prog(', o).

Lemma 15 Let prog(', o) = (Γh) be the progression of ' along o. Then every Γh is a 3-CNF set formula
with domain Σ(').

Proof. The initial set {{'}} is trivially a set formula with domain Σ('). By Lemma 9, the CNF-
operator preserves the domain Σ('). Trivially, the unX-operator also preserves the domain Σ(').
Hence, every Γh has the domain Σ('). (This shows that progression is well-de�ned.) Moreover, with
Lemma 11 every Γh is in 3-CNF. �

The semantics of LTL provides evaluation relations o |= ' and o |=IE ' for LTL formulas ' and
in�nite or �nite paths o, respectively. We cannot use these relations on the progression prog(', o)
because our Tseitin-style CNF transformation requires on-the-�y introduction of the new state vari-
ablesV' \ V, which are unde�ned in the states of o.

This problem is solved bymaking the states oh of o total onV' in a unique way and that preserves
the semantics of LTL formulas. The resulting states (oh)' are de�ned in such a way that (oh)' |= A%

i� o(h) |= %. That is, A% is true in a state oh i� the path starting from oh satis�es %. Formally:

De�nition 16 Let ' be an LTL formula and o be a path. For all h ≥ 1 de�ne the extension (oh)' of oh
toV' , as

(oh)' = res(oh, eh), where eh is such that for every % ∈ cl('),

eh[u%] =

{
true if o(h) |= %

false otherwise.

The extension o' of o toV' is obtained from o by replacing each state oh by (oh)' , i.e., (o')h = (oh)' ,
for all h ≥ 1.

For example, suppose ' = B ∨ FC and o |= '. Then we have (o1)'[u'] = true, as o(1) = o and
o |= '. In other words (o1)' |= A', as A' is a shorthand for u' = true. This is consistent with the
result of the CNF transformation of ', which is, as a formula, � = A' ∧ (¬A' ∨ (B ∨ FC)). Indeed,
o' |= � as o' |= A' and o' |= (¬A' ∨ (B ∨ FC)). The former holds because A' is classical and
(o')h |= A'. The latter is equivalent to o' |= ' which is equivalent to o |= ', as o' is the same as o
on formulas over the variablesV. If instead o 6 |= ' then we would have o' 6 |= A' and hence o' 6 |= �,
as desired. We are going to formalize this correspondence.

Proposition 17 Let ' be an LTL formula, o be a path and (Γh) the progression of ' along o. Then,

1. o |= ' i� o' |= Γ1, and

2. o(h) |= Γh i� o(h + 1) |= Γh+1.
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Proof. (Sketch.) Item (1) requires induction over the formula structure and generalizes the argumen-
tation given in the example above. Item (2) is proven by induction on h. The induction step uses the
well-known equivalences

'1 U'2 ≡ '2 ∨ ('1 ∧ X ('1 U'2)) ¬('1 U'2) ≡ ¬'2 ∧ (¬'1 ∨ X¬('1 U'2))

X ('1 ∨ '2) ≡ (X'1) ∨ (X'2) X ('1 ∧ '2) ≡ (X'1) ∧ (X'2)

¬X' ≡ X¬'

and argues with the logical structure of the de�nitions of subformulas by means of names for them.
This argumentation generalizes the example above. This is straightforward, but somewhat tedious.
�

Proposition 17 states in (1) that the evaluation of an (initial) LTL formula ' is preserved under CNF
transformation by using extended states, and vice versa. Item (2), applied inductively when starting
with (1) shows that our progression algorithm is correct: o |= ' holds i� o'(i) |= Γi at any time i.
In particular, if oi is a goal state then o'(i) |= Γi can be evaluated in a straightforward way and in
polynomial time, with a minor adaption to the “idle” algorithm in [BK98].

A.3 Formal Concepts Related to SSPs
Throughout this and the following section, let S = (S, rinit, G, A, P, C, T ) be a given SSP, � an un-
restricted policy and % =

∧j
h=1 P∈ yh 'h a MO-PLTL constraint. We repeat and extend some basic

de�nitions from the main part of the paper.
A path (of S) from r is a sequence of states r1r2 · · · ∈ S+ ∪ S∞ such that r1 = r. Given r ∈ S, a run

from r (of S) is a �nite or in�nite sequence q = (r = r1)
�1
−→ r2

�2
−→ r3 · · · of states rh ∈ S and actions

�h ∈ A(rh) such that P(rh+1 |rh, �h) > 0, for all h ≥ 1. The cost and probability of a run q are de�ned as,
respectively,

C(q) =
∑
h=1

C(�h), and

P(q) =
∏
h≥1

P(rh+1 |rh, �h) .

A run q is an exhaustive run of � from r, or a �-run from r , if �(r1 · · · rh, �h) > 0 for all h ≥ 1 and
either q is in�nite or � is not de�ned for the �nite path represented by q. Let Runs(r, �) denote the
set of all �-runs from r, and GRuns(r, �) ⊆ Runs(r, �) the set of all �nite �-runs from r that end in a
goal state, or just goal runs from r.

Given q ∈ Runs(r, �), the probability of q being produced by � is

P(q |�) = P(q)
∏
h≥1

�(r1 · · · rh, �h)

( =
∏
h≥1

�(r1 · · · rh, �h)P(rh+1 |rh, �h) )

A policy � is proper if ∑q∈GRuns(rinit,�) P(q |�) = 1, that is, if the probability of reaching the goal
when following � from rinit is 1.

Given a proper policy �, its total expected costs are de�ned as follows:

V�(r) =
∑

q∈GRuns(r,�)
(C(q) + T (last(q)))P(q |�).

For simplicity, we abbreviate V�(rinit) with V� .
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Note 18 (In�nite costs) The de�nition ofV� ignores non-goal runs, that is, ignores costs of in�nite
runs. Had we instead de�ned

W�(r) =
∑

q∈Runs(r,�)
(C(q) +U(q))P(q |�), where

U(q) =

{
T (q) if q is �nite and last(q) ∈ G
0 otherwise

W� = W�(rinit)

then this leads to the problem that there are proper policies with even in�nite costs. In other words,
obviously, V� ≤ W� always holds, but V� = W� does in general not hold, even if � is proper.

As an example take the SSP S = ({rinit, rg}, rinit, {rg}, {�, �}, C, T ) where C(�) = C(�) = 1 and
T (rg) = 0. The actions � and � are de�ned as follows:

sinit

α

β sg

The (unrestricted) policy � is de�ned on every path rhinit = rinit · · · rinit (i.e., h repetitions of rinit) as

�(rhinit, �) =
ld(h + 1)
ld(h + 2

�(rhinit, �) = 1 − �(rhinit, �)

The set Runs(r, �) \ GRuns(r, �) is a singleton consisting of the run q = rinit
�
−→ rinit

�
−→ rinit · · · .

The probability of q being produced by � is

P(q, �) =
1

ld 3 ·
ld 3
ld 4 ·

ld 4
ld 5 · · ·

ld(m − 1)
ldm · · ·

= lim
m→∞

1
ldm = 0 .

The expected costs of any pre�x rminit of q is C(r
m
init)

1
ldm = m−1

ldm , which converges to in�nity. Thus
C(q)P(q |�) = limm→∞(C(r

m
init)

1
ldm )m = ∞. As � is proper and q ∈ Runs(r, �) It follows V� = ∞. But

notice that q, being in�nite, cannot be a goal run and hence does not contribute toW� . �

A.4 Formal Concepts Related to Markov Chains
Let S� = (S+, rinit, A, PS� ) be the (in�nite-state) Markov chain induced by S and � in the standard
way. The construction “compiles away” S’s actions into the state transitions of S� . Accordingly,
it is possible there are di�erent �-runs of S with transitions, say, rh

�h
−→ rh+1 and rh

�h
−→ rh+1 that are

collapsed in S� into the single transition (r1 · · · rh) (r1 · · · rhrh+1). The transition probability function
PS� of S� hence is de�ned as

PS� (or|o) =
∑

�∈A(last(o))
�(o, �)P(r|last(o), �) , for all o ∈ S+ and r ∈ S,

and PS� (p |o) = 0 in all other cases.
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The only non-standard aspect is with the runs of S, even if exhausted, that end in goal states
and that are always �nite (as no action is enabled at goal states). This is a minor techical issue,
though, which we deal with by corresponding �nite runs in S� . Thus, a run (of S�) from r is a
sequence q = (r1) (r1r2) · · · (r1r2 · · · rm) · · · of �nite paths (elements from S+) such that r1 = r and
PS� (r1 · · · rhrh+1 |r1 · · · rh) > 0, for all h ≥ 1. It can be �nite or in�nite.

We use PrS� for the probability measure on runs of S� . Let q = (r1) (r1r2) · · · (r1r2 · · · rm) be a
�nite run of S� . Then PrS� (q), the probability of the cylinder set spanned by q, is the same as the
probability of all runs of S from r1 to rm (this follows immediately from the de�nition of PS� ):

PrS� (q) =
m−1∏
h=1

PS� (r1 · · · rh+1 |r1 · · · rh)

=
∑

�1∈A(r1), ...,�m−1∈A(rm−1)

P(r1
�1
−→ r2 · · · rm−1

�m−1
−→ rm |�)

(The equality follows from the de�nitions above.)
We can capture the costs of sets of policy runs, those that are collapsed by the Markov Chain

under the same �nite run q = (r1) (r1r2) · · · (r1r2 · · · rm) by de�ning:

ExpTotS� (q) =
∑

�1∈A(r1), ...,�m−1∈A(rm−1)

C(p)P(p |�), where p = r1
�1
−→ r2 · · · rm−1

�m−1
−→ rm .

Similarly, we can capture the terminal costs of sets of policy runs reaching a goal state. Let q =

(r1) (r1r2) · · · (r1r2 · · · rm) as above with additionally rm ∈ G and de�ne

ExpTS� (q) = T (last(q))PqS� (q)

=
∑

�1∈A(r1), ...,�m−1∈A(rm−1)

T (rm)P(r1
�1
−→ r2 · · · rm−1

�m−1
−→ rm |�)

(The equality follows from the de�nitions above.)
Because every �nite run q = (r1) (r1r2) · · · (r1r2 · · · rm) of S� is uniquely identi�ed by its last state

r1r2 · · · rm we can use that state when a run is required. For instance, we write PrS� (r1r2 · · · rm) and
mean PrS� (q); similarly for ExpTotS� (r1r2 · · · rm) and ExpTS� (r1r2 · · · rm).

Paths and Runs. Let Paths = {o ∈ S+ | o1 = rinit and PrS� (o) > 0} be the set of all non-0
probability, �nite paths of S from rinit. We introduce some handy notation for describing speci�c
subsets of Paths. In that, we allow states r ∈ S and sets of states T ⊆ S as arguments of F-formulas:

Paths(') = {o ∈ Paths | last(o) ∈ G and o |=IE '}

Paths(F r) = {o ∈ Paths | last(o) = r, and oh < r for all h = 1..|o | − 1}
Paths(F T ) = ∪r∈T Paths(F r)

For any set of paths P ⊆ Paths de�ne

Pr�
S
(P) = PrS� (P) , where

PrS� (P) =
∑
o∈P

PrS� (o) .

The expression PrS� (o) is well-de�ned as the path o stands for the run (o1) (o1o2) · · ·o of S� from
o1 to o.
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As a convenience we write PrS� (F r) as a shorthand for PrS� (Paths(F r)); similarly, PrS� (F T )
means PrS� (Paths(F T )), and PrS� (')means PrS� (Paths(')).

In themain part of the paperwe de�nedPq�
S
(') =

∑
q∈GRuns(rinit,�) s.t. q |=IE' P(q |�) as the probability

mass of the execution paths of � that statisfy LTL formula '. In fact, that de�nition is equivalent to
expanding the de�nitions above. (Notice that Pr�

S
(o) = 0 if o ∈ S+, o1 = rinit and last(o) ∈ G but

o 8 Paths.)

Lemma 19 A policy � for S is proper i� Pr�
S
(true) = 1 i� PrS� (FG) = 1.

Proof. Straightforward from the de�nitions. �

For o ∈ Paths de�ne Succ(o) = {r ∈ S | PS� (or|o) > 0} as the successor states of last(o) that
can be reached by executing �. In the proof of Lemma 23 below we need to compute the costs of
extending o by all states Succ(o). The following lemma is helpful for that:

Lemma 20 For every o = r1 · · · rm ∈ Paths,∑
r∈Succ(o)

ExpTotS� (or) = ExpTotS� (o) + PrS� (o)
∑

�∈A(rm)

C(�)�(o |�)

Proof. Abbreviate p := r1
�1
−→ r2 · · · rm−1

�m−1
−→ rm and �m−1 := �1 ∈ A(r1), . . . , �m−1 ∈ A(rm−1). Compute∑

r∈Succ(o)
ExpTotS� (or)

=
∑

r∈Succ(o)

∑
�m−1,�∈A(rm)

C(p
�
−→ r) P(p

�
−→ r|�)

=
∑
�m−1,�∈A(rm),r∈Succ(o)
C(p

�
−→ r) P(p

�
−→ r|�)

=
∑
�m−1,�∈A(rm), r∈Succ(o)
(C(p) + C(�))P(p |�)�(o, �)P(r|rm, �)

=
∑
�m−1

∑
�∈A(rm), r∈Succ(o)
(C(p) + C(�))P(p, �)�(o, �)P(r|rm, �)

=
∑
�m−1

P(p |�)
∑
�∈A(rm), r∈Succ(o)
(C(p) + C(�))�(o, �)P(r|rm, �)

=
∑
�m−1

P(p |�)
(∑

�∈A(rm), r∈Succ(o)
C(p)�(o, �)P(r|rm, �) +

∑
�∈A(rm), r∈Succ(o)
C(�)�(o, �)P(r|rm, �)

)
=

∑
�m−1

P(p |�)
(
C(p)

∑
�∈A(rm), r∈Succ(o)
�(o, �)P(r|rm, �)︸                     ︷︷                     ︸

=1

+
∑
�∈A(rm)

C(�)�(o, �)
∑
r∈Succ(o)
P(r|rm, �)︸          ︷︷          ︸

=1

)

=
∑
�m−1

P(p |�)
(
C(p) +

∑
�∈A(rm)

C(�)�(o, �)
)

=
∑
�m−1

P(p |�)C(p) +
∑
�m−1

P(p |�)
∑
�∈A(rm)

C(�)�(o, �)

= ExpTotS� (o) + PrS� (o)
∑

�∈A(rm)

C(�)�(o, �)

�
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A.5 Linear Program for LPC×and Complexity
Let T be a probabilistic SAS+ task, S the SSP it de�nes, and % =

∧j
h=1 P∈ yh 'h . Fix the partial

progression-based�nite-memory policy�prog = (Mprog, startprog,modprog, ·) andAccepth = {〈l, r〉 ∈
G× | r |=IE lh}. Let C× be the the C-SSP obtained according to De�nition 2.

The following linear program, LPC× , is the standard dual LP for an SSP [Alt99] applied to C×.

In the statement of LPC×and all proofs we leave out the treatment of secondary action costs.
As they can be added without e�ort, spelling out the details would unnecessarily clutter up
the presentation.

min
w

∑
〈l,r〉∈S×,�∈A(r)

wl,r,� C(�) +
∑

〈l,r〉∈G×
in(l, r) T (r) (LP4)

s.t. wl,r,� ≥ 0 ∀〈l, r〉 ∈ S×, � ∈ A(r) (C27)
out(l, r) − in(l, r) = 0 ∀〈l, r〉 ∈ S× \ (G× ∪ {r×init}) (C28)
out(r×init) − in(r×init) = 1 (C29)∑
〈l,r〉∈G×

in(l, r) = 1 (C30)∑
〈l,r〉∈G×

in(l, r) T ×h (l, r) ∈ yh ∀h = 1..j (C31)

Each constraint (C5), e ∈ yh , where e =
∑
〈l,r〉∈G× in(l, r) T ×h (l, r) stands for the two constraints

e ≥ kh and th ≤ e, where kh and th are the lower and upper bounds, respectively, of the interval yh .
LPC× , as any dual LP for SSPs, can be seen as a probabilistic �ow network in which every state is

a node and �ows split according to the actions probabilities. Formally, the �ow entering and leaving
a state 〈l, r〉 ∈ S× are de�ned, respectively, as

in(l, r) =
∑

〈m,s〉∈S×, �∈A(s)

P×(〈l, r〉|〈m, s〉, �)wm,s,�

out(l, r) =
∑

�∈A(r)

wl,r,�

The variables wl,r,� of LPC×are known as occupation measures and they represents the expected
number of times action � ∈ A(r) is applied in state 〈l, r〉 ∈ S×.

The solution w∗ of LPC× induces the optimal policy �∗C× : S× ×A 7→ Q of C× de�ned pointwise as
follows (this is well-known):

�∗C× (l, r, �) =
w∗l,r,�∑

�′∈A(r) w
∗
l,r,�′

for all 〈l, r〉 ∈ S× and � ∈ A(r). Moreover, the cost of �C× is the term minimized in (LP1).
Constraint (C28) represents the conservation of �ow that is enforce for all states except the initial

state r×init which is the source of �ow (C29) and the goal states that are the sinks (C30). Constraint
(C30) also uses two key properties of the dual LP for SSPs: (i) exactly one unit of �ow is inject in the
source of the network (r×init), and (ii) the �ow reaching any goal state 〈l, r〉 ∈ G× is trapped there,
i.e., it is not moved back into the network. Properties (i) and (ii) together imply that under the policy
�∗
C×
the probability of reaching a goal state 〈l, r〉 ∈ G× is one, i.e., that �∗

C×
is proper, as required for

optimal policies.

Theorem 4 (Complexity) Let S be an SSP, % an MO-PLTL constraint, and C× the C-SSP obtained
usingMprog, startprog, andmodprog. Then there is a linear program LPC×whose solution, if any, de�nes
the optimal policy �∗C× for C×. LPC×can be obtained in time and space at most O(|S |) · (2O(|% |)

7
).

28



Proof. Above we de�ned the linear program LPC×and referred to well-known results concerning the
correspondence between the solution of LPC×and the optimal policy �∗C× for C×.

Regarding complexity, the claim follows form the following: for every h = 1..j, the mode space
is of size |Mh | = 2O(|Σ('h) |)3 = 2O(|'h |)6 , as |Σ('h)| = O(|'h |2). The state space of S× hence is of size
|S | ·

∏j
h=1 2O(|'h |)6 = |S | · (2O(|% |)6 )j = |S | · (2j ·O( |% |)6 ) ≤ |S | · (2 |% | ·O( |% |)6 ) = |S | · (2O(|% |)7 ). Moreover, all

required (set) operations can be carried out in polynomial time. �

Notice that Theorem 4 does not talk about satisfaction of the MO-PLTL constraint %. That will
be taken care of in the soundness and completeness theorems below. More speci�cally, the con-
straint (C5) enforces the MO-PLTL constraints P∈ yh 'h , for h = 1..j in terms of the fraction of the
�ow entering the goal states (sinks) that satis�es 'h . This is perhaps easier to see with the following
constraint (C5alt), which is equivalent to (C31) (use the de�nition of T ×):∑

〈l,r〉∈Accepth
in(l, r) ∈ yh , where

Accepth = {〈l1, . . . , lj, r〉 ∈ G
× | r |=IE lh} ∀h = 1..j (C5alt)

Moreover, the left-hand side of (C5alt) (and hence of C31) is equivalent to the probability of 'h
being satis�ed under the in�nite extension semantics. See the proof below of the soundness theorem
(Theorem 5) for that.

A.6 Soundness
Theorem 5 (Soundness) If �prog exists then it is an optimal policy forS and %, i.e.,S, �prog |= % and
V�prog

≤ V� for all unrestricted proper policies � such that S, � |= %.

Proof. Suppose that �prog exists. That is, C× is solvable and its optimal policy solution �C× is the
act-component of �prog. As every optimal policy is proper, �C× is proper, too. It follows that �prog is
proper (�prog is nothing but a reformulation of �C× as a �nite-memory history).

As C× is solvable, with the correspondence between C× and LPC×(cf. Theorem 4) we conclude
that LPC× is feasible (has a solution) and argue with LPC× in the following.

The claim S, �prog |= % follows from the satisfaction of the constraint (C5alt). (Recall from Sec-
tion A.5 that the constraint (C31) of LPC× is equivalent to (C5alt).) This can be explained as follows:
take any goal state 〈l, r〉 ∈ G×. Consider the set P of all paths of S× from r×init that end in 〈l, r〉.
Recall that l = 〈l1, . . . , lj〉 and each lh is a set formula representing the current progression of
the initial formula 'h . Now, either 〈l, r〉 ∈ Accepth or not. If not, none of paths in P IE-satis�es 'h .
If yes, every path in P IE-satis�es 'h . These claims follow from Proposition 17. In the former case
the probability of P is 0, and in the latter case it is exactly the in�ow into 〈l, r〉.

The probability of all paths from r×init that IE-satisfy 'h hence is the sum of the probabilities of
reaching some goal state 〈l, r〉 ∈ G× that accept at h. The constraint (C5alt) does just that in its
summation formula and wraps it into an interval membership condition to represent the constraint
P∈ yh 'h for each constraint of %. It follows S, �prog |= %.

Regarding optimality, suppose by way of contradiction that �prog is not optimal. Then there is a
(possibly unrestricted) proper policy � for S with strictly smaller cost V� < V�prog . By the complete-
ness theorem below, Theorem 6, conclude V�prog

≤ V� , a plain contradiction. �

A.7 Completeness
In this sectionwe prove Theorem 6, the completess result wrt. progression-based �nite-memory poli-
cies �prog = (Mprog, startprog,modprog, �∗

C×
). With the correspondence between the optimal policy
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�∗
C×
for C× and the solution of the linear program LPC×(cf. Theorem 4 in Section A.5) we will build

our arguments on properties of LPC× . For that, we replace the constraint (C31) in LPC×by the equiv-
alent constraint (C5alt).

Throughout this section letS = (S, rinit, G, A, P, C, T ) be a givenMO-PLTLSSP and% =
∧j

h=1 P∈ yh 'h
a given MO-PLTL formula.

We split the proof of the completness theorem in two main parts, one concerning “probabilities”
and another one concerning “costs”.

A.7.1 Probabilities

Lemma 23 Let � be a proper policy for S. Let LP−C× denote the subset (C1)-(C3) of LPC× . Then LP−C× is
satis�able with a solution " that satis�es all of the following:8

(1) for every r ∈ G, PrS� (F r) =
∑

l∈M "(in(l, r)).

(2) for every h = 1..j, PrS� ('h) =
∑
〈l,r〉∈Accepth "(in(l, r)).

Lemma 23 states in its item (1) that the probability of reaching a goal state r via an unrestricted
policy � can as well be found as the solution of LP−C× in terms of in�ow into states of S× whose state
component is r. Item (2) says that the probability of each LTL formula Ψh in the objective can be
obtained by summing up the in�ow into those goal states of S× with a state component r such that
the run rr · · · satis�es the progressed version of 'h at that goal states, i.e., r |=IE 'h .

As the proof of Lemma 23 is quite lengthy we provide an overview �rst. Quite obviously, we need
to analyze the set of runs of S� , which we simply denote by R in the following. The end product of
this analysis will be the claimed solution" of LP−C× .

We visualize R as the obvious (in�nite) tree and approximate it in a stepwise way by a sequence
P0, P1, · · · of �nite paths Ph ⊆ Paths. Each Ph consists of the leaves of a �nite subtree of R, and hence
each o ∈ Ph represents a �nite run of S� of the form ((rinit) = (o1)) (o1o2), · · · ((o1o2 · · ·om) = o).

At each stage of the the approximation, such a path o ends in a goal state, or not. If o ends in a
non-goal state r ∈ S \G we do temporarily think of r as a goal state for the purpose of the proof. This
does not match with the SSP S, of course. As a �x, we add a designated goal state r� to S, for every
r ∈ S \ G that represents the runs of S� that get “stuck” at a path ending in r. We call the resulting
MO-LTL SSP T and get its product SSP T × with the same construction as described for S.

At any stage of the approximation, a current solution "h of (C1)–(C3) of the LP for T × will be in
sync with the runs of T × described by the paths in Ph . More precisely, "h assigns to the in�ow into
a state of T × exactly the probability of the paths in P h ending in the same state. This property holds
initially and is preserved in the transition from Ph to Ph+1. In each such transition, a o ∈ Ph ending
in a non-goal state is replaced by all its extensions with the immediate successors as prescribed by �.
Accordingly, the probability of o is distributed into these successors. (If such a successor state r is a
non-goal state r then the �ow is redirected into r� .) Similarly, the total expected costs of the paths in
Ph is the same as the expected total costs given by the current solution "h . Below we explain in detail
how "h+1 is obtained from "h so that these invariants are preserved.

As this construction proceeds we get with the "h ’s better and better approximations of �. Because
� is proper, the in�ow into the arti�cial goal states of T × corresponding to non-goal states of S will
be zero in the limit of the construction, when h approaches in�nity. But then, T × and S× are the
same, and the lemma claims (1) and (2) follow.

The rest of this section is a rigorous proof of Lemma 23.
8See Section A.4 for the de�nitions of PrS� (F r) and PrS� ('h).
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The construction. Formally, let S� = {r� | r ∈ S \ G} be an �-indexed copy of the non-goal states.
We use it do de�ne the SSP T = (T , rinit, G ∪ S�, A�, P�, C�) where T = S ∪ S� , A� = A ∪ {�}, and C�
di�ers from C only by the extension C(�) := 0. The states r� are sink states (only) for transitioning
out from non-goal states r. Correspondingly we enable � as per A�(r) := ∅ if r ∈ G ∪ S� (recall that
A(r) = ∅ for all r ∈ G) and A�(r) := A(r) ∪ {�} if r ∈ S \ G. The transition probability function P� is
the same as P but extended by P(·|r, �) = {r�}. The evaluation function at r� is the same as at r, i.e.,
r�[u] = r[u] for all u ∈ V (but that does not matter).

In the following wework with the product SSP T × of T . Whenwe speak of “(C1)–(C3)” wemean
the constraints (C1)–(C3) in the linear program for the SSP T ×, not S×. By T × we denote the state
space of T ×. By an r-state we mean any state of T × whose state component is r, i.e., a state of the
form 〈l, r〉 ∈ T ×.

We de�ne inductively sequences (Ph)h≥1 with Ph ⊆ Paths and ("h)h≥1 such that "h is a solution of
(C1)–(C3) . The set Ph is the current set of paths, and those that end in non-goal states need to be
worked on. On transition from h to h + 1 such a o ∈ Ph is replaced by all one-step extensions of o.
Here are the details:

h = 1: set P1 = {rinit} and "1 as

wstart,rinit,� := 1 wl,r,� := 0 in all other cases
in(start, (rinit)�) := 1 in(l, r) := 0 in all other cases

Strictly speaking, we do not need to specify the values of the in-variables, as they are uniquely
determined by the w-variables (and T ×). We do so nevertheless for clarity, noting that the
speci�ed values are indeed the uniquely determined ones. The values for the out-variables we
do not specify explicitly. The same goes for the induction step below.

h → h + 1: Assume h ≥ 1 and that Pi and "i have already been de�ned for all i = 1..h. Pick a shortest
o ∈ Ph such that last(o) ∈ S \ G. As de�ned earlier, let Succ(o) = {r ∈ S | PS� (or|o) > 0}
denote the reachable successor states of o.
We replace o in Ph by its extension by successors. That is, set

Ph+1 = (Ph \ {o}) ∪ {or | r ∈ Succ(o)} .

We need to update "h accordingly. Let o = r1 · · · rm (wherer1 = rinit). Corresponding to o
there is a unique path o× = 〈l1, r1〉〈l2, r2〉 · · · 〈lm−1, rm−1〉〈lm, rm〉 of S× (and of T ×), where
l1 = start and lh+1 = mod(lh, rh+1) for h = 1..m − 1. Looking at the last state 〈lm, rm〉 we
modify "h so that it re�ects the new Ph+1. First set

wlm,rm,� := wlm,rm,� − PrS� (o)
in(lm, (rm)�) := in(lm, (rm)�) − PrS� (o)

in accordance with o being removed from Ph . (Recall that o ends in a non-goal state, rm, and
its probability went into (rm)� .) That is, the out�ow wlm,rm,� of 〈lm, rm〉 into the �-successor
state 〈lm, (rm)�〉 is reduced by the probability of o. This loss of out�ow is compensated by
distributing it into the successor states 〈mod(lm, r), r〉 of 〈lm, rm〉 as prescribed by �, for all
r ∈ Succ(o). More precisely, set

wlm,rm,� := wlm,rm,� + PrS� (o)�(o, �) (for all � ∈ A(rm))
in(mod(lm, r), r) := in(mod(lm, r), r) + PrS� (o)PS� (or|o) (for all r ∈ Succ(o))

( = in(mod(lm, r), r) + PrS� (o) (
∑

�∈A(rm)

�(o, �)P(r|rm, �)) )
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Now consider the states r ∈ Succ(o). If r ∈ G then the corresponding state 〈mod(lm, r), r〉 is
a goal state in T ×. In this case nothing more needs to be done to preserve solutions, the goal
state just receives somewhat more in�ow. If r ∈ S \ G then 〈mod(lm, r), r〉 is a non-goal state
in T × as well and we need to re-balance its out�ow with the just increased in�ow. We do this
by sending the increased in�ow into the �-successor states of 〈mod(lm, r), r〉, which are goal
states in T ×. That is, set

wmod(lm,r),r,� := wmod(lm,r),r,� + PrS� (o)PS� (or|o) (for all r ∈ S \ G)
in(mod(lm, r�), r�) := in(mod(lm, r�), r�) + PrS� (o)PS� (or|o) (for all r ∈ S \ G)

This construction de�nes the new solution "h+1 of (C1)–(C3).

It is not di�cult to verify (by induction) that "h is a solution of (C1)–(C3) for all h ≥ 1.
We are going to introduce some de�nitions that will facilitate the proofs. For h ≥ 1 de�ne proba-

bilities of reaching a state r ∈ S or some state from a set of states G or S \ G at stage h as follows:

Pr×(F r)h =
∑
l∈M

"h(in(l, r)) if r ∈ G Pr×(FG)h =
∑
r∈G

Pr×(F r)h

Pr×(F r�)h =
∑
l∈M

"h(in(l, r�)) if r ∈ S \ G Pr×(F (S \ G))h =
∑
r∈S\G

Pr×(F r�)h

Pr×('i)h =
∑

〈l,r〉∈Accepti
"h(in(l, r)) if 1 ≤ i ≤ j

For instance, Pr×(F r)h is the in�ow into all goal r-states of T × at stage h in the construction. Wewrite,
e.g., (Pr×(F r)h) to denote the sequence Pr×(F r)1, Pr×(F r)2, . . . , Pr×(F r)m, . . ..

We prove some interesting facts.
(0) Pr×(FG)h+Pr×(F (S\G))h = 1. Proof: Initially, when h = 1, Pr×(FG)h = 0 and Pr×(F (S\G))h = 1

as per in(start, (rinit)�) = 1. On transitions from h to h + 1 an in�ow into some in(lm, (rm)�) is �rst
reduced by an amount PrS� (o). No other state can have an in�ow ≥ 1−PrS� (o) as then the property
(0) would not hold at time h. For time h +1 the amount PrS� (o)will be redistributed into �nal or non-
�nal states. In any case the mass �owing, in sum, into some nodes in(l, r) where r ∈ G or in(l, r�)
where r ∈ S \ G is preserved for "h+1.

Properties of goal states. In the following let r ∈ G arbitrary.
(a) The sequence (Pr×(F r)h) is monotonically increasing, i.e., Pr×(F r)h ≤ Pr×(F r)h+1.
Proof: Initially Pr×(F r)1 = 0, and either Pr×(F r)h+1 = Pr×(F r)h or the construction adds a positive

amount PrS� (o)PS� (or|o) to the variable in(mod(lm, r), r), for some o andlm.
(b) Pr×(F r)h = PrS� (Paths(F r) ∩ Ph) and Pr×(F r)h ≤ PrS� (F r). Proof: the �rst claim follows

immediately from the construction: Paths(F r)∩Ph contains exactly all paths from rinit to r considered
up to and including timepoint h. The value PrS� (Paths(F r) ∩ Ph) is the sum of the probabilities of
these paths. By construction, each such probability has been added to a variable in(〈l, r〉), for some
l. Their sum is exactly the value Pr×(F r)h .

The second claim follows from the �rst claim and the trivial fact Paths(F r) ∩ Ph ⊆ Paths(F r).
(c) limh→∞ Pr×(F r)h = PrS� (F r). Proof: With the monotonicity result (a) and the upper bound

result (b) it su�ces to show that, given � > 0, there is an N such that Pr×(F r)h > PrS� (F r) − � for all
h ≥ N. Consider an arbitrary enumeration Paths(F r) = {o1, o2, . . .}. Then we can present PrS� (F r)
as follows:

PrS� (F r) =
∑

o∈Paths(F r)

PrS� (o) =
∞∑
i=1

PrS� (oi) = lim
j→∞

j∑
i=1

PrS� (oi) .
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By de�nition of limits, there is a K such that∑K
i=1 PrS� (oi) > PrS� (F r) − � for all j ≥ K. Now chose

N big enough such that {o1, . . . , oK} ⊆ PN . Because the construction is fair wrt. selecting paths
from S� , by always taking a shortest one for the next iteration, the set PN exists. Because every path
oi ends in r we have {o1, . . . , oK} ⊆ Paths(F r) ∩ PN Together we obtain

Pr×(F r)h
(b)
=

∑
o∈Paths(F r)∩Ph

PrS� (o) ≥
K∑
i=1

PrS� (oi) > PrS� (F r) − � for all h ≥ N.

(d) limh→∞ Pr×(FG)h = 1. That is, the product SSP will, in the limit of the construction, almost
certainly reach a goal state. Proof:

lim
h→∞

Pr×(FG)h = lim
h→∞

∑
r∈G

Pr×(F r)h =
∑
r∈G

lim
h→∞

Pr×(F r)h
(c)
=

∑
r∈G

PrS� (F r) = PrS� (FG) = 1 .

The last equality is given by Lemma 19.
(e) For everyl ∈ M, limh→∞ "h(in(l, r)) exists.
Proof: initially"1(in(l, r)) = 0, and ("h(in(l, r))) is bound fromabove, as"h(in(l, r)) ≤

∑
l∈M "h(in(l, r)) =

Pr×(F r)h
(a,c)
≤ PrS� (F r).

(f) for everyl ∈ M, "h(wl,r,�) = 0. Proof: this is true initially, for h = 1, and it is preserved from
h 7→ h + 1 as the construction does not distribute �ow coming into goal states G. In other words,
"h+1(wl,r,�) = "h(wl,r,�).

(g) for every i = 1..j, limh→∞ Pr×('i)h = PrS� ('i). The proof is analogous to the proofs of (a) -
(c), with 'i replacing F r, and is omitted.

Properties of non-goal states. In the following let r ∈ S \ G arbitrary.
(h) The sequence (Pr×(F (S \G))h) is decreasing, i.e., Pr×(F (S \G))h ≥ Pr×(F (S \G))h+1. Moreover,

Pr×(F (S \ G))h ≥ 0. Proof: Initially, when h = 1, Pr×(F (S \ G))h = 1 as per in(start, (rinit)�) = 1. On
transitions from h to h + 1 an in�ow into some in(lm, (rm)�) is �rst diminished by an amount PrS� (o).
This can only happen if the same amount PrS� (o) had been added to in(lm, (rm)�) in an earlier step.
It follows Pr×(F (S \ G))h ≥ 0. The amount PrS� (o) then is redistributed into goal or non-goal states.
In any case themass �owing into nodes in(l, r�) does not increase. Hence Pr×(F (S\G))h ≥ Pr×(F (S\
G))h+1.

(i) limh→∞ Pr×(F (S \ G))h = 0. In other words, the probability of getting stuck at a non-goal state
is zero. Proof: follows immediately from (0), (d) and the trivial fact S = (S \ G) ∪ G.

(j) limh→∞ Pr×(F r�)h = 0. Proof: follows immediately from (i).
(k) For every l ∈ M, limh→∞ "h(wl,r,�) = 0. Proof: Choose l ∈ M arbitrarily. By de�nition,

the only �-successor state of 〈l, r〉 is 〈l, r�〉. That is, in(l, r�) = wl,r,� . From (j) it follows that the
limit in�ow into 〈l, r�〉 is 0, i.e., limh→∞ "h(in(l, r�)) = 0. Together it follows limh→∞ "h(in(l, r�)) =
limh→∞ "h(wl,r,�) = 0.

(l) For every l ∈ M and � ∈ A�(r), limh→∞ "h(wl,r,�) = q for some �nite real number q. Proof:
choose l ∈ M and � ∈ A�(r) arbitrarily. If � = � then q = 0 as per (k). Otherwise, � < � and the
variable wl,r,� is the expected number of times the action � is carried out in state 〈l, r〉. It is possible
to quantify an a-priori �nite upper bound for wl,r,� by graph analysis ofT ×. As this is rather involved
and we do not need the upper bound as such we provide a simpler argument.

As a preliminary step we need to establish the monotonicity property

"h(wm,s,�) ≤ "h+1(wm,s,�), for all 〈m, s〉 ∈ S× and � ∈ A(s). (2)

Proof of (2): let 〈m, s〉 ∈ S× and � ∈ A(s) arbitrary. Notice that � < �, which is the key to why
this holds: at any transition h 7→ h + 1 in the construction, the values of some variables wlm,rm,� and
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in(lm, (rm)�) only are diminished, by a value PqS� (o), which is distributed additively into w- and
in-variables (the same variables possibly among them). Hence (2) follows.

Suppose "h(in(l, r)) > 0 at some time h in the construction. We claim there is a path in the
transition graph of T × from 〈l, r〉, using enabled actions, to a goal state of T ×. Each such goal state
is of the form 〈m, s〉 for some s ∈ G or 〈m, s�〉 for some s ∈ (S \ G). Let us call the former the non-
�-states and the latter the �-states. The existence of paths to �-states is obvious from the de�nition
of T ×, but one of these paths must lead to a non-�-state. This is, because otherwise the (non-zero)
in�ow "h(in(l, r)) would be distributed, as the construction proceeds, only to �-states, if at all. But
this is impossible with the property (i) which entails that the summed-up in�ow into the �-states
approaches 0 in the limit. Hence there is at least one path to a non-�-state 〈m, s〉 for some s ∈ G.

The in�ow into that state 〈m, s〉, i.e., "h(in(m, s)), is at any time h a certain fraction of the w-value
of each non-goal state along the path from r×init to 〈m, s〉 passing through non-goal states (including
〈l, r〉) and using enabled actions � < �. If 〈m′, s′〉 is any such non-goal state and "h(wm′,s′,�) should
not converge to a �nite value, then with (2) it follows "h(wm′,s′,�) converges to in�nity. But this is
impossible as then "h(in(m, s)) would converge to in�nity as well, a contradiction to property (d).

To wrap up, we have shown that if "h(in(l, r)) > 0, for some h, then "h(wl,r,�) converges to a
�nite value. Trivially, if "h(wl,r,�) = 0, for all h, then convergence (to 0) holds as well. Thus, in any
case, "h(wl,r,�) converges to a �nite value q.

De�nition of ". We are going to de�ne the desired solution " of (C1)–(C5alt). Like in the con-
struction of "h we de�ne it explicitly only on the variables in(l, r) and wl,r,�.

First de�ne "(wlr,�) = limh→∞ "h(wlr,�) for every 〈l, r〉 ∈ S× and � ∈ A�(r). Notice that the limit
is well-de�ned. For r ∈ (S \ G) use property (l), and for r ∈ G this is trivial with (f).

Then de�ne " on the variables in(l, r) for each 〈l, r〉 ∈ S× as

"(in(l, r)) =
∑

〈l,r〉∈S×,�∈A� (r)

"(wl,r,�)P
×(〈m, s〉|〈l, r〉, �) .

We can characterize " on the in-variables also as the “limit "h":

"(in(m, s)) = lim
h→∞

"h(in(m, s)), for all 〈m, s〉 ∈ S× (3)

Proof of (3): choose 〈m, s〉 ∈ S× arbitrarily and obtain:

"(in(m, s)) =
∑

〈l,r〉∈S×,�∈A� (r)

"(wl,r,�)P
×(〈m, s〉|〈l, r〉, �) (def. of "(in(m, s)))

=
∑

〈l,r〉∈S×,�∈A� (r)

( lim
h→∞

"h(wl,r,�)P
×(〈m, s〉|〈l, r〉, �) (def. of "(wl,r,�))

= lim
h→∞

"h(
∑

〈l,r〉∈S×,�∈A� (r)

wl,r,� P
×(〈m, s〉|〈l, r〉, �)) (limit property)

= lim
h→∞

"h(in(m, s)) ("h is solution of (C1)–(C3))

" is a solution of (C1)–(C3). The lemma statement requires to prove that " is a solution of the
subset (C1)–(C3) of LPC× for S×. For this, we can �rst show that " is a solution of the subset (C1)–
(C3) of LPC× for T ×. This is done in a similar way as the proof of lemma item (2), see below. As there,
one needs the facts that limits distribute over sums and multiplication by constants and that "h is a
solution of (C1)–(C3), for all h ≥ 1. We omit the details.

Then, to show that " is a solution of the subset (C1)–(C3) of LPC× forS×, recall property (j) which
states limh→∞ Pr×(F r�)h = 0 for all r ∈ (S \G). Using (3) it is easy to take (j) to the limit and conclude
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"(in(l, r�)) = 0, for alll ∈ M and r ∈ (S \G). It follows "(wl,r,�) = 0. In other words, we can ignore
the additional �-actions and r�-states and still have a solution of T ×. As these are the only di�erences
between S and T , " is a solution of the subset (C1)–(C3) of LPC× for S×.

We turn now to the proofs of the lemma claims (1) and (2).

Item (1). We need to show PrS� (F r) =
∑

l∈M "(in(l, r)), for every r ∈ G. Again this follows
easily, by taking property (c) to the limit, using (3).

Item (2). Let i ∈ {1..j} arbitrary. We show PrS� ('i) =
∑
〈l,r〉∈Accepti "(in(l, r)) as follows:

PrS� ('i)
(g)
= lim

h→∞
Pr×('i)h

= lim
h→∞

∑
〈l,r〉∈Accepti

"h(in(l, r))

=
∑

〈l,r〉∈Accepti
lim
h→∞

"h(in(l, r)) (as by (e) limh→∞ "h(in(l, r)) exists)

=
∑

〈l,r〉∈Accepti
"(in(l, r)) . (by (3))

This concludes the proof of Lemma 23.

A.7.2 Costs

Lemma 24 Let � be a proper policy for S and suppose " is the solution of LP−C× (the subset (C1)–(C3)
of LPC×) as constructed in the proof of Lemma 23. Then

V� =
∑

〈l,r〉∈S×,�∈A(r)

"(wl,r,�)C(�) +
∑

〈l,r〉∈G×
"(in(l, r)) T (r) .

The lemma states that the expected total costs of reaching a goal state of S under � is the same as
the computed ones by the solution " of LP−C× .

For the proof of Lemma 24 we need additional concepts, referring to the construction in the proof
of Lemma 23. For every h ≥ 1 de�ne

ExpToth =
∑
o∈Ph

ExpTotS� (o)

ExpTot×h =
∑

〈l,r〉∈S×,�∈A(r)

"h(wl,r,�)C(�)

Notice that the pathso in the equation for ExpToth not neccessarily end in a goal state fromG. ExpToth
is the expected total cost of all �nite runs from S� at timepoint h, and ExpTot×h is the expected total
cost computed with the solution "h so far.

We �rst establish some properties regarding ExpToth and ExpTot×h . The proof of Lemma 24 is at
the end of this section.

Lemma 25 For all h ≥ 1 and o ∈ Ph , PrS� (o) > 0. For all h ≥ 2 and o ∈ Ph , ExpTotS� (o) > 0.

Proof. By induction. If h = 1 then P1 = {rinit} and PrS� (rinit) = 1. If h = 2 then P2 = {rinitr | r ∈
Succ(rinit)}. By de�nition of Succ, each path in P2 has a non-0 probability, and one action applied to
it. No action can have 0 costs by de�nition SSPs. It follows ExpTotS� (o) > 0 for each o ∈ P2.
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For h 7→ h + 1, consider the �rst claim and let o ∈ Ph arbitrary. By induction we have PrS� (o) > 0.
The case o ∈ Ph+1 is trival. Hence suppose o is the chosen path in the construction. By de�nition,
then, Ph+1 = (Ph \ {o}) ∪ {or | r ∈ Succ(o)}. The claim follows immediately with the de�nition of
Succ. The proof of the second claim is similar and again uses the requirement that no action can have
0 costs. �

Lemma 26 (Montonicity) For all h ≥ 1, ExpToth+1 > ExpToth .
( Equivalently,

∑
o∈Ph+1 ExpTotS� (o) >

∑
o∈Ph ExpTotS� (o)).

Proof. Let p = r1 · · · rm ∈ Ph be the chosen path to work on at timepoint h. Compute
ExpToth+1 =

∑
o∈Ph+1

ExpTotS� (o)

=
∑

o∈(Ph\{p})∪{pr |r∈Succ(p)}
ExpTotS� (o) (Def. of Ph+1)

=
∑

o∈Ph\{p}

ExpTotS� (o) +
∑

r∈Succ(p)
ExpTotS� (pr)

=
∑

o∈Ph\{p}

ExpTotS� (o) +
(

ExpTotS� (p) + PrS� (p)
∑

�∈A(rm)

C(�)�(p, �)
)

(Lemma 20)

=
∑
o∈Ph

ExpTotS� (o) + PrS� (p)
∑

�∈A(rm)

C(�)�(p, �)

= ExpToth +PrS� (p)
∑

�∈A(rm)

C(�)�(p, �)︸                           ︷︷                           ︸
=:�

The �rst lemma claim follows from � > 0, which in turn follows from the following facts:
• PrS� (p) > 0 for all p ∈ Ph and all h ≥ 1, cf. Lemma 25.

• The last state rm of p cannot be a goal state (otherwise it would not be touched by the construc-
tion from h to h + 1). By de�nition of SSP, A(rm) < ∅ and C(�) > 0, for all � ∈ A. Furthermore,
�(p) is a distribution on the actionsA. Altogether it follows there is at least one � ∈ A(rm) such
that C(�)�(p, �) > 0.

The second lemma claim is just unfolding the de�nition of ExpToth . �

Lemma 27 For all h ≥ 1, ExpToth = ExpTot×h .
Proof.(of Lemma 27) By induction. For h = 1, P1 = {rinit} and ExpTot1 = 0 with the de�nition of PrS�
(the empty sum is 0). Likewise ExpTot×1 = 0 as the only non-0 w-variable is wstart,rinit,� = 1 but the cost
for executing � is C(�) = 0.

For h 7→ h + 1 assume ExpToth = ExpTot×h and let o = r1 · · · rm ∈ Ph be the chosen path. The
corresponding path from S× (and from T ×) is o× = 〈l1, r1〉〈l2, r2〉 · · · 〈lm−1, rm−1〉〈lm, rm〉, where
〈l1, r1〉 = 〈start, rinit〉 andlh+1 = mod(lh, rh+1) for h = 1..m − 1.

The construction makes Ph+1 from Ph by replacing o by the paths or, for all r ∈ Succ(o). The new
value for ExpToth+1 is correspondingly obtained from ExpToth as follows:

ExpToth+1 = ExpToth −ExpTotS� (o) +
∑

r∈Succ(o)
ExpTotS� (or)

= ExpToth −ExpTotS� (o) +
(

ExpTotS� (o) + PrS� (o)
∑

�∈A(rm)

�(o, �)C(rm, �)
)

(by Lemma 20)

= ExpToth +PrS� (o)
∑

�∈A(rm)

�(o, �)C(�)
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Analogously, the new value for ExpTot×h+1 is obtained from ExpTot×h as follows:

ExpTot×h+1 =
∑
〈l,r〉∈S×,�∈A� (r)

"h+1(wl,r,�)C�(�)

=
∑
〈l,r〉∈S×,�∈A� (r)

"h(wl,r,�)C�(�) −
(
PrS� (o) C�(�)︸︷︷︸

=0

+
∑

�∈A(rm)

(PrS� (o)�(o, �)) C�(�)︸︷︷︸
=C(�)

)
+ “0”

= ExpTot×h +
∑

�∈A(rm)

(PrS� (o)�(o, �))C�(�)

= ExpTot×h +PrS� (o)
∑

�∈A(rm)

�(o, �)C(�)

Together, ExpToth+1 = ExpTot×h+1 follows immediately from ExpToth = ExpTot×h . The expression “0”
in the equations above is meant to stand for the added expected costs into �-states when going from
h to h + 1. Because C�(�) = 0 their value is 0. �

Lemma 28 ∑
〈l,r〉∈S×,�∈A(r) "(wl,r,�)C(�) =

∑
o∈Paths(FG) ExpTotS� (o).

Proof. In the proof of Lemma 23 under “" is a solution of (C1)-(C3)” we concluded "(in(l, r�)) = 0
( = limh→∞ "(in(l, r�))) and "(wl,r,�) = 0 ( = limh→∞ "h(wl,r,�)). That is, the �-actions disappear in
the limit. We obtain∑
〈l,r〉∈S×,�∈A(r)

"(wl,r,�)C(�)

=
∑

〈l,r〉∈S×,�∈A� (r)

"(wl,r,�)C�(�) (as "(wl,r,�) = 0 everywhere)

=
∑

〈l,r〉∈S×,�∈A� (r)

limh→∞"h(wl,r,�)C�(�) (by de�nition of ")

= lim
h→∞

∑
〈l,r〉∈S×,�∈A� (r)

"h(wl,r,�)C�(�) (limit property)

= lim
h→∞

ExpTot×h = lim
h→∞

ExpToth (by Lemma 27)

= lim
h→∞

∑
o∈Ph

ExpTotS� (o) (by de�nition of ExpToth)

=
∑

o∈Paths(FG)

ExpTotS� (o) (see text)

The last equality needs an explanation. In fact, we need several facts:
(1) limh→∞

∑
o∈Ph ExpTotS� (o) is a �nite value. This follows from the equalities above and the

fact that "(wl,r,�) is a �nite value, for all 〈l, r〉 ∈ S× and � ∈ A�(r) (cf. “De�nition of "” above).
(2) ∑o∈Paths(FG) ExpTotS� (o) is a �nite value. Proof: Enumerate Paths(FG) = {o1, o2, . . .}. Sup-

pose, by way of contradiction, that claim (2) is false. Then, for every � > 0 there is a j ≥ 0 such
that ∑j

h=1 ExpTotS� (oh) > �. By construction, each of the paths {o1, . . . , oj} will be contained even-
tually in the set PK , for some K ≥ 1. It follows∑o∈PK ExpTotS� (o) > �. Together with monotonicity
(Lemma 26) it follows that limh→∞

∑
o∈Ph ExpTotS� (o) converges to in�nity, a plain contradiction to

(1).
(3) limh→∞

∑
o∈Ph ExpTotS� (o) ≤

∑
o∈Paths(FG) ExpTotS� (o). Proof: suppose this is not the case.

With (2) then limh→∞
∑

o∈Ph ExpTotS� (o) >
∑

o∈Paths(FG) ExpTotS� (o). Choose K ≥ 1 big enough
such that PK ⊂ Paths(FG) and ∑

o∈PK ExpTotS� (o) >
∑

o∈Paths(FG) ExpTotS� (o). Such a set PK
must exist by monotonicity (Lemma 26) and fairness of the construction. Again by monotonicity
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conclude ∑
o∈Paths(FG) ExpTotS� (o) >

∑
o∈PK ExpTotS� (o) ( >

∑
o∈Paths(FG) ExpTotS� (o)), a plain

contradiction.
Now we turn to the last equality limh→∞

∑
o∈Ph ExpTotS� (o) =

∑
o∈Paths(FG) ExpTotS� (o). With

(1) and (3) established, choose � > 0 arbitrarily and let {o1, . . . , oj} ⊂ Paths(FG) be any set of
goal paths such that ∑j

h=1 ExpTotS� (oh) >
∑

o∈Paths(FG) ExpTotS� (o) − � . As in (2) above, there is
a K ≥ 1 such that {o1, . . . , oj} ⊆ PK . With monotonicity (Lemma 26) it follows, for all h ≥ K,∑

o∈Ph ExpTotS� (o) >
∑

o∈Paths(FG) ExpTotS� (o) − �. �

Lemma 29
∑

〈l,r〉∈G×
"(in(l, r)) T (r) =

∑
o∈Paths(FG)

ExpTS� (o).

Proof. Compute∑
〈l,r〉∈G×

"(in(l, r)) T (r)

=
∑
r∈G

∑
l∈M

"(in(l, r)) T (r)

=
∑
r∈G

PrS� (F r) T (r) (by Lemma 23-(1))

=
∑

o∈Paths(F r) s.th. r ∈ G
PrS� (o) T (r) (Def. of PrS� (F r))

=
∑

o∈Paths(FG)

PrS� (o) T (r)

=
∑

o∈Paths(FG)

ExpTS� (o)

Finally:

Proof. (of Lemma 24)∑
〈l,r〉∈S×,�∈A(r)

"(wl,r,�)C(�) +
∑

〈l,r〉∈G×
"(in(l, r)) T (r)

=
∑

o∈Paths(FG)

ExpTotS� (o) +
∑

o∈Paths(FG)

ExpTS� (o) (by Lemma 28 and Lemma 29)

=
∑

r1 · · ·rm ∈Paths(FG)

∑
�1∈A(r1), ...,�m−1∈A(rm−1)

C(p)P(p |�) +
∑

r1 · · ·rm ∈Paths(FG)

∑
�1∈A(r1), ...,�m−1∈A(rm−1)

T (rm)P(p |�)

where p = r1
�1
−→ r2 · · · rm−1

�m−1
−→ rm

=
∑

r1 · · ·rm ∈Paths(FG)

∑
�1∈A(r1), ...,�m−1∈A(rm−1)

(C(p) + T (rm))P(p |�)

=
∑

q∈GRuns(rinit,�)

(C(q) + T (last(q)))P(q |�)

= V�(rinit) = V�

�

A.7.3 Completeness Theorem

Theorem 6 (Completeness) If � is an unrestricted proper policy forS such thatS, � |= % then �prog

exists and is a proper policy such that �prog |= % and V�prog
≤ V� .
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Proof. Suppose an unrestricted proper policy � for S such that S, � |= %. Among all such policies
there is also an optimal one, �∗, which we use in the following.

Lemma 23 applied to�∗ gives us a solution " of LP−C× , i.e., the constraints (C1)-(C3) of LPC× . First
we show that " also satis�es (C4) and (C5alt).

Regarding (C4) we have

1 = PrS� (FG) (by Lemma 19)
=

∑
r∈G

PrS� (F r)

=
∑
r∈G

∑
l∈M

"(in(l, r)) (by Lemma 23-(1))

=
∑

〈l,r〉∈G×
"(in(l, r))

This is just (C4) (with the solution " made explicit).
Regarding (C5alt) recall the objective formula is written as % =

∧j
h=1 P∈ yh 'h . Choose h ∈ 1..j

arbitrarily. By Lemma 23-(2) then

PrS� ('h) =
∑

〈l,r〉∈Accepth
"(in(l, r)) . (4)

From S, � |= % it follows S, � |= P∈ yh 'h , equivalently PrS� ('h) ∈ yh . With (4) it follows immediately
that " satis�es (C5alt). Altogether, hence, " is a solution of (C1)-(C5alt), equivalently, of (C1)-(C5).

By Lemma 24

V�∗ =
∑

〈l,r〉∈S×,�∈A(r)

"(wl,r,�)C(�) +
∑

〈l,r〉∈G×
"(in(l, r)) T (r) = "(e)

where e is the expression to be minimized in the constraint (LP1).

The next step is to show that " indeed minimizes e. Suppose, by way of contradiction, this is not the
case. Then there is a di�erent solution "′ of LPC× with costs "′(e) < "(e). With the corresponence
between LPC× and C× (Theorem 4) and the same arguments as in the beginning of the soundess
theorem (Theorem 5, the part that does note refer to optimality) that solution "′ de�nes an optimal
policy �′ for S with V�′ = "′(e) < "(e) = V�∗ . This contradits optimality of �∗.

Alltogether, as " minimizes e and satis�es (C1)-(C5), " is a solution of LPC× .
With this result established, we can again exploit the correspondence between LPC× and C×. It

follows that �∗C× is a proper (because of constraint (C4)) and optimal policy solution of C×.
It follows that �prog = (Mprog, startprog,modprog, �∗C× ) exists. Moreover, with �∗C× being proper

and optimal, so is�prog (�prog is just a reformulation of�C× as a �nite-memory policy forS). Because
�prog is optimal it follows V�prog

≤ V� , the last open claim. �

A.8 Admissibility of the NBA Projection Heuristic
Theorem 31 ℎBA

'h
is an admissible heuristic for 'h .

Proof. By de�nition of admissible heuristic, ℎBA
'h

is admissible if ℎBA
'h
(&start) ≥ max〈r,&start 〉∈S×,�∈Π∗

V�
h (〈r, &start〉). We prove this by showing that the runs in the relaxed SSP S'h contains all the words
accepted by the NBA Bh .

Suppose that r1r2 · · · rgrgrg · · · is accepted by the NBA Bh using &start as initial state. Then there
exists an exhaustive run of r1

�1
−→ r2

�2
−→ r3 · · · rg of S and an in�nite path pstart

r1
−→ p1

r2
−→ p2 · · · of
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Bh that visits an accepting state pf ∈ Fh in�nitely often for pstart ∈ &start. By de�nition of exhaustive
run, we have that �i ∈ A(ri) and P(ri+1 |ri, �i) > 0 for i ≥ 1. Thus, oqe(�i) ⊆ ri and there exists
ei ∈ e� (�i) s.t. res(ri, ei) = ri+1. Therefore ri is consistent with ei , pi+1 ∈ Comp(ei, pi), and there
exists �i ∈ B'h s.t. P'h (pi+1 |ph, �h) > 0 for i > 0. Moreover, pstart

�1
−→ p1

�2
−→ p2 · · · is a run of the

relaxed SSP S'h . Since, the state pf ∈ Fh is visited in�nitely often (Büchi condition) and Fh is also the
goal set of S'h , we have that pstart

�1
−→ p1

�2
−→ p2 · · · pf is an exhaustive run and reaches the goal of

S'h , therefore the �ow from &start reaches Fh representing that the word r1r2 · · · rgrgrg · · · is accepted
by ℎBA

'h
.
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