A Model Elimination Calculus
with Built-in Theories

PETER BAUMGARTNER

Universitat Koblenz
Institut fur Informatik
Rheinau 3-4
5400 Koblenz

E-mail: peter@infko.uni-koblenz.de

The model elimination calculusis a linear, refutationally complete calculus for
first order clause logic. We show how to extend this calculus with a framework
for theory reasoning. Theory reasoning means to separate the knowledge of
a given domain or theory and treat it by special purpose inference rules. We
present two versions of theory model elimination: the one is called total theory
model elimination (which allows e.g. to treat equality in a rigid E-resolution
style), and the other is called partial theory model elimination (which allows
e.g. to treat equality in a paramodulation style).

1. Introduction

The model elimination calculus (ME calculus) has been developed already in the
early days of automated theorem proving (Lov78b). It is a linear, refutationally
complete calculus for first order clause logic. In this paper, we will show how to
extend model elimination with theory reasoning.

Technically, theory reasoning means to relieve a calculus from explicit reasoning
in some domain (e.g. equality, partial orders) by taking apart the domain knowl-
edge and treating it by special inference rules. In an implementation, this results
in a universal “foreground” reasoner that calls a specialized “background” reasoner
for theory reasoning. Theory reasoning comes in two variants (Sti85): total and
partial theory reasoning. Total theory reasoning generalizes the idea of finding com-
plementary literals in inferences (e.g. resolution) to a semantic level. For example,
in theory resolution the foreground reasoner may select from some clauses the lit-
eral set {a < b,b < ¢, ¢ < a}, pass it to the background reasoner (assume that < is
interpreted as a strict ordering, i.e. as a transitive and irreflexive relation) which
in turn should discover that this set is contradictory. Finally the theory resolvent
is built as in ordinary resolution by collecting the rest literals. The problem with
total theory reasoning is that in general it cannot be predicted what literals and how
many variants of them constitute a contradictory set. As a solution, partial theory

reasoning tries to break the “big” total steps into more managable smaller steps.
In the example, the background reasoner might be passed {a < b, b < ¢}, compute
the logical consequence a < ¢ and return it as a new subgoal, called “residue”, to
the foreground reasoner. In the next step, the foreground reasoner might call the
background reasoner with {a < ¢, ¢ < a} again, which detects a trivial contradic-
tion and thus concludes this chain. It is this partial theory reasoning we are mostly
interested in.

Theory reasoning is a very general scheme and thus has many applications, among
them are reasoning with tazonomical knowledge as in the Krypton system (BGLS85),
equality reasoning as by paramodulation or E-resolution, building in theory-unification,
and building in the axioms of the “reachability” relation in the translation of modal
logic to ordinary first order logic.

The advantages of theory reasoning, when compared with the naive method of
supplying the theories’s axioms as clauses, are the following: for the first, the theory
inference system may be specially tailored for the theory to be reasoned with; thus
higher efficiency can be achieved by a clever reasoner that takes advantage of the
theories’ properties. For the second, a lot of computation that is not relevant for
the overall proof plan is hidden in the background. Thus proofs become shorter and
are more compact, leading to better readability.

Of course, theory reasoning is not new. It was introduced by M. Stickel within
the general, non-linear resolution calculus (Sti85; Sti83). Since then the scheme was
ported to many calculi. It was done for matrix methods in (MRS87), for the con-
nection method in (Bib87; Pet90), and for the connection graph calculus in (OhI86;
Ohl87). In (Bau92a) we showed that total theory reasoning is compatible to ordering
restrictions.

However there are significant differences between these works and the present
one: for the first, model elimination is a linear calculus, which roughly means that
an initially chosen goal clause is stepwisely processed until the refutation is found.
Being a very efficient restriction, we want to keep it in our theory calculus. However
none of the theory extensions of the above calculi makes use of linear restrictions. As
a consequence we also need a new completeness proof and cannot use e.g. Stickel’s
proof. This new proof is our main result.

Another difference is our emphasis on partial theory reasoning. The completeness
of the overall calculus depends from the completeness of the background reasoner
for partial theory reasoning. Except Stickel (Sti85), the above authors do not supply
sufficient completeness preserving criteria for the background reasoner. Again, since
Stickel’s calculus is nonlinear, his criteria cannot be applied in our case. Below we
will define a reasonable criteria that meets our demands. This criteria also captures
a treatment of equality by “linear paramodulation”. Since linear paramodulation is
complete (FHS89) we obtain as a corrollary the completeness of model elimination
with paramodulation.

We will differ from Loveland’s original ME calculus in two aspects: for the first,
we have omitted some efficiency improvements such as factoring, and also we do not
disallow inference steps that yield identical literals in a chain. This happens because
in this paper we want to concentrate on the basic mechanisms of theory reasoning.
We will adopt the efficiency improvements later. For the second we made a change in
data structures: instead of chains we follow (LSBB92) and work in a tree-like setting
in the tradition of analytic tableaux. This happens because we are mostly interested

to implement our results in the SETHEQ theorem prover(see also (LSBB92)), which
is based on that tableaux.

2. A Brief Introduction to Model Elimination

As mentioned above, we will follow the lines from (LSBB92) and define the inference
rules as tree-transforming operators. Since we should not assume this format to be
well-known, we will supply a brief and informal introduction.

In our format, model elimination can be seen as a restriction of semantic tableaux
with unification for clauses (see (Fit90)). This restriction will be explained below.
A tableau is, roughly, a tree whose nodes are labelled with literals in such a way that
brother nodes correspond to a clause in the given clause set. A refutation is the con-
struction of a tableau where every branch is contradictory. For this construction we
have to start with an initial tableau consisting of a single clause, and then repeatedly
apply the inference rules extension and reduction until every branch is checked to be
contradictory. Consider the unsatisfiable clause set {AV B,~AV C,-C V —-A,-B}.
and the following refutation:

v N2 N RN

A B A B A=._ B A B
0\ VRN N
R AR B &
/\ /\
3c -4 ~C -4
* * *
1. Initial tableau 2. Extension with 3. Extension with 5. Extension with
with AVB —AV -CV-~ -

4. Reduction

In step 1, the tableau consisting of A V B is built. In step 2 the branch ending in
A is extended with =4 vV C' and marked with a % (such branches are called closed);
in general, extension is only allowed if the leaf of the branch is complementary to
a literal in the clause extended with. Step 3 is an extension step with =C V —A4,
and the branch ending in = C is closed. Step 4 depicts the reduction inference: a
branch, in this case AC—A, may be closed if the leaf is complementary to one of its
ancestors. Finally, in step 5 the last open branch is closed by extension with = B.

Note that a closed branch contains complementary literals A and = A and thus is
unsatisfiable. If all branches are closed then the input clause set is unsatisfiable.

As usual, the ground case is lifted to the general case by taking variants of clauses,
and establishing complementarism by means of a most general unifier. It should be
noted that this unifier has to be applied to the entire tableau.

There is a close correspondance to linear resolution (see e.g. (CL73)): the set
of open leafs corresponds to the near parent clause, extension corresponds to input
resolution, and reduction corresponds to ancestor resolution. This correspondance
also explains why model elimination is called “linear”. If the restriction “the leaf
(and not just any other literal in the branch) must be one of the complementary
literals” is dropped, the calculus is no longer linear.

Lovelands original chain-notation (LovT78a) with A- and B-literals can be seen as a
linear notation for our tableaux. More precisely, the open branches can bijectively be

mapped to a chain, where the leafs are B-literals and the inner nodes are A-literals.
If in the tableau model elimination always the “rightmost” branch is selected for
extension or reduction, then there exist corresponding inference steps in chain model
elimination. See (BF92) for a detailled comparison.

3. Theory Unifiers

A clause is a multiset of literals written as Ly V...V L,. A theory T is a satisfi-
able set of clauses.! Concerning model theory it is sufficient to consider Herbrand-
interpretations only, which assign a fixed meaning to all language elements short of
atoms; thus we define a (Herbrand-) interpretation to be any total function from the
set of ground atoms to {true, false}. A (Herbrand-) T -interpretation is an interpre-
tation satisfying the theory 7. An interpretation (resp. 7 -interpretation) I satisfies
(resp. T-satisfies) a clause set M iff I simultaneously assigns true to all ground
instances of the clauses in M. (7)-(un-)satisfiability and (7-)validity of clause sets
are defined on top of this notion as usual.

As with non-theory calculi the refutations should be computed at a most general
level; this is usually achieved by most general unifiers. In the presence of theories
however, unifiers need not be unique, and they are replaced by a more general
concept:

Definition 3.1 Let S = {Ly,...,L,} be a literal set. S is called T -complementary
iff the V-quantified disjunction V(L1 V...V L,) is T-valid. We say that a substitution
o is a T -unifier for S iff So is T-complementary. A substitution o is more general
than a substitution ¢ iff o < theta iff there exists a substitution § such that o6|zom (o) -
A T -unifier for a set S is most general iff there does not exist another 7 -unifier for
S which is more general.

A “partial” variant is as follows: a pair (o, R), where ¢ is a substitution and R is a
literal, is a T -residue of S iff SoU {E} is minimal 7-complementary. A pair (o, R)
is more general than a pair (0, Q) iff (o, R) < (theta, Q) iff there exists a substitution
¢ such that o6|gom(s) and R6 = Q. A T-residue for a set S is most general iff there
does not exist another 7-residue for S which is more general. (End Definition)

There is a subtle difference between the 7-complementary of a literal set and the
T -unsatisfiability of S when S is read as a set of unit clauses. These notions are
the same only for ground sets. Consider, for example, a language with at least two
constant symbols ¢ and b and the “empty” theory . Then S = {P(z),~P(y)} is,
when read as a clause set, ()-unsatisfiable, but S is not ()-complementary, because the
clause P(z) V—P(y) is not (-valid (because the interpretation with I(P(a)) = false
and I(P(b)) = true is no model). However, when applying the MGU o = {z + y}
to S the resulting set So is #-complementary.

The importance of “complementary” arises from its application in inference rules,
such as resolution, which have for soundness reasons be built on top of “complemen-
tarism”, but not on “unsatisfiablitity”. Since we deal with theory inference rules, we

'This restriction is motivated by the intended application of a Herbrand-Theorem, which
only holds for universally quantified theories

had to extend the usual notion of “complementarism” to “7-complementarism”. As
an example consider the theory £ of equality. Then S = {P(z),y = f(y), ~P(f(f(a)))}
is £-unsatisfiable but not £-complementary. However with the -unifier 0 = {z + a,y < a},
So is £-complementary. In this context it might be interesting to known that our
notion of theory unifier generalizes the notion of rigid E-unifier (GNPS90) to more
general theories than equality (see (Bau92a) for a proof).

The semantics of a residue (L,0) of S is given as follows: L is a logical con-
sequence of So; operationally L is a new goal to be proved. For example let S’ =
{P(z),y = f(y)}. Then ({z + y},P(f(y))) is an E-residue of §’, since S’ {z + y}U

{-=P(f(y)} =
{P(y),y = f(y),~P(f(y))} is minimal £-complementary.

4. Calculus

Theory reasoning calculi require the computation of theory unifiers. Of course, any
implementation of theory-unification in the traditional sense (see (Sie89)), e.g. AC-
unification, performs a stepwise computation. Since we are interested in partial
theory reasoning (see the introduction), this computation shall not remain hidden
for the foreground reasoner; instead, intermediate results shall be passed back from
the background reasoner to the foreground reasoner in the form of residues.

Let us informally describe this on the ground level with the aid of an example.
Consider the clause set S = {a<bVd<e, b<cV-a<b, c<a,e<d}. Sis
unsatisfiable in the theory of strict orderings (< is transitive and irreflexive), and
this is a theory model elimination proof:

N AN N N

a<b d<e —~ a<b d<e a<b d<e a<b d<e
b<c —a<b b<c —a<b b<c ﬂc)zk<b
I I I
a<c 4 0<C a<c es
'\‘ I I
c<a c<a
* *
1. Initial tableau 2. Partial extension 3. Total extension with 4. Reduction
with a<bV d<ewith b<cV—-a<b c<a 5. Total extension
with e<d

In step 1, the tableau consisting of ¢ < bV b < c¢ is built. In step 2 the branch
ending in a < b is partially ertended with the clause b < ¢V —a < b and the
residue a < c (in this ground example no substitutions appear). The literals of the
extending clauses which are relevant for the extension step, here solely b < ¢, are
called extending literals. This step is sound, because a < ¢ is a logical consequence
of its ancestors a < b and b < c. The literals that semantically justify the inference
step in this way are called the key set (here {a < b,b < ¢}). Since the branch
resulting from this step is not contradictory, it is not closed (marked with a star).
Besides partial extension, there exists another inference rule called total extension.
Step 3. serves as an example: the extension with ¢ < a yields a theory-contradiction
with a < c¢. Thus the branch may be closed. The ancestor literals that justify the
total inference step, i.e. the contradictory set {c¢ < a,a < c} is also called a “key

set”, and ¢ < a is also called “extending literal”. Step 4. is an ordinary reduction
step, and step 5 is a total extension step again.

The inference steps are restricted in such a way that their key sets must consist a)
of the leaf and b) possibly some other literals of the old branch, and c) of all extending
literals. Condition c) implies that all new clauses are needed, and condition b) is the
generalization of the condition “the leaf must be one of the complementary literals”
in non-theory model elimination (section 2) to theory model elimination.

Let us now come to a formal treatment. We are concerned with ordered, labelled
trees with finite branching factor and finite length. A branch b of length k is a
sequence b = ngon o---ong of nodes, where ng is the root, n;4; is a son of n; and
ny is a leaf, and a tree is represented as a multiset of branches. A literal tree is a tree
whose nodes are labelled with literals, except the root, which remains unlabelled.
For our purpose it is convenient to confuse a branch ngono---ony with the sequence
of its labels Ly o--- o L or with its literal set {L1, ..., L;}. A substitution is applied
to a branch by applying it to its labels in the obvious way; similarly it is applied to
a tree by application to all its branches. A literal tree T’ is obtained from a literal
tree T by extension with a clause L1 V ...V L, at a branch b iff

T'=T—{b}U{bol; | i=1...n and [; is labelled with L;}

In this case we also say that 7T’ contains a clause L V...V L rooted at b.

The term “to close a branch” means to attach an additional label “x” to its leaf
in order to indicate that the branch is proved to be 7 -complementary. A branch
is open iff it is not labelled in that way.

Definition 4.1 (7-model elimination) Let M be a clause set and 7 be a theory.
An initial model elimination tableau for M with top clause C is a literal tree that
results from extending the empty tree (the tree that contains only the empty branch)
with the the clause C.

A model elimination tableau (ME tableau) for M is either an initial ME tableau
or a literal tree obtained by a single application of one of the following inference
rules to a ME tableau T

Partial extension step: (cf. figure 1) Let b = Lyo...oLj 10L; be an open branch
in T . Suppose there exist new variants C; = K! V...V K" (i=1...n) of
clauses in M. These clauses are called the extending clauses and the sequence
K} o---0 K} is called the extending literals.

In order to describe the appending of the extending clauses, we define the
literal tree T, and the “actual branch to extend”, b,, recursively as follows:
if n =0 then Ty := T and by := b, else T, is the literal tree obtained from
T,—1 by extending with the clause C, at b,—; and b, := b,_1 0 K%.

Let K be a subset of the literal set of b, with Ly, K{,..., K} € K. Borrowing
a notion from (Sti85), K is called the key set. If there exists a most general
T-residue (o, R) of £, then partial theory extension yields the tree T, where
T} is obtained from T,c by extension with the unit clause R at b,o.

Total extension step: This is similar to “partial extension step”; instead of ap-
pending a residue, the branch is closed. Let b, C;, T, and b, and K as in

Figure 1: Partial extension step

“partial extension step”. If there exists a most general 7 -unifier o for K, and
Ko is minimal T-complementary, then total theory extension yields the literal
tree Tpo, and the branch b,0 € T, 0o is closed.

A total extension step with n = 0 is also called reduction step.? A derivation from
M with top clause C and length n is a finite sequence of ME tableaux Ty, T1,..., Ty,
where Ty is an initial tableau for M with top clause C, and for i = 1...n T; is
the tableau obtained from T;_; by one single application of one of the above in-
ference rules with new variants of clauses from M. If additionally in T, every
branch is closed then this derivation is called a refutation of M. The partial theory
model elimination calculus (PTME-calculus) consists of the inference rules “partial
extension step” and “total extension step”; the total theory model elimination cal-
culus (TTME-calculus) consists of the single inference rule “total extension step”
(End Definition)

The key sets K play the role of a semantical justification of each step. The con-
dition L; € K generalizes the condition “the leaf must be one of the complementary
literals” from non-theory model elimination (section 2).

In practice it is important that the key sets and residues may be restricted to some
typical, syntactical form. For example, if the theory is equality, and the calculus
shall be instantiated with “paramodulation”, then in the ground case the key sets
K in partial steps are of the form K = {L[t],t = u}® or K = {L[t],u = t}, and the
residues are of the form (0, L[t + u]); in total steps it suffices to restrict the key set
to the form K = {L, f} or K = {—a = a}. In lifting these paramodulation steps
to the first-order level, it is neccessary to allow instantiating before paramodulation
(see e.g. (FHS89)). For example, if {P(z,z),a = b} is a key set, then for com-
pleteness reasons it might be neccessary to instantiate first with z < f(y), which

2This notion is kept for historical reasons
3L[t] means that the term t occurs in the literal L, L[t <+ u] is the literal that results from
replacing one occurence of ¢ with u

yields P(f(y),f(y)) and then paramodulate into y which finally yields P(f(b),f(a)).
Since instantiating is not neccessary in a non-linear setting, this example also shows
that inference systems for partial theory reasoning must in principle be designed
differently than for non-linear calculi.

It should be noted that the order of the extending clauses is immaterial for com-
pleteness.

5. Completeness

Besides soundness, which is usually easy to prove, (refutational) completeness is the
most important demand for a logic calculus. In order to establish such a result for
partial theory reasoning, the theory reasoning component must be taken care of.

In our viewpoint, the computation of the residues in partial extension steps, and
the computation of the substitutions in total extension steps should be described
by a “theory calculus” with two respective inference rules: the one derives from a
key set a residue, and the other derives from a key set a theory-unifier. In order to
establish the completeness of the overall calculus, the theory calculus itself must be
“complete”. However, in order to formulate this we do not want to fix to a certain
calculus; instead we will use the following abstract characterization.

Definition 5.1 Let 7 be a theory, S; be a ground 7 -unsatisfiable literal set and
Ly € Si. Then a linear and liftable T -refutation of S with top literal Ly consists of
the three sequences

Sl, “e Sn, Sn+1 and
Kl, ‘e Kn, Kn—l—l and
(L1,0'1), (Lnaan)a On+1

such that for 1 = 1...n:
1. L1 € K;, K; C S; and (L;,0;) is a T-residue of Kj.
2. Siy1 = Sjo; U{L;}.
3. L, € Kyi1, Kpy1 € Spy1, and Kp 110,41 is minimal 7-complementary.
4. For every* K] < K; there exists a residue (L") such that L, < L; and o < o;.
5. For every K, | < K1 there exists a 7 unifier o], | < opy1 for K] _ ;.

Such a refutation is called total instead of linear iff n = 0. (End Definition)

The idea behind items 1. — 3. is to stepwisely modify an initially chosen goal
Ly, leading to Ly, Lo, ..., L, until a contradiction is obvious (The presence of unifi-
able and syntactical complementary literals might be such a case, or, in equational
reasoning, the presence of a literal —s = ¢ where s and ¢ are unifiable). The K;s
have the same meaning as the key sets in the definition of theory model elimina-
tion. In the first chain of the introductory example in the previous section, n = 1,

‘K'<Kiff30: K'§ =K and o/ <o iff 35 : 0'8|dom(c) =0

Si={a<bb<c,c<al,lp=a<b, Ki={a<bb<c}, (o1,L1)=(0,a < c),
Sy ={{a<bb<c,c<a,a<c} Ko ={c<a,a<c}and oo = . This strategy
can also be roughly explained in linear resolution terminology: L; plays the role of
the top clause, and the L;;; are derived from the near parent L; and a collection of
far parent clauses K; C S;.

Note that although 57 is a ground set, substitutions are involved. This is, because
V-quantified variables might be introduced in the residues and thus the S; (j > 1)
might no longer be ground. Items 4. is the lifting requirements for the residues, and
item 5. is the lifting requirement for the concluding unifier.

Now we can turn to completeness of theory model elimination. In an attempted
model elimination refutation it is essential to pick a suitable clause for the initial
tableau. For example, if S = {A, B,~ B} then no proof can be found when the initial
tableau is built from A. What we need is expressed in the completeness theorem:

Theorem 5.2 (Completeness of partial theory model elimination) Let T be
a theory. Suppose that for every minimal T -unsatisfiable ground literal set S and
every L € S there ezists a linear and liftable T -refutation of S with top literal L.
Let M be a T -unsatisfiable clause set. Let C € M be such that C is contained in
some minimal T -unsatisfiable subset of M. Then there exists a PTME refutation of
M with top clause C.

The completeness of TTME follows as a corollary of PTME if the theory reasoner
can find a 7 -unifier in one step, or, more technically:

Corollary 5.3 Let T be a theory. Suppose that for every minimal T -unsatisfiable
ground literal set S there exists a total and liftable T -refutation of S.

Let M be a T -unsatisfiable clause set. Let C € M be such that C is contained in
some minimal T -unsatisfiable subset of M. Then there exists a TTME refutation of
M with top clause C.

The completeness proof employs the standard technique of proving first the ground
case and then lifting to the variable case. Thus we apply a theory-version of the
Skolem-Herbrand-Godel theorem. Such a theorem only holds for universally quan-
tified formula. This fact explains our restriction to clausal theories.

For the ground proof we need the following notion: a clause C € M in an T-
unsatisfiable clause set M is called essential in M iff M —{C'} is not T-unsatisfiable.
Note that not every 7 -unsatisfiable clause set has an essential literal, e.g. {A4,—-A, B,~B}
is (-unsatisfiable but deleting any element results in a still -unsatisfiable set. How-
ever every literal in a minimal T-unsatisfiable set is essential.

Lemma 5.4 Let M be a T -unsatisfiable ground clause set, with L, L1V...VL, € M
being essential. Define M = M —{Ly V ...V L,}U{L;} (fori =1...n). Then every
M; is T-unsatisfiable and the clauses L and L; are essential in some M; (1 < j <n).

This lemma, is needed in the proof of the following ground completeness lemma:

Lemma 5.5 Let T be a theory and M be a T -unsatisfiable ground clause set with
essential clause C. Then there exists a PTME refutation of M with top clause C'.

Proof. For convenience some terminology is introduced: if we speak of “replacing
a clause (] in a derivation by a clause C5” we mean the derivation that results from
replacing some specific occurence of C; by (5, which must be a superset of C'1, in
every tableau in the derivation. By a “derivation of a clause L1 V...V L,” we mean
a derivation that ends in a tableau which in turn contains n open branches ending
in brother leafs Ly, ..., L,. Furthermore, if D; is a derivation of a clause C' and D»
is a derivation with top clause C, then by “appending D; and Dy” we mean the
derivation that results from extending D; with the inferences of Do in order, where
one specific occurence of C' in D; takes the role of the top clause C in Dj.

Let k(M) denote the number of occurences of literals in M minus the number of
clauses in M (k(M) is called the ezcess literal parameter in (AB70)). Now we prove
the claim by induction on k(M).

In the induction base k(M) = 0. Then M must be a set of unit clauses, i.e. a
literal set. Now set Ly = C and consider definition (5.1). The sequences defined
there can be mapped to a refutation as follows: the initial tableau consists of Lj.
The T -residues (o1, L1), - .., (0, Ly) of the respective sets Ki, ..., K, are mapped to
n partial extension steps as follows: in step ¢ choose as the key set K;, as extending
literals K; —{L;_1}, and as residue (o, L;). A final total extension step with key set
K, 11 and extending literals K11 — {Ly} and substitution o, yields the desired
refutation.

To complete the induction assume now that k(M) > 0 and that the result holds
for sets M' with k(M') < k(M). We need a further case analyses.

Case 1: (' is a non-unit clause of the form C = LV R; V...V R,. Define

My, (M —{C})U{L} (1)
My = (M—{C})U{RyV...VR,} (2)

Both Mj and My are unsatisfiable, since otherwise a model for one of them were
a model for M, which contradicts the assumption that M is unsatisfiable. Find a
minimal 7-unsatisfiable M;, C M| that contains L. Such a set must exist, because
otherwise M; — {L} C M were T-unsatisfiable, and with C ¢ M; it follows that
C is not essential in M. Since Mj, is minimal T-unsatisfiable L is essential in Mj,.
Since k(M) < k(M) we can apply the induction hypothesis and obtain a refutation
Dy, of My with top clause L. We may assume that Dy is in the following normal
form: in every extension or reduction step, L does not occur as an extending clause.
Such a normal form can always be achieved, since L is the top clause, and thus in
every step the extending clause L can be replaced by the ancestor clause L.

By the same argumentation as for L, the clause Ry V...V R, is essential in Mg,
and since k(Mpg) < k(M) we can apply the induction hypothesis again and obtain
a refutation Dy of My with top clause Ry V...V R,.

Now replace in Dg every occurence of the clause R1V...VR, by LVR1 V...V R,.
Call this derivation Dy,. D}, is derivation of several occurences of a clause L from M
with top clause LV Ry V...V R,. Now append Dy with Dy, as many times until all
these occurences of the clause L are closed. Since Dy is in the above normal form,
the clause L is no longer used in this final derivation. Thus we obtain the desired
refutation of M.

Case 2: (' is a unit clause ¢ = K. Since k(M) > 0, M contains a non-unit
clause D. We distinguish two cases. In the first (and trivial) case, D is not essential

10

in M. Thus M' = M —{D} is T-unsatisfiable. But C is still essential in M', because
otherwise it were not essential in M either. Since k(M') < k(M) the refutation as
claimed exists by the induction hypothesis.

In the other case D is essential in M. By lemma (5.4) D contains a literal L
such that My, = (M — {D}) U{L} is T-unsatisfiable, and K and L are essential in
M;y,. It holds that k(M) < k(M). Thus by the induction hypothesis there exists a
refutation Dg of My with top clause K. D is of the form D = LVRV...VR,. Since
L is essential in My, and k(M) < k(M) there exists by the induction hypothesis a
refutation Dy of My with top clause L. As for Dy, in case 1 above, the set Dy, here
can be assumed to be in the same normal form, i.e. L is not used as an extending
clause in any inference step.

Let Mp = (M —{D})U{R1 V...V Ry,}. By the same argumentation as in case
1, My is T-unsatisfiable and R; V...V R, is essential in My, and by the induction
hypothesis there exists a refutation Dy of My with top clause R; V...V R,.

Now we can put things together. First replace in Dg every occurence of the clause
L by D. The result is a derivation D} of several occurences of a clause Ry V...V R,
from M with top clause K. Now append D}, with Dy as many times until all
occurences of Ry V...V R, in D} are closed. Since Ry V...V R,, may be used in Dp
several times, the result is a refutation D} of M U{R; V...V R,} with top clause
K. In order to turn D% into a refutation of M first replace in D} every occurence of
the clause Ry V...V Ry, by D. This results in a derivation D} of several occurences
of the clause L from M. In order to turn this into a refutation, append D}/ with Dy,
as many times until all occurences of L are closed. Since Dy, is in the above normal
form, the clause L is no longer used in this final derivation. Thus we obtain the
desired refutation of M. Q.E.D.

6. Conclusions

We have developed a partial and a total variant of the model elimination calculus
for theory reasoning and proved their completeness. For this purpose we gave a
sufficient completeness criterion for the theory reasoning system, but left open the
question how such a system can be obtained from given theory axioms. This is
currently being investigated (Bau92b). Finally I would like to thank U. Furbach for
reading an earlier draft of this paper.

References

(AB70) R. Anderson and W. Bledsoe. A linear format for resolution with merging
and a new technique for establishing completeness. J. of the ACM, 17:525—
534, 1970.

(Bau91l) P. Baumgartner. A Model Elimination Calculus with Built-in Theories.
Fachbericht Informatik 7/91, Universitiat Koblenz, 1991.

(Bau92a) P. Baumgartner. An Ordered Theory Resolution Calculus. In Proc. LPAR
’92, 1992. (To appear).

11

(Bau92b)

(BF92)

(BGLS5)

(Bib8&7)

(CL73)

(FHSS89)

(Fit90)

(GNPS90)

(Lov78a)

(Lov78b)

(LSBB92)

(MRS87)

(Ohl86)

(On187)

(Pet90)

(Sie89)

(Sti83)

(Sti85)

P. Baumgartner. Completion for Linear Deductions. (in preparation),
1992.

P. Baumgartner and U. Furbach. Consolution as a Framework for Com-
paring Calculi. (in preparation), 1992.

R. Brachman, V. Gilbert, and H. Levesque. An Essential Hybrid Reason-
ing System: Knowledge and Symbol Level Accounts of Krypton. In Proc.
IJCAI, 1985.

W. Bibel. Automated Theorem Proving. Vieweg, 2nd edition, 1987.

C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

Ulrich Furbach, Steffen Hoélldobler, and Joachim Schreiber. Horn equa-
tional theories and paramodulation. Journal of Automated Reasoning,
3:309-337, 1989.

M. Fitting. First Order Logic and Automated Theorem Proving. Texts
and Monographs in Computer Science. Springer, 1990.

J. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-unification:
NP-Completeness and Applications to Equational Matings. Information
and Computation, pages 129-195, 1990.

D. Loveland. Automated Theorem Proving - A Logical Basis. North Hol-
land, 1978.

D. W. Loveland. Mechanical Theorem Proving by Model Elimination.
JACM, 15(2), 1978.

R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High;-
Performace Theorem Prover. Journal of Automated Reasoning, 1992.

N. Murray and E. Rosenthal. Theory Links: Applications to Automated
Theorem Proving. J. of Symbolic Computation, 4:173-190, 1987.

Hans Jirgen Ohlbach. The Semantic Clause Graph Procedure — A First
Overview. In Proc GWAI 86, pages 218-229. Springer, 1986. Informatik
Fachberichte 124.

Hans Jurgen Ohlbach. Link Inheritance in Abstract Clause Graphs. Jour-
nal of Automated Reasoning, 3(1):1-34, 1987.

U. Petermann. Towards a connection procedure with built in theories. In
JELIA 90. European Workshop on Logic in AI, Springer, LNCS, 1990.

Jorg H. Siekmann. Unification Theory. Journal of Symbolic Computation,
7(1):207-274, January 1989.

M.E. Stickel. Theory Resolution: Building in Nonequational Theories. SRI
International Research Report Technical Note 286, Artificial Intelligence
Center, 1983.

M. E. Stickel. Automated deduction by theory resolution. Journal of
Automated Reasoning, pages 333-356, 1985.

12

