J. Symbolic Computation (1999) 11, 1-000

Theorem Proving Techniques for
View Deletion in Databases’

CHANDRABOSE ARAVINDAN AND PETER BAUMGARTNER?

Fachbereich Informatik, Universitit Koblenz-Landau,
Rheinau 1, D-56075 Koblenz, Germany

peter@informatik.uni-koblenz.de

(Received 7 May 1999)

In this paper, we show how techniques from first-order theorem proving can be used for
efficient deductive database updates. The key idea is to transform the given database,
together with the update request, into a (disjunctive) logic program and to apply the
hyper tableaux calculus [BFN96] to solve the original update problem. The resulting
algorithm has the following properties: it works goal-directed (i.e. the search is driven
by the update request), it is rational in the sense that it satisfies certain rationality pos-
tulates stemming from philosophical works on belief dynamics, and, unlike comparable
approaches, it is of polynomial space complexity.

To obtain soundness and completeness results, the hyper tableau calculus is slightly
modified for minimal model reasoning. Besides a direct proof we give an alternate proof
which gives insights into the relation to previous approaches. As a by-product we thereby
derive a soundness and completeness result of hyper tableaux for computing minimal
abductive explanations.

Keywords: database updates, theorem proving, hyper tableauz, minimal model rea-
soning, belief dynamics

1. Introduction

View update in databases is an important problem that has recently attracted at-
tention of researchers from both deductive and relational fields [AD95, Bry90, Dec90,
Dec96, GL90, GL91, KM90, Tom88, DB82, Kel85, Lan90, for example] ([Abi88] provides
a survey of works in this regard). One crucial aspect of an algorithm for view update is
the satisfaction of certain rationality postulates stemming from philosophical works on
rationality of change [Gdr92, GR95, for example]. This aspect was studied in detail in
[AD95, Ara95], where an algorithm for database deletion that satisfies all the rationality
postulates was presented. However, a serious drawback of this and other known rational

t A preliminary version of this paper was published as [AB97]
t Funded by the DFG within the research programme “Deduction” under grant Fu 263/2-2

0747-7171/90/000000 + 00 $03.00/0 © 1999 Academic Press Limited

2 C. Aravindan and P. Baumgartner

algorithms (such as the one from Tomasic [Tom88]) is that they are of exponential space
and time complexity.

In this paper, we present a radically different approach to rational view updates in
databases, resulting in an algorithm of polynomial space complexity. For the simplicity
of presenting the main ideas, in this paper we restrict our attention to definite datalog
programs (note that relational databases can be represented by definite programs) and
view deletion only.

The approach we present here is related to our diagnosis setup presented in [BFFN97b,
BFFN97al, where the hyper tableau calculus [BFN96] was used for efficiently solving
model based diagnosis tasks. This close relationship enables us to use our ezisting, efficient
implementation for diagnosis applications for view updates as well. The basic idea in
[BFFEN97b, BFFN97a] is to employ the model generation property of hyper tableaux
to generate models and extract diagnosis from them (the relation to diagnosis is made
precise in Section 4.1 below).

One specific feature of this diagnosis algorithm is the use of semantics (by transforming
the system description and the observation using an “initial model” of the correctly work-
ing system) in guiding the search for a diagnosis. This semantical guidance by program
transformation turns out to be useful for database updates as well. More specifically,
we use a Herbrand Model of the given database to transform it along with the update
request into a disjunctive logic program in such a way that the models of this trans-
formed program stand for possible updates. Thus known disjunctive logic programming
and first-order theorem proving techniques are exploited for efficient and rational view
updates.

In order to be rational, we show that a rationality axiom itself (the so-called ”‘strong
relevance” policy) could be used as a test to filter out models representing non-rational
deletions. Interestingly, this test based on a rationality axiom turns out be equivalent to
the groundedness test used by Ilkka Niemel4 for generating minimal models of disjunctive
logic programs [Nie96¢]. These two concepts (strong relevance policy and groundedness
test) come from two different fields (belief dynamics and minimal model reasoning, re-
spectively) and this equivalence provides more insights into the issue (minimization)
common to both the fields. Further, this equivalence implies that all minimal models
(minimal wrt. the EDB atoms) of the transformed program stand for rational deletions.
Not surprisingly, all deletions obtained through this algorithm result in minimal change.

The rest of the paper is organized as follows: We first briefly recall some basic ideas
from the field of belief dynamics, the so-called AGM-postulates, and instantiate this
framework to the special case of deletion of view predicates in deductive databases. Then
we turn to the hyper tableau calculus and use it to present our new algorithm. Next, we
point out the relation to the diagnosis framework, and prove soundness and completeness.
The paper is concluded with some comments on our approach and indications for further
work.

2. Background — Rationality of Change

We live in a constantly changing world, and consequently our beliefs have to be revised
when there is new information. The central problem of epistemology is to study when we

View Deletion on Databases 3

can be sure that we have revised our belief rationally. This has been studied at a more
general and abstract level by researchers from the field of philosophy, leading to a new
branch of study: the belief dynamics. Defining a belief set as a deductively closed set of
sentences, Alchourrén, Girdenfors and Makinson propose certain rationality postulates,
popularly known as AGM-postulates, to be satisfied when the belief set is revised (see
[GR95, BJARI7] for very good overviews). The term “revision” is meant in a wide sense
here — the general problem of changing belief states. We will refer to this meaning by
explicitly speaking about “belief revision”. In a narrower sense, revision is one of the
following three basic operations on belief sets:

e FExpansion: A new sentence a consistent with the old belief set K is added to K.
The new set is denoted by K+a.

e Revision: A new sentence a inconsistent with the old belief set K is added to K.
In order to preserve consistency, some old sentences from K are deleted.

o Contraction: Some sentence « is retracted from the old belief set K without new
information being added. To ensure deductive closure further sentences from K
may have to be given up. We write K—a to denote the result of contracting K
with a.

Now, for each of these operations there is a set of corresponding AGM-postulates that
describes desired, “rational” properties of the operations. They relate the belief sets
before and after the operation, and, intentionally, do not uniquely specify the result of
the operation. Clearly, this would depend at least from the underlying logic and what
is meant by “deductive closure”. It has been stated in the literature that doing belief
revision in this framework has the advantage that it can be based on classical first-order
logic (as opposed to e.g. non-monotonic or paraconsistent logics). Thus, we also take the
term “deductive closure” to mean “closed under first-order derivability”.

The AGM-postulates are guided by a few basic integrity constraints: (i) belief sets
should be kept consistent, (ii) belief sets are deductively closed, (iii) the changes to K
should be kept minimal. In accordance with these guidelines, among the three operations,
expansion is the least problematic one. One can define the expansion of a belief set K
by a sentence «, written as K+a, as K+a = Cn(K U {a}), where a € Cn(K) iff K -«
(in first-order logic).

Unfortunately, revision and contraction are not so straightforward. For instance, when
revising K with a one would have to remove elements from K such that o no longer
follows, and this might be not unique. Since revision and contraction can be expressed
in terms of each other!, we will concentrate in the sequel on contraction. The AGM-
postulates for contraction are as follows:

(K—1) (Closure) K—a is a belief set
(K—2) (Inclusion) K—aCK

(K—3) (Vacuity) Ifa¢ K, then K—a =K
(K—4) (Success) If Y, then a ¢ K—a

T For instance, in the one direction, revision can be defined to first prepare K by contracting -« and
then expand with . The reader is referred to [GR95] for details and the provisos when this is possible.

4 C. Aravindan and P. Baumgartner

(K—5) (Recovery) If « € K, then K C (K—a)+a

(K—6) (Extensionality) If F a < 8, then K—a = K—f

(K—7) (Conjunction 1) K—anNK—BC K—(aApf)

(K—8) (Conjunction 2) If o ¢ K—(a A) then K—(a A) C K—a

The postulate (K—1) just expresses deductive closure, (K—2) expresses the contraction
should be a reduction (contraction does not result in new consequences), (K—3) expresses
that nothing changes when the formula to be contracted is not in the current belief
set, (K—4) expresses that contraction is successful, except for tautologies, which are
contained in all belief sets. The postulate (K—3) realises to some degree the minimality
idea of (cf. the invariant (iii) mentioned above), but the idea is only fully expressed
by postulate (K—5): enough must be left of the original theory K so as to enable us to
restore it after a contraction. The postulate (K—6) says that contractions with equivalent
formulas yield the same result (syntax is irrelevant). The postulates (K—7) and (K—S8)
relate contractions between a formula a and the stronger formula a A .

This concludes our brief and shallow presentation of belief sets. We refer the reader to
the mentioned surveys [GR95, BJAR97] (which our presentation is based upon) and the
referrences therein for further information.

2.1. KNOWLEDGE BASE REVISIONS

It has been argued that the requirement of belief sets of being deductively closed is
disputable: first, no distinction is made between “basic” knowledge and “derived”, and,
second, revisions are more naturally thought of as being carried out to some (typically
finite) set representing a belief set. It is not clear how the AGM-postulates can be applied
in real world problems such as database updates.

As one alternative, it is suggested to consider an arbitrary, (typically finite) set KB of
sentences and call it a belief base (or knowledge base) for a belief set K iff Cn(KB) =
K. In a next step, the AGM-postulates can be modified to cope with not deductively
closed belief bases instead of belief sets. This introduces a more fine-grained structure,
as it might well be that we have two belief bases KB and KB' with KB # KB’ but
Cn(KB) = Cn(KB’). We will skip these modified AGM-postulates for such base revisions
here. Instead we directly jump to the particular approach of [AD95, Ara95]. There, a
knowledge base KB is defined as a finite set of sentences from a language L that is divided
into two parts: an immutable theory KBj, which is the fixed part of the knowledge; and
an updatable theory KBy . In a deductive database setup KBy typically consists of the
facts and KBj typically consists of the rules and integrity constraints.

In [AD95, Ara95] further modifed AGM-postulates for this scenario are defined. Be-
cause of the inter-expressibility of revision and contraction, it is enough to consider one.
The rationality postulates for contracting a sentence a from a knowledge base KB, writ-
ten as KB—a are reproduced below.

DEFINITION 2.1 (KNOWLEDGE BASE, KB-EQUIVALENCE)
Assume as given some first-order language L, and let K F « denote first-order derivability
of a sentence a from a set of sentences K. For convenience, define a € Cn(K) iff K F «.

View Deletion on Databases 5

Let KB = KB; U KBy be a knowledge base, consisting of two disjoint sets of sentences.
KBy is called the immutable part, and KBy is called the updatable part of KB.

Let a and (8 be any two sentences. Then, a and 3 are said to be KB-equivalent iff the
following condition is satisfied: For all sets of sentences E: KBfUFE F «aiff KBfUE | (3,
where F denotes a first-order derivability relation coinciding with the usual semantic
consequence relation = . [|

DEFINITION 2.2 (RATIONALITY POSTULATES FOR KNOWLEDGE BASE CONTRACTIONS)

(KB—1) (Inclusion) KB—a C KB

(KB—2) (Immutable-inclusion) KB; C KB—a

(KB—3) (Vacuity) If o ¢ Cn(KB), then KB—a = KB

(KB—4) (Immutable-success) If KBrta, then a ¢ Cn(KB—a).

(KB—5) (Extensionality) If & and B are KB-equivalent, then KB—a =
KB—3

(KB—6.1) (Strong relevance) Ift 3 € KB\ KB—a, then a € Cn(KB—aU{3})

(KB—6.2) (Relevance) If 3 € KB \ KB—aq, then there exists KB’ with

KB—a C KB' C KB st. a ¢ Cn(KB') and
a € Cn(KB'U{8})

(KB—6.3) (Weak relevance) If 3 € KB\ KB—a, then there exists KB' with
KB' C KB s.t. a ¢ Cn(KB') and a € Cn(KB' U

{8}
|

The AGM-postulate (K—1) from above is missing in the new definition. This must ob-
viously be the case because it was a design decision not to insist on deductive closure;
(K—2) is contained as (KB—1) in the new definition; the additional immutability re-
striction (KB—2) expresses that no sentence from KB can be thrown away; (KB—3)
is the adaption of (K—3) from the AGM-postulates above. As in the case of belief sets,
the contraction should be successful, i.e. if + a then o ¢ Cn(KB—a). But, since the
immutable theory never changes, any knowledge implied by it can also never change.
Hence, the above success postulate is rewritten as (KB—4). Similarly, the irrelevance of
syntax in (K—®6) is adapted to yield (KB—5).

Note that we have three variants of the relevance postulate of varying strength. Def-
inition 2.2 is meant to include exactly one of the three cases. To illustrate relevance,
consider a knowledge base KB with KBy = {p < gAr}and KBy = {q + ,r + ,s + }.
Let @ = p «+ be the sentence to be contracted. Now, in order to satisfy (KB—4), at
least one of {gq « ,r « } has to be removed from KBy. Removing ¢ « alone (and
likewise, removing r < alone) would be perfectly in accordance with all three versions
of the relevance postulate. Removing both ¢ «+ and r + would violate strong relevance,
but still conform to relevance and weak relevance.

Now, adding to KB; the clause p < r# and removing in this new knowledge base both

T The “\” operator means set difference, as usual.

forf course, having both p < r and p < ¢ A r in a clause set does not make much sense in “usual”
first-order theorem proving context. However, the example is for illustration purposes only, and one
might well conceive first-order deductive databases where these clauses stand for ground instances of
two first-order clauses where subsumption is not applicable.

6 C. Aravindan and P. Baumgartner

g < and r « in order to contract p <+ would still be correct wrt. weak relevance, but
no longer correct wrt. relevance.

The weaker forms of relevance are motivated by various works of Hansson [Han91b,
Han91a]. In our concrete context of database updates, plausible examples can be con-
ceived that motivate each of them. For example, consider a knowledge base KB with!
KB = {student_dean(X, Y) < student_school(X,Z) A school_dean(Z,Y)} and KBy =
{student_school(a,b) < ,school_dean(b,c) + }. Then, clearly, student_dean(a,c) is a
logical consequence of KB. Now, in order to delete student_dean(a,c) it would be ra-
tional to delete from KBy either student_school(a,b) < (because a might have gradu-
ated) or school_dean(b, c) + (because c is no longer dean). Both operations conform to
strong relevance, but deleting both elements from KBy in one operation would violate
strong relevance (and does not seem rational). On the other hand, consider now KB; =
{schol(X) + student(X) A thesis(X)} and KBy = {student(a) < , thesis(a) < }. KB
may say that X is entitled for scholarship if he is a student and doing his thesis. Clearly,
schol(a) < follows in this case. In order to delete schol(a) + (because a graduated) it
seems rational to delete both student(a) < and thesis(a) < from KBy. Note that this
operation does not conform to strong relevance, but both weaker forms are still satisfied.

In the present paper, we concentrate on strong relevance, because it is computationally
the most delicate one: strong relevance is a property depending on the whole knowledge
base, whereas, on the other extreme, weak relevance may be computed more “locally”.
It will be interesting future work to weaken our calculus below to cope with the other
forms as well.

2.2. AN ALGORITHM BASED ON ABDUCTION

Now we briefly recall an algorithm for contraction based on abduction [AD95, Ara95].
Some basic definitions, similar to those in [Poo89] required for the algorithm are presented
first.

An abductive framework is a pair (T, Ab), where both T (the background theory) and
Ab (the abducibles) are sets of sentences. An abductive explanation for a sentence « is
defined as a subset A C Ab such that AU T is consistent and AU T = a.

The following definition contains the “usual” definition of abductive explanations, but
slightly specialized to our case. We assume as fixed some first-order language L.

DEFINITION 2.3 ((MINIMAL) ABDUCTIVE EXPLANATION)

Let KB be a knowledge base a be a sentence. An abductive explanation A for a wrt. KBy
is a set A of ground literals s.t. AU KB = a and A U KBy is consistent. An abductive
explanation is minimal iff no proper subset of it is an explanation. It is said to be locally
minimal, iff there exists a subset KBj of KBy s.t. A is a minimal abductive explanation
of & wrt KBj. Further, A is said to be KB-Closed iff A C KBy;. []

Our interest is in particular in KB-Closed explanations, because such explanations are
used below as a base to determine contractions, and only members of KBy shall be

considered for this (because the other part, KBj, shall be immutable).

T Variables start with capital letters and are considered as universally quantified.

View Deletion on Databases 7

EXAMPLE 2.4

Consider again the knowledge base KB from above whose immutable part KBy is {p +
gAr,p « r}. Clearly, A; = {r} is the only minimal abductive explanation for p
wrt KBr. Ag = {q,r} is an abductive explanation for p wrt KBy, but not minimal.
However, Ay is a locally minimal abductive explanation for p wrt KBy, since it is a
minimal explanation for p wrt {p < ¢ A r} which is a subset of KB;. The concept of
a locally minimal abductive explanation is computationally attractive, since a minimal
abductive explanation is more expensive to compute. [|

The general contraction algorithm of [AD95, Ara95] is reproduced here as Algorithm 1
below. The basic idea behind this algorithm is to generate first all (locally minimal)
explanations for the sentence to be contracted and then extract the necessary deletions
from them. The underlying technical device is called a hitting set:

DEFINITION 2.5 (HITTING SET)

Let S be a set of sets. Then a set HS is a hitting set of S iff HS C |J S and for every
non-empty element R of S, RN HS is not empty. Further, HS is a minimal hitting set iff
no proper subset of it is a hitting set. [|

Thus, a hitting set of S is obtained by picking one element from every non-empty element
from S. Hitting sets are used in the following algorithm for contraction:

Algorithm 1 General contraction algorithm

Input: A knowledge base KB = KB; U KBy and a sentence a to be contracted.
Output: A new knowledge base KB’ = KB; U KBy,

begin
1. Construct a set S = {X | X is a KB-closed minimal abductive explanation for «
wrt KB[}
2. Determine a minimal hitting set o(S).

3. Produce KB' = KB; U (KBy \ 0(9)) as a result.

end.

The following theorem was proven in [AD95, Ara95].

THEOREM 2.1 (CORRECTNESS AND COMPLETENESS OF ALGORITHM 1)
Let KB be a knowledge base and « a sentence.

(1) If Algorithm 1 produces KB' as a result of contracting « from KB, then KB’ satis-
fies all the rationality postulates (KB—1), (KB—2), (KB—3), (KB—4), (KB—5),
(KB—6.3). Further, if the hitting set computed at step 2 is minimal, then (KB—6.1)
is also satisfied.

(2) Suppose KB" statisfies all these rationality postulates for contracting a from KB,
then KB" can be produced by Algorithm 1.

8 C. Aravindan and P. Baumgartner

The disadvantage of this algorithm is that all (locally minimal) explanations have to be
generated first. Since there might be exponentially many abductive explanations (wrt.
the number of hitting sets) this algorithm is of exponential space and time complexity.
Our new algorithm below avoids the exponential space requirement.

2.3. DATABASE UPDATES AND PREVIOUS APPROACHES

We now instantiate the framework presented so far to the special case of deductive
databases. A definite deductive database DDB consists of two parts: an intensional
database IDB, which is a set of definite program clauses, and an eztensional database
EDB, which is a set of ground facts. The intuitive meaning of DDB is provided by the
Least Herbrand model semantics and all the inferences are carried out through SLD-
derivation. We assume that the language underlying a DDB is fixed, and that there are
no function symbols, implying that the Herbrand Base is finite. Therefore, the IDB is
practically a shorthand of its ground instantiation!, written as IDBg. In the sequel, tech-
nically we mean IDB ¢ when we refer simply to IDB. The reader is referred to [L1087, and
the references therein], for more information on definite programs, the least Herbrand
model semantics, and SLD-derivations.

All the predicates that are defined in IDB (i.e. occur in the head of some clause in
IDB) are referred to as view predicates; those defined in EDB are referred to as base
predicates. Extending this notion, an atom with a view predicate is said to be a view
atom, or IDB atom, and similarly an atom with base predicate is a base atom, or EDB
atom. Further we assume that IDB does not contain any unit clauses and no predicate
defined in a given DDB is both view and base.

Two kinds of view updates can be carried out on a DDB: an atom that does not
currently follow from DDB can be inserted; or an atom that currently follows from DDB
can be deleted. The view update problem, in the context of deductive databases, has
been studied by various authors and algorithms based on SLD-trees have been proposed
[AD95, Ara95, Dec90, Dec96, GL90, GL91, KM90, Tom88, for example]. In this paper,
we consider only deletion of an atom from a DDB. When an atom A is to be deleted,
the view update problem is to delete only some EDB facts, so that the modified EDB
together with IDB will satisfy the deletion of A from DDB.

But what does “satisfy the deletion” mean? Clearly, A should not follow any more from
the updated DDB. But is this the only criterion? We think that the general results from
belief revision provide reasonable guidelines for database updates as well. Hence, we are
now embedding the view deletion problem in deductive database in the above framework
of knowledge base contractions: a DDB represents a knowledge base where the immutable
part KBy is given by IDBg and the updatable part KBy is given by the EDB. The “in-
sert” operation in deductive database translates into the belief revision term “expansion”,
and “deletion” translates into “contraction”. Hence, the rationality postulates (KB—1),
(KB—2), (KB—3), (KB—4), (KB—5), and (KB—6.i) (where i € {1,2,8}) provide an
axiomatic characterization for deleting a view atom A from a deductive database DDB.
These axioms, or at least some of them, are also present in a more or less explicit form

Ta ground instantiation of a definite program P is the set of clauses obtained by substituting terms
in the Herbrand Universe for variables in P in all possible ways.

View Deletion on Databases 9

in related work on database updates [DB82, Kel85, Lan90, for example]. Agreement
seems to be in particular about the success postulate (KB—4) — that « should not be
seen after deletion. In fact, [DB82] defines this to be the only correctness criteria. Con-
cerning relevance, the strong form (KB—6.1) seems to be predominant (for example in
[Kel85, Lan90]).

An algorithm for view deletion in deductive databases, based on the general contraction
algorithm (cf. Algorithm 1) was presented in [AD95, Ara95]. In fact, it only requires to
instantiate Algorithm 1. More specifically, the computation of abductive explanations
is accomplished then by an SLD-resolution calculus, where the goal of the derivation
is the view atom to be deleted. The set of all explanations (of the kind mentioned in
Algorithm 1) for that is generated through a complete SLD-tree, and a hitting set of
these explanations is then deleted from the EDB. It was shown in [AD95, Ara95] that
this algorithm is rational (Theorem 2.1 above). A serious drawback of this algorithm is
that all explanations for the view atom to be deleted have to be generated and kept in
memory (recall that a complete SLD-tree has to be generated). This means that this
algorithm is of exponential space complexity.

The same analysis holds for other known rational algorithms such as that of Tomasic
[Tom88]. In his algorithm, all hitting sets from a complete SLD-tree are computed in
first step in a more direct way. Then, an inclusion-minimal set is chosen among them,
and any such set determines the EDB-atoms actually to be deleted.

An analysis of the algorithm in [DB82] shows that it is a special case of Algorithm 1,
and that it conforms to all our postulates, where weak relevance (KB—6.3) is used. See
[AD95] for a more detailed comparison.

In contrast to these algorithms, the algorithm we are going to present directly computes
a hitting set without explicitly generating all the abductive explanations or hitting sets
as a preliminary step. Moreover, the generation of the hitting set is carried out through
a hyper tableaux calculus that is focused on the goal.

Other algorithms, based on deduction trees (SLD or SLD with negation as failure),
to delete a view atom from a deductive database have been forwarded in [Dec90, GL9O0,
GL91, KM90]. These algorithms do not necessarily construct complete trees. Such ap-
proaches are problematic, as for instance, vacuity (KB—3) might no longer be satisfied.
Consider for example IDB = {p + g¢Ar} and EDB = {q + }. Deleting the view atom p
might result then in deleting the base atom ¢. Since p does not follow from the database,
deleting ¢ violates the vacuity postulate. So, in order to avoid constructing a complete
SLD tree, the derivability of p should be checked first.

In [Bry90] the computation of view updates has been formalized as a model generation
process. This technique of “intentional updates” is rather general, as, among other things,
intentional updates may refer to the current as well as the updated database. To make this
possible, the (meta-level) updates are formulated at the object (formula) level and express
the desired effect of the update. For instance, that a view atom p is to be deleted would be
formulated as new(—p), meaning that the “new” database must no longer entail p. To the
given definite program one associates a (disjunctive) program which is used to compute
the update. For instance, the IDB clause p «+ ¢ A r would be essentially translated
into a program that is equivalent to remove(q) V remove(r) + new(—p). The remove
predicate means the obvious operation on the EDB, namely that the argument has to be

10 C. Aravindan and P. Baumgartner

deleted. To actually compute the update to the EDB, the bottom-up model generation
prover SATCHMO is used. It was observed (for the first time, to our knowledge) in
[Bry90] that update computation is an abductive problem then. The method of [Bry90]
behaves operationally much like Algorithm 1 above, except that the minimization is
not employed in the algorithm in [Bry90]. However, at the same time it was suggested
in [Bry90] that minimization is an important issue. A result was proven, stating that
any minimal update (in the sense of our strong relevance postulate KB—6.1) can be
computed. We are faithful that our results below can be used to continue the programme
proposed in [Bry90] so that only minimal updates are computed. This would also achieve
that the vacuity postulate (KB-—3) is satisfied: in the example, computing remove(q)
and thus deleting ¢ from EDB in order to delete p violates vacuity if the EDB does not
contain r (cf. the discussion in the preceding paragraph).

3. Hyper Tableau Calculus for Minimal Model Reasoning

In [BFN96] a variant of clausal tableau calculus called “hyper tableaux” has been in-
troduced. In the ground case, which we consider here as the basis for our view deletion
algorithm, hyper tableaux coincide with the calculi underlying the SATCHMO prover
[MBS88] and the MGTP system [FH91]. More recent developments in the SATCHMO
tradition are described in [BY96] (concerning minimal model reasoning) and in [BT9§]
(concerning finite models). Improvements for first-order hyper tableaux have been sug-
gested in [Bau98].

We apply the usual notions of first-order logic, in a way consistent to [CL73]. For
notions related to tableau calculi in general see [Fit90]. Clauses, i.e. multisets of literals,
are written as the disjunction A; V---V 4,, V-B; V---V =B, or as an implication
Ay V---VAp < By A--- AN By, (for some m > 0, n > 0). The literals Ay,..., A, (resp.
By,...,B,) are called the head (resp. body) of the clause. Clause sets are also called
disjunctive logic programs, in particular in the context of bottom-up evaluation.

With_f we denote the complement of a literal L. Two literals L and K are complemen-
tary if L = K. Since confusion is less likely, we may use the same operator . to denote
set complements.

From now on D always denotes a finite ground clause set, also called database, and
3 denotes its signature, i.e. the set of all predicate symbols occurring in it. We consider
finite ordered trees T where the nodes, except the root node, are labeled with literals. In
the following we will represent a branch b in T by the sequence b = Ly,..., L, (n > 0)
of its literal labels, where L; labels an immediate successor of the root node, and L,
labels the leaf of b. Concatenation of node sequences is denoted by “,”. So, for instance
(b, Ly, 1 1) denotes the node sequence carrying the respective labels Ly, ..., Ly, L,y ;. By
a partial branch through a tableau we mean a sequence of nodes starting from the root
to some inner node or leaf node. The same conventions as for branches apply. By the
immediate successor (nodes) of partial branch b we mean the set of children of the last
node of b.

The branch b = Ly,..., L, is called regular iff L; # L; for 1 < 4,5 < n and i # j.
A branch which is not regular is called irregular. The tree T is regular iff every of its
branches is regular, otherwise it is irregular. The set of branch literals of b is lit(b) =
{Ly,...,Ly}. For brevity, we will write expressions like A € b instead of A € lit(b). In

View Deletion on Databases 11

order to memorize the fact that a branch contains a contradiction, we allow to label a
branch as closed. A branch which is not marked as closed is marked as open. For brevity,
we leave away the term “marked as” and simply say that a “branch is closed/open”. A
tableau is closed if each of its branches is closed, otherwise it is open.

DEFINITION 3.1 (HYPER TABLEAU)
A literal set is called inconsistent iff it contains a pair of complementary literals, otherwise
it is called consistent. Hyper tableaux for D are inductively defined as follows:

Initialization step: The tree consisting of the root node only is a hyper tableau for D.
Its single branch is marked as “open”.

Hyper extension step: If

(1) T is an open hyper tableau for D with open branch b, and

(2) C=A4;V---V Ay, < B AN--- A B, is a clause from D (for some m > 0,
n > 0), called extending clouse in this context, and

(3) {Bi,...,By} C b (equivalently, we say that C is applicable to b)

then the tree T" is a hyper tableau for D, where T is obtained from T by extension
of b by C: T' is the same as T, except that b is replaced by the new branches
(b,A1)...,(b,An),(b,=By)...,(b,—By)

and every inconsistent new branch in 7' is marked as “closed”, and every other
new branch is marked as “open”.

We say that a branch b is finished iff it is either closed, or else whenever C is applicable
to b, then extension of b by C yields some irregular new branch.]

The applicability condition of an extension expresses that all body literals have to be
satisfied by the branch to be extended (like in hyper resolution [Rob65]). This similarity
to hyper resolution [Rob65] gave the name “hyper tableaux”. Notice as an immediate
consequence of the definition that open branches never contain negative literals.

EXAMPLE 3.2 (HYPER TABLEAUX)

Consider the following database D: Hyper Tableau:
t
D: pVg « tATr t <«
qg < pAt T4
r

The figure on the right contains a hyper tableau for D. For econ-
omy of notation, closed branches are not displayed. This tableau /\

is obtained as follows: after an initialization step, we can extend

with ¢ + and then with r <. Then, since ¢t and r are now on the 1 P
branch, we can extend with p V ¢ < t A r. The left branch is now ‘
finished, because ¢ < p A t is not applicable, and extension with q

any other clause would introduce an irregularity. Extension with
g < p At at the right branch finishes this branch as well.

12 C. Aravindan and P. Baumgartner

Unless stated otherwise we will from now on consider only regular hyper tableaux. This
restriction guarantees that for finite clause sets no branch can be extended infinitely often.
Hence, in particular, no open finished branch can be extended any further.

3.1. MINIMAL MODELS

Next, we equip the calculus defined so far with semantics. Of particular interest is a
certain form of minimal model reasoning.

DEFINITION 3.3 ((MINIMAL) MODEL, BRANCH SEMANTICS)

As usual, we represent an interpretation Z for given signature ¥ as the set {A € X |
Z(A) = true}. The notation Z = object means that object is true in 7 where object is
a clause, an atom, a literal or a set of these (interpreted conjunctively). In particular,
IEA;V---VAy,+ B/ AN---AB, it {By,...,B,} CT implies {A;,...,An}NT #0.
Minimality of models (for given clause set D) is defined via set-inclusion.

Let b be a consistent branch in a given tableau. The branch b is mapped to an inter-
pretation by defining [b]y, := lit(b). Usually, we write [b] instead of [b]y, and let X be
given by the context. u

For instance, the semantics of the left (right) branch b; (b2) in the tableau in Example 3.2
is [b1] = {t,r, q} ([be] = {t,7,p, q})-

A refutational completeness result for hyper tableaux was given in [BFN96]. For our
purposes of computing database updates, however, we need a (stronger) minimal model
completeness result. Further, we are interested in minimal models only with respect to
some given subset T' of the whole signature ©. In the sequel, I always denotes some
subset of the signature X. i.e. a subset of the atoms occurring in a clause set under
consideration.

DEFINITION 3.4 (I'-MINIMAL MODELS)

For any atom set J define the restriction of J to T as J|I' := J NT. In order to relate
atom sets J; and Jg define J; <r Jg iff J;|I' C Je|T', and J; =r Je iff J;|T' = Te|T.
As usual, the relation J; <p Jg is defined as J; <r Jg or J; =r J2. We say that a
model 7 for a clause set D is T-minimal (for D) iff there is no model 7' for D such that
I <r T []

It is easy to see <r that is a partial order and = is an equivalence relation. Notice that
the “general” minimal models can simply be expressed by setting I' = ¥. Hence, by a
minimal model we mean a ¥-minimal one.

The following theorem is a strengthening of a result in [BFFN97a].

THEOREM 3.1 (MODEL SOUNDNESS AND I'-MINIMAL MODEL COMPLETENESS)

Let T be a hyper tableau for a given ground clause set D. Then, for every finished open
branch b in T it holds that [b] is a (not necessarily I'-minimal) model for D (Model
soundness).

T From a circumscriptive point of view [McC85], I' is the set of atoms to be minimized, and X \ T’
varies.

View Deletion on Databases 13

Further, if every open branch in T is finished, then for every I'-minimal model T of D
there is an open branch b in T such that T =t [b] (T'-minimal model completeness).

Notice that Theorem 3.2 does not give us that only I'-minimal models are computed.
We turn to this problem in Section 3.2.

PROOF. Soundness direction: let b in T be an open finished branch. Suppose, by way
of contradiction, that [b] is not a model for D. Hence [b] is not a model for some
clause C = A; V---V Ay, < By A--- A By. This means that {By,... By} C lit(b) and
{A4;,...,An} Nlit(b) = 0. Now, m = 0 is impossible, because otherwise with b being
finished, b would have to be extended by C' and b would have been closed then. The case
m > 0 is handled as follows: since {4;,..., A} N b = 0 the extension of b by C does
not violate regularity. Hence, b is not finished. Contradiction.

Completeness direction: if no I'-minimal model for D exists, the theorem holds vac-
uously. Otherwise let 7 be a I'minimal model for D. Let A C T' the true atoms, i.e.
A={AecA|ZT|=A},andlet A=T\A.

In a first step we show that there is an open branch b such that A C [b]. It trivially
holds that

D UA U—A is satisfiable, (3.1)

where —A := {-A | A € A}. Since 7 is a [-minimal model, Lemma 3.2 is applicable (in
the “if” direction) and we conclude D U —=A |= A. This holds if and only if

DU-AU{ \/ —A} is unsatisfiable. (3.2)
AeA

Hence, by refutational completeness of Hyper tableaux there is a refutation of this clause
set. Further, by 3.1, the subset D U—A is satisfiable. Hence, in any hyper tableau refuta-
tion the clause \/ ;.5 74 must be used at least once for an extension step, say at branch
b'. But, by definition of hyper extension step this is possible only if the complementary
literals are on the branch b', i.e. A C lit(b"). We can omit from the refutation all exten-
sion steps with \/ .o 74, as well as all extension steps with the negative unit clauses
from —A. The result is a hyper derivation from D alone. Now, either the branch b’ is
finished, and the theorem is proven, or otherwise the derivation can be continued so that
at least one open finished branch b with li¢t(b') C lit(b) is formed. The reason is the
following: otherwise every such extension b of b’ would be closed, meaning that we could
find a refutation of D U —A alone, which by soundness of hyper tableau contradicts the
satisfiability of D U —A. Thus, b is a branch with A C [b]. This concludes the proof of
the first step.

Next, we show that for some branch b with A C [b] we have A N [b] = 0. Suppose,
by way of contradiction, that for every branch b with A C [b] we have AN [b] # 0.
Hence each such branch b can be closed with some literal A € =A. Thus we can find
a refutation of D U —~A alone, which, by soundness of hyper tableaux contradicts the
satisfiability of D U =A. Hence, A N [b] = @ for some branch b. Since we presuppose
A C [b] we have together [b]|T = A. Since trivially Z|T' = A we conclude Z = [b] as
claimed. O

14 C. Aravindan and P. Baumgartner

For example, since in the tableau in Example 3.2 every open branch is finished, one of its
branches contains a ¥-minimal model (the literals {¢, r, ¢} in the left branch constitute a
Y-minimal model). The {¢, r, ¢}-minimal models are {¢, r, ¢} and {¢,r, p, ¢}, which both
are computed.

3.2. MINIMAL MODEL SOUNDNESS

Our plan is to use the hyper tableau calculus for computing I'-minimal models to ensure
the rationality of the view deletion algorithm presented in Section 5.1. For this, we need
a strengthening of Theorem 3.1 towards I'-minimal model soundness, i.e. that only I'-
minimal models are returned as the result of the computation. This problem is known
to be harder than just computing some model [EG93]. Consequently, it is not surprising
that some non-trivial extra device is needed to guarantee minimal model soundness.
Our proposed technique is based on the following lemma (similar results were given in
[Rei87, Nie96c¢)):

LEMMA 3.2 (MINIMIZATION LEMMA) .
Suppose T is partitioned asT' = AUA, i.e. ANA = (). Define =A := {—~A | A € A}. Let
D be a set of clauses. Then'

(1a) DU—-A | A and (1b) D U —A is satisfiable
iff
(2a) D U—A U A is satisfiable and (2b) A is C-minimal for this property.

Property (2b) using an explicit wording shall mean “there is no partition I' = A" U A’
with A" C A such that D U—-A’ U A’ is satisfiable”.

PROOF. (1) = (2): Suppose that (la) and (1b) hold. Let Z be a model for D U -A,
which exists by (1b). By (1a), Z is a model for A as well. Hence (2a) holds. It remains
to show (2b). Suppose, by way of contradiction, that (2b) does not hold. Hence there is
a partition I' = A’ UA’ with A’ C A such that D U -A’ U A’ is satisfiable. Notice that
D U-A' is trivially satisfiable as well. The property A’ C A implies that ~A C ~A’. Let
—A € ~A’\ A arbitrary, which exists because the inclusion is strict. We get immediately
that ~A U {=A} C —=A’. From this and the just derived fact that D U—A’ is satisfiable,
it, follows that D U—-A U {=A4} is satisfiable as well. In other words, D U -A £ A.

Now, since =4 € =A’\ =A this means that A ¢ ~A. By property of partition, A € A
follows. But with D U —A [~ A we get immediately that D U —~A £ A. This, however, is
a contradiction to (1la). Hence, the assumption that (2b) does not hold must be wrong,
and this direction of the lemma is proven.

(2) = (1) Assume that properties (2a) and (2b) hold. Hence, (1b) follows trivially. Sup-
pose, by way of contradiction, that (1a) does not hold. That is, DU—-A [~ A. Then there
is an interpretation Z such that Z |F DU-A and Z |£ A. Let A” = {A € A | T £ A},
which must be non-empty, and let A” = A\ A”. Notice that (A U A”) U A" partitions

t The notation D = A means D = A, for every A € A.

View Deletion on Databases 15

T in mutually disjoint parts. By construction, Z = ~A” and 7 |= A”. Together then it
holds that Z = D U —~(A U A”) U A”. But now, since A’ is non-empty, it follows that
A" C A and this inclusion is strict. So we arrive at a contradiction to (2b), by setting
there A’ = A" and A’ = A U A”. Hence, the assumption that (1a) does not hold must
be wrong, and this direction of the lemma, is proven as well. (I

Now, Lemma 3.2 provides an important “tool” to achieve minimal model soundness:
suppose we are given a hyper tableau with an open finished branch b. The literals on
b represent a model [b] for the input clause set (cf. Def. 3.3). To determine whether
[¢] is a T-minimal model, build A = [b]|T and let A = T'\ A. Now, by Lemma 3.2
and using the definition of I'-minimal models (Def. 3.4), [b] is a I'-minimal model for
M iff DU-A = A. Since A represents in this context the conjunction of its members,
equivalently D U —=A U {\/ 4o ~A} is unsatisfiable. Notice that this condition can be
tested by a single theorem prover call, which is referred to as the “groundedness test”.
Interested readers are referred to [Nie96b, Nie96¢] for more information on this technique
of generating minimal models.

In [BY96] a calculus for minimal-model computation (not: I'-minimal models) in the
SATCHMO tradition [MB88] was proposed. The technique described there to ensure
minimal-model soundness is different: minimal model soundness is ensured by the “com-
plement splitting” technique (a kind of factorization) and incremental strategy to com-
pare new minimal model candidates against previously computed minimal models. Thus,
all computed minimal models have to be kept in memory (there can be exponentially
many), whereas in our approach the test for minimal modelship can be carried out, as
just explained, “locally” by a single theorem prover call.

A less general result wrt. minimal model reasoning than the one in Theorem 3.1 has
been adopted in [BFFN97b, BFFN97a] for model based diagnosis applications (cf. [Rei87]).
Further, a semantical approach (by using an “initial model” of the correctly functioning
device for transforming the given system description and observation) was used to guide
building models. This transformation technique can be successfully used for database
updates also, and in the sequel we discuss this in detail.

4. Renaming and Update Tableaux

The key idea of the new algorithm is to transform the given database along with
the view deletion request into a disjunctive logic program. The intuition behind the
transformation is to obtain a disjunctive logic program in such a way that each (minimal)
model of this transformed program represent a way of deleting the given view atom. More
precisely, one has to seek I'-minimal models, where I" will consist of the negations of the
EDB-predicates; I'-minimal models therefore characterize minimal deletion operations
by reading the truth of a negative FDB-literal as a deletion.

Next, we are going to introduce the transformation technique — renaming — in a
general way; then, it will be used below in a specific way within update tableauz for
computation of view deletions.

DEFINITION 4.1 (RENAMING)
Let C = A + B be a clause, where A (resp. B) is a disjunction (resp. conjunction) of

16 C. Aravindan and P. Baumgartner

atoms, and let S C ¥ be a set of ground atoms. The renaming of C wrt. S is

Ccs = (VAeA,A¢S A) v (VBEB,BES _‘B) « (/\BeB,Bgs B) A (/\AEA,AES _‘A)

For a clause set, the renaming is defined as the renaming of all its members.
|

That is, for renaming a clause every atom A in the body (resp. head) of C that is also
in S is moved to the head (resp. body) as —A. Below we will make use of the trivial fact
that T |= C iff T = C¥.

Notice that the renaming does not result in a clause, because it leaves us with literals
where atoms are expected. However, we will take the freedom to refer to a renaming as
a clause as well.

We want to apply the hyper tableau calculus to renamed clause sets as well. In order
to avoid unnecessary changes to the calculus, we can bijectively map a renamed clause
set to a clause set according to the original definition by taking the signature ¥° = {4 €
Y| A¢ StU{-A| A€ S}. The second set is to be read as a set of atoms containing in
their names the negation sign. Notice that == A means the negation of atom —A then,
but not double negation of A.

Henceforth, when the hyper tableaux calculus is applied to a renamed clause set, always
the modified signature ¥ is understood. Hence, also the interpretation [b] associated
to a branch b in such a tableau is a model for the renamed clause set, say DS. It can
easily be converted into a model for the original clause set D by the following bijection
between Z-interpretations and ¥°-interpretation:

PROPOSITION 4.1 (RENAMING MODELS)
If T = D then I° = D¥®, where I°(—A) = true iff I(A) = false for A € S, and
T3 (A) = true iff T(A) = true for A ¢ S.

Conversely, If T° |= D® then T |= D, where Z(A) = true iff T°(—~A) = false for A € S,
and T°(A) = true iff T(A) = true for A ¢ S.

For instance, take D = {AV C «< B}, S = {4, B} and Z = {}. Hence D% = {C V
=B < —A} and I° = {=A, =B} is a model for D®. This example also demonstrates
that minimality of models is not preserved, because Z% is not a minimal model of D?.
Conversely, transforming back {}, which is the minimal model for D%, yields {4, B}
which is not a minimal model for D t. Instead the following can be achieved:

LEMMA 4.2 (MAXIMAL MODELS BY RENAMING)
Let S be a set of atoms such that T C S, and let D° be the renaming of a satisfiable
clause set D wrt. S. Let T® = {=A | A € '} and let for given interpretations Z and °

A={AeTl|Z(A) = true}
A% = {~A eT% | I5(=A) = true}
= {4 €T° | Z(A) = false} (By Prop. 4.1 and usingT C §) .

T One would have to have that I'N S = @ to achieve that I'-minimality of models is preserved. In the
present paper, however, we do not need this result.

View Deletion on Databases 17

Then a X%-interpretation 75 is a T'*-minimal model for DS U A® iff T = DU A and
there is no set A’ with A ¢ A' CT such that D U A’ is satisfiable.

That is, under the stated condition, computing I'*-minimal models is equivalent to maz-
imize a set of atoms A C I' consistent with D. Intentionally A constitutes ezactly the
true atoms of 7 restricted to I'. Hence, 7 is a “I'-maximal” model.

PRrROOF. We have
7% is a I'-minimal model for D5 U A%
& I EDSU{-AeT?|I%(=A) = trueyU{——A4 | -4 € T5 and Z5(—A) = false}
and the second set is minimal, and hence the third set is maximal
& IEDU{-AcTl|I(A) = false} U{A | A € T and T(A) = true} and the second
set is minimal, and hence the third set is maximal (this follows immediately from
the definition of Z°)
D<:> Z = DUA as claimed

We wish to apply the just presented renaming technique for our database update
purposes. This is expressed in the next definition (cf. the beginning of Section 2.3 for our
terminology).

DEFINITION 4.2 (IDB* TRANSFORMATION)
Let IDB U EDB be a given database. Let Sy = EDB U {A | A is a ground IDB atom}.
Then, IDB* is defined as the renaming of IDB wrt Sj. [|

REMARK 4.3

Note that IDB* is in general a disjunctive logic program. The negative literals =4 ap-
pearing in the clauses are intuitively interpreted as deletion of the corresponding atom
A from the database. Consequently, the request “delete A” will be expressed as —A.

Note that there are no facts in IDB*, because we assume that IDB contains only
definite program clauses. So when we add a delete request such as =A to IDB*, the
added request is the only fact and any bottom-up reasoning strategy is fully focused on
the goal (here the delete request)?. [|

The following example illustrates this transformation idea.

EXAMPLE 4.4

Consider the following database:
IDB : t EDB :

gAu

s

r

T

L
TTTT

f Thus, even if we would allow facts p < in the IDB, this property would not be affected, because
p < would be renamed to <« —p in IDB*.

18 C. Aravindan and P. Baumgartner

The set Sy is determined by all the IDB atoms and the current EDB, which in our case
it is {p, q, u, t,r}. IDB* is the transformation of IDB wrt S, which is as follows:

IDB* : -t &« -p
gV -u < -p

— SsA—gq
T &

Now, when we have a deletion request for a ground view atom A, represented as — A4,
the idea is to generate models of IDB* U {—A} and read the base atoms to be deleted
from them. As mentioned in the above remark, —A4 is the only fact and a bottom-up
model generation process is fully goal-oriented. We propose to use the hyper tableaux
calculus for this, and we state precisely how this is done. Suppose a ground view atom
A is to be deleted. Then, a hyper tableau for IDB* with delete request —A is built. The
open finished branches give us models for the renamed database. The intuition is that
the set of EDB atoms appearing in a model (open branch) constitute a hitting set, and
removing this set from EDB should achieve the required view deletion. This is formalized
below.

DEFINITION 4.5 (UPDATE TABLEAUX, HITTING SET)

An update tableau for a database IDB U EDB and delete request —A is a hyper tableau
T for IDB* U {—=A «} such that every open branch is finished. For every open finished
branch b in T we define the hitting set (of b in T) as HS(b) ={A € EDB | -A € b}. m

The name “hitting set” is a misnomer here, but we use it in order to compare this
approach with previous approaches that generate abductive explanations and a hitting
set of them (cf. Section 5.2). This new approach directly generates a “hitting set” without
enumerating all the explanations.

4.1. RELATION TO DIAGNOSIS

Roughly, diagnosis is the task to determine plausible explanations for abnormal be-
havior. One of the main approaches is consistency-based diagnosis according to Reiter
[Rei87] (see [CTI1] for an overview of alternative diagnostic definitions). In this scenario,
a model of a device under consideration is constructed and is used to predict its normal
behavior. By comparing this prediction with the actual behavior it is possible to derive
a diagnosis.

More precisely, this approach uses a logical description of the device, called the sys-
tem description (SD), formalized by a set of first—order formulas (e.g. an electrical cir-
cuit). The diagnostic problem is described by a system description SD, a set COMP
of components (e.g. the gates of the circuit) and a set OBS of observations (e.g. the
states of input and output lines). With each component we associate a behavioral mode:
Mode(c, Ok) (abbreviated by —Ab(c)) means that component c¢ is behaving correctly,
while Mode(c, Ab) (abbreviated by Ab(c)) denotes that ¢ is faulty. Of course, the formu-
las in SD take these behavioral modes into account in the description of the components
behavior.

View Deletion on Databases 19

DEFINITION 4.6 ([REI87])

A diagnosis of (SD, COMP, OBS) is a set D C COMP, such that SDUOBSU{Ab(c)|c €
D} U {—Ab(c)|c € COMP \ D} is consistent. D is called a minimal diagnosis, iff it is a
minimal set (wrt. C) with this property. [|

That is, a diagnosis D consists of components such that the observed behavior is consis-
tent with the assumption that exactly the components in D are behaving abnormally.

In Reiter’s seminal paper [Rei87] a technique is suggested that resembles very much
Algorithm 1 above. The counterpart to our abductive explanations is called failure set
in [Rei87], and the term hitting set is used by both. Diagnosis then are just hitting sets.

As with Algorithm 1, the drawback of this approach is its exponential space complex-
ity. Therefore, in [BFFN97b, BFFN97a] it was suggested (among other improvements) to
directly compute diagnosis (i.e. hitting sets) without the detour through failure sets (or
abductive explanations). We used a special hyper tableau calculus for this, and to guar-
antee correctness, a specialized version of the above Minimization Lemma (Lemma 3.2)
was used.

A direct translation of a view deletion problem into a diagnosis problems and is as
follows: the IDB is considered as the system description SD, and each EDB atom is
“normally” true. The idea is thus to translate the minimization of contractions of EDB
atoms into minimal diagnosis. Technically, this means to replace every EDB-atom p by a
clause p < —Ab(p), where “Ab(p)” means “p is abnormal”. In order to have a one-to-one
mapping between minimal diagnosis (cf. [Rei87]) and minimal database contractions we
need the additional axioms —p < Ab(p) for every EDB-atom p. Together, they mean
that a literal p is abnormal (diagnosis) if and only if p is deleted from the database.

Axioms of the latter kind are a bit problematic in the approach of [BFFN97a] due to
the negative ab-literals, which were not allowed there. However, they can be dispensed
with by the following line of reasoning: in any minimal diagnosis these axioms of the form
—p « Ab(p) are a consequence of the other clauses. To see this, let a minimal diagnosis
be given, i.e. a model which minimizes the extension of the ab-predicate. Say that Ab(p)
holds in that diagnosis. Due to p < —Ab(p), which is the sole clause containing ~Ab(p),
this can only be the case if p is false. Hence —p < Ab(p) holds in this diagnosis.

But now, since we know that —p < Ab(p) holds in every minimal diagnosis, these
clauses can be deleted, and any approach to compute minimal diagnosis (such as the
one in [BFFN97a]) can be used to compute minimal database contractions. However, to
gain efficiency in the computation of diagnosis, and make the search for the diagnosis
(i-e. database update) goal-oriented, an initial interpretation for renaming has to be
used; this initial interpretation represents a model of the correctly functioning device
under consideration. For the database update task, the interpretation S, used in the
IDB*-transformation above thus corresponds to the initial interpretation in the diagnosis
domain.

4.2. COMPLETENESS OF UPDATE TABLEAUX

The completeness result for update tableaux developed now will be the basis for the
correctness of the final algorithm in Section 5 (the intuition of which was given above in
this section).

20 C. Aravindan and P. Baumgartner

First, we have to eliminate a trivial form of update tableau:

DEFINITION 4.7 (TRIVIAL UPDATE TABLEAUX)

Let T be an update tableau. The branch b in T is called trivial if HS(b) = (), otherwise
it is called non-trivial. An update tableau is called trivial if some open finished branch
is trivial, otherwise it is called non-trivial.]

ExXAMPLE 4.8

A special case comes up if an update tableau is trivial. For example, if IDB = {p « ¢}
and EDB = {r « } then IDB* ={ < -p A ¢}. The update tableau for IDB U EDB
and delete request —p consists of one open branch b, which is labeled with —p (because
+ —p A g is not applicable to —p). Thus, HS(b) = {}. Intentionally, this means that the
delete request can be fulfilled without deleting any EDB-atoms. []

Note that there is no point in continuing an update tableau construction as soon as
one open finished trivial branch is derived. This is always an “optimal” case, because it
means that the delete request is compatible with the EDB. This is formalized below.

LEMMA 4.3 (TRIVIAL UPDATE TABLEAUX)
Let T be a trivial update tableaux for IDB U EDB and delete request ~A. Then IDB U
EDB U {—A} is consistent.

If IDB U EDB U {—A} is consistent then every update tableaux for IDB U EDB and
delete request — A is trivial.

ProOF. For the first part, let 7 be given as stated, and assume, to the contrary, that
IDBUEDB U {—A} is inconsistent. As a property of the renaming, it holds that IDB* U
EDB* U {—A « } is inconsistent, where EDB* = { <« —A | A € EDB}. Further,
since IDB U {—A} is consistent (for syntactical reasons: IDB contains no facts), IDB* U
{—4 < } is consistent as well. Notice that by definition of update tableau, T is a
hyper tableau for just this set. By soundness of hyper tableaux (Theorem 3.1), T must
contain open branches. Further, every open branch must close with some clause from
EDB* (because otherwise, by completeness of hyper tableaux (Theorem 3.1), we would
have a contradiction to the inconsistency of IDB* U EDB* U{—-A + }). But this means
that every open branch contains at least one literal from {-=A + | A € EDB}. But then
HS(b) # 0 for every open branch b in T. Consequently, T is not trivial. Contradiction.

The argumentation for the second part is similar. We will therefore only sketch the
proof. Assume, by way of contradiction, that IDB U EDB U {—A} is consistent, and that
there is a respective non-trivial update tableaux. Let T be that tableau. It is a tableau
for the clause set IDB*U{—A4 < }. It must be open, because IDBU{-A4} is consistent,
and consequently IDB* U {—A « } is consistent as well. Now, since T is non-trivial,
every open branch b in T contains a literal from {—A4 + | A € EDB}. Thus, b can be
closed with some clause from EDB* (cf. the first part for a definition of EDB*). From this
we learn that IDB* U EDB* U {—A « } is inconsistent. As a property of the renaming
we conclude that IDB U EDB U {—A} is inconsistent as well. Contradiction. [J

In this trivial case, we can establish the following link to the abductive explanations
of atom to be deleted:

View Deletion on Databases 21

LEMMA 4.4
IDB U EDB U {—A} is consistent iff there is no EDB-closed abductive explanation for A
wrt. IDB.

PROOF. “Only-if”-direction: assume, by way of contradiction, that IDBUEDBU{—-A} is
consistent, and that there is an FDB-closed abductive explanation for A wrt. IDB. Thus
let A C EDB such that AU IDB = A. Equivalently, A U IDB U {—A} is inconsistent.
Thus EDB U IDB U {—A} is inconsistent. Contradiction.

“If”-direction: assume, by way of contradiction, that there is no EDB-closed abductive
explanation for A wrt. IDB and that IDB U EDB U {—A} is inconsistent. Equivalently,
IDB U EDB [= A. Since IDB U EDB is consistent (for syntactical reasons), A = EDB
thus is an abductive explanation. Contradiction. O

Next we want to assemble all the concepts and results obtained so far in the following
theorem:

THEOREM 4.5 (COMPLETENESS OF UPDATE TABLEAUX)

Let T be a non-trivial update tableau for IDB U EDB and delete request = A. Then for
every minimal set « C EDB such that {~A}UIDB U (EDB \) is satisfiable there is an
open finished branch b in T such that HS(b) = a.

PrOOF. We have that {—A} UIDB U (EDB \ a) is satisfiable, with & minimal as given,
iff for some interpretation Z: Z |= {—A} U IDB U (EDB \ a) and Z(A') = false for every
A" € a. Recall from Definition 4.2 that EDB C Sp; hence Lemma 4.2 is applicable
(in the if direction), setting there § = S5, T = EDB% | A = (EDB\ a), A5 = —aq,
D ={=A}UIDB and T = 750. Hence, by Lemma 4.2, 75 is an EDB®’-minimal model
for {—A} U IDB* U ~a. 7% is an EDB® -minimal model for {~A} U IDB* as well (¥).
For, suppose to the contrary, that there is a model Z' < zpgs, Z°° for {=A}UIDB*. This
means that there is a strict subset —a' C —a such that Z'(—A") = true for every - A € o/
and Z'(A') = false for every A' € EDB®" \ —a'. But then, we can apply Lemma 4.2 in
the only-if direction by setting there § = §%, T' = EDB%’, A = (EDB \ o/), A = —a/,
D = {-A}U IDB and T = I'. However, this yields with —a’ C —a and hence o' C a a
contradiction to the maximality of A in Lemma 4.2. Hence, (*) holds.

Now that (*) is proven, by Theorem 3.1 there is an open finished branch b in T such
that [b] =gpgse Z°°. Further, % =gpps, -, because ~a = AS = {~A € EDBY |
% (=A) = true (cf. Lemma 4.2). Hence, by Definition of HS(b) (Def. 4.5) there is an
open finished branch b in T such that HS(b) = a. O

In summary, we have arrived at a completeness result which allows us to compute
minimal contractions by computing one (any) update tableaux. However, the converse is
not established yet. That is, given an open finished branch b, it is not guaranteed that
HS(b) is a minimal database contraction. Indeed, extracting updates from models of
the transformed program does not necessarily result in a rational deletion, as the strong
relevance property may be violated. The following example demonstrates this.

22 C. Aravindan and P. Baumgartner

ExAMPLE 4.9

Let us continue with example 4.4. Suppose the view Hyper Tableau:
atom p is to be deleted. Then according to the above 4
proposal, an update tableau for IDB* and —p is to be ‘
built. This is illustrated in the accompanying figure.

As shown, two open branches constitute two hitting -t

sets {t} and {t,r}. It is not difficult to see that /\
{t,r} does not satisfy any of the relevance policies

(KB—6.1) or (KB—6.2) or (KB—6.3). Hence simple —q U

model computation using hyper tableau calculus does
not result in rational hitting sets.

-7

{t} {t,r}

That means, we will have to modify the approach such that soundness will be achieved.

5. The Algorithm

We are turning to the just mentioned problem of achieving sound contractions. In brief,
to filter out only the rational hitting sets, the postulate (KB—6.1) itself can be used as
a test! That is, after constructing a branch, the minimality condition of (KB—6.1) can
be checked (which is a theorem proving task). The branch is closed if the corresponding
hitting set does not satisfy this strong relevance postulate.

DEFINITION 5.1 (MINIMALITY TEST)

Let T be an update tableau for IDB U EDB and delete request - A. We say that an open
finished branch b in T satisfies the minimality test iff Vs € HS(b) : IDBUEDB\ HS(b)U
{s} + A. [

DEFINITION 5.2 (UPDATE TABLEAU SATISFYING MINIMALITY)

An update tableau for given IDB U EDB and delete request — A is transformed into an
update tableau satisfying minimality by marking every open finished branch as closed
which does not satisfy minimality. []

EXAMPLE 5.3

Continuing with the same example, after constructing the branch corresponding to the
hitting set {¢, r}, the minimality test is carried out as follows: It is checked if the resulting
database with each member of the hitting set implies the deleted atom p or not. For
example, IDBU EDB \ {t,r} U {t} p. But the same does not hold for r,j.e. IDB U
EDB \ {t,r} U {r}t/p, and hence this branch fails the minimality test. |

Now we are in a position to present formally our algorithm. Given a database and a
view atom to be deleted, we first transform the database into a disjunctive logic program
and use the hyper tableaux calculus to generate models of this transformed program.
Models that do not represent rational deletions are filtered out using the minimality
test. This is formalized in Algorithm 2.

View Deletion on Databases 23

Algorithm 2 View deletion algorithm based on minimality test

Input: A database IDB U EDB and a ground view atom A to be deleted.
Output: A new database IDB U EDB’

begin
1. Construct a branch b of an update tableau satisfying minimality (cf. Defini-
tion 5.2) for IDB U EDB and delete request —A.
2. Produce IDB U EDB \ HS(b) as a result. (HS(b) of a branch b of an update
tableau is defined in Definition 4.5)

end.

Algorithm 2 generates a minimal hitting set in a generate-and-test manner: put a little
bit more abstractly, branches b are enumerated, information is extracted from b and this
information is tested to meet the desired minimality criterion. The important point is
that only one branch at a time has to be kept in memory — the minimality test does not
rely on previously computed information (this technique was first suggested in [Nie96b)
to compute circumscription). Since the length of a branch is bounded by regularity to
||, the space complexity is polynomial wrt. the size of the signature . The worst case
space complexity of Algorithm 1 and related approaches (such as the one in [Tom8&8])
that do not have this locality is exponential.

Concerning time complexity: minimal model computation is II§-complete [EG93]. We
cannot expect a better behavior for Algorithm 2.

THEOREM 5.1 (CORRECTNESS AND COMPLETENESS OF ALGORITHM 2)

Algorithm 2 is rational, in the sense that it satisfies all the rationality postulates (KB—1),
(KB—2), (KB—3), (KB—4), (KB—5), and the strong relevance postulate (KB—6.1),
i.e. Algorithm 2 is sound. Further, any deletion that satisfies these postulates can be
computed by this algorithm, i.e. completeness holds.

PROOF. Suppose as given a database IDB U EDB and a ground view atom A to be
deleted. Clearly, Algorithm 2 terminates due to the regularity restriction (cf. Section 3).
Let IDB U EDB \ HS(b) be the result of the computation, where b is a branch of the
constructed update tableau T that satisfies minimality.

That the mentioned postulates (cf. Def. 2.2) are satisfied is obtained easily in most
cases. Recall that the link between belief revision and database updates was given by
identifying KB; with IDB, KBy with EDB and the contraction request a with the
view atom A to be deleted. The whole knowledge base KB consists of KBy U KBy, i.e.
IDB U EDB.

The postulate (KB—1) is satisfied trivially by Algorithm 2, because we do insert
neither in EDB nor in IDB. If at all, only EDB shrinks, and therefore (KB—2) is
satisfied.

Concerning (KB—3) suppose that a ¢ Cn(KB). To show that (KB—3) is satisfied,
we have to show that HS(b) = {}.

24 C. Aravindan and P. Baumgartner

Equivalently to the given condition a ¢ Cn(KB), the set {-A} U IDB U EDB is
satisfiable. Hence, by Lemma 4.3 the tableau T is trivial. So, T contains a branch b’
with HS(b") = {}. This proves that a suitable branch with empty hitting set can be
computed by Algorithm 2. It remains to be shown that indeed such a branch must be
computed: suppose, by way of contradiction, that HS(d) # {}. We are given that b
satisfies minimality. So there is an s € HS(b) such that IDB U EDB \ HS(b) U {s} = A.
Equivalently, IDB U EDB \ HS(b) U {s} U {—A} is unsatisfiable. Since, s € HS(b) and
trivially EDB \ HS(b) C EDB, the set IDB U EDB U {—A} is unsatisfiable as well.
This, however, is a plain contradiction to the given condition that {—A} U IDB U EDB
is satisfiable. Therefore, HS(b) = {} as claimed, and so (KB—3) is satisfied.

Next we turn to (KB—4). The condition that KB; I/ a holds for all our delete requests,
because «a is an atom, and an atom never follows from a set of definite program clauses,
which is just our assumption about IDBY. Thus we have to show that a ¢ Cn(KB—a),
i.e. IDBU EDB \ HS(b) [~ A.

We are given that b satisfies minimality. This implies that b is a finished open branch.
By the soundness of hyper tableaux (Theorem 3.1) [b] is a model for the underlying
clause set. For the case of update tableaux, this means that [b] = IDB*U{-A + }. Now
consider the set b N EDB*. By definition of branch semantics, all atoms in b N EDB* are
true in [b], and all atoms in EDB*\ (bN EDB™) are false in [b]. Next we translate back
the semantics of the renamed clause set to the original clause set. Recall that for the
renaming transformation we use the set S (cf. Def. 4.2) which includes EDB and also
A. Hence, we can apply the second statement in Proposition 4.1 by setting there § = 5,
7% = [b] and D¥ = IDB*U{=A4 « }, and conclude that there is an interpretation Z such
that Z = IDBU{ « A}. Since, as obtained above, all atoms in b EDB* are true in [b],
and HS(b) is just the renamed version of bNEDB*,i.e. =HS(b) = bN EDB*, we also have
that every atom A € HS(b) is false in T (because the corresponding atom =4 € bNEDB*
is true in [b]). Similarly, since all atoms in EDB*\ (bN EDB*) are false in [b], all atoms
in EDB \ HS(b) are true in Z. Together with Z |= IDB U { + A} this implies trivially
Z = IDBU{ + A}UEDB\ HS(b). In other words, this set is satisfiable. Equivalently
IDB U EDB \ HS(b) £ A, which was to be shown. Hence, (KB—4) is satisfied.

The next postulate is (KB—5). Since we deal with update request that are view atoms
only, KB-equivalence is just syntactical equality among atoms. Thus, (KB—5) is trivially
satisfied.

The final postulate shown to be satisfied is (KB—=6.1). Hence let 8 € KB\ KB—a. We
have to show that o € Cn(KB—a) U {8}. Since KB \ KB—a is just the set of elements
removed from KBy, this means in terms of our algorithm, that for every s € HS(b) it
holds that IDB U EDB \ HS(b) U {s} | A. This property, however, is nothing but the
minimality test (cf. Def. 5.1). Since b satisfies the minimality test, postulate (KB—6.1)
is satisfied.

Since all postulates are now proven to be satisfied, the whole proof is completed. O

T Observe that every clause in IDB U { <~ A} contains a negative literal and hence is satisfiable.

View Deletion on Databases 25

5.1. MINIMALITY TEST AGAIN

We are now going to relate the minimality test to a similar test from the literature.
Interestingly, the minimality test of the previous section is equivalent to the groundedness
test used by Ilkka Niemeld for generating minimal models of disjunctive logic programs
[Nie96b, Nie96c]. The key idea of the groundedness test is to check if the members in the
model are implied by the program together with the negation of the atoms not present
in the model.

In the following we will formulate this groundedness test technique formally and es-
tablish its equivalence with the minimality test technique.

DEFINITION 5.4 (GROUNDEDNESS TEST)

Let T be an update tableau for IDB U EDB and delete request = A. We say that an open
finished branch b in T satisfies the groundedness test iff Vs € HS(b) : IDB* U {+ —B |
Be EDB\HS(D))}U{-A« }F-s«+. [|

It is common to the groundedness test and the minimality test that they both ask for im-
plications to be proven. Hence, any refutationally complete theorem prover (e.g. a hyper
tableau prover) can be used as an implementation in both cases. A notable difference be-
tween the groundedness test and the minimality test is that the minimality test is carried
out wrt. the original database IDB, whereas the groundedness test is carried out wrt.
the renamed database IDB*. Since both tests are equivalent (cf. Proposition 5.2), this
difference is irrelevant from a theoretical point of view. However, from a practical point
of view there can well be a difference: typically, EDB will be very large, and HS(b) will
be comparably small. Hence EDB \ HS(b) still is large. Now, in the groundedness test,
EDB \ HS(b) is translated into a set of negative unit clauses, whereas in the minimality
test EDB \ HS(b) is translated into a set of positive unit clauses. For a bottom-up cal-
culus like hyper-tableaux it is advantageous to minimize the number of positive clauses,
because they can instantly be applied and give rise for further inferences. On the other
side, in the groundedness test the definite program IDB is translated into a disjunctive
logic program. Since this causes branching in a bottom-up prover, the positive effect of
having few positive unit clauses is compensated to some degree.

In the mentioned diagnosis application of hyper tableaux (Section 4.1), bringing in
“semantics” by renaming turned out to improve efficiency dramatically [BFFN97a). It is
conceivable that the same holds for the comparable situation here, i.e. that the ground-
edness test is superior to the minimality test.

Next we will establish the “semantical” equivalence of both techniques. A further and
natural characterization in terms of minimal models will be given as well.

PROPOSITION 5.2
Let T be a hyper tableau for IDB* U {—A «+ } and b be an open finished branch in T.
Then the following are equivalent:

(a) b satisfies the groundedness test

(b) b satisfies the minimality test

(c) [b] is an EDB*-minimal model for IDB* U {—~A}, where EDB* = {-C | C €
EDB}

26 C. Aravindan and P. Baumgartner

This means that the groundedness test, as well as the minimality test achieve a mini-
mization of the deletion of EDB-atoms such that consistency with a given delete request
is recovered.

PRrROOF. (a) iff (b): We have

Branch b satisfies the groundedness test

Vs € HS(b) : IDB*U{« —-B|B€ EDB\ HS(D)}U{-A+ } F —s +

Vs € HS(b) : VI® : I% W IDB*U{ + -B | B € EDB\ HS(b)} U {-4 +
JU{ & ~s} *)
& VseHS(b):VI:ZTWEIDBU{B+ |Be€ EDB\HS(O)}U{+ A}U{s+}
This equivalence holds by Proposition 4.1: for any pair of interpretations Z5 for
the previous line and 7 for this line: a renamed clause occurring in the previous
line is true in 7% iff the corresponding clause in this line is true in Z.

Vs € HS(b) : IDBU{B + |B € EDB\ HS(b)}U{+ A}l « s

Vs € HS(b) : IDBUEDB\ HS(b)U {s}F A

b satisfies the minimality test.

t e

te o

(a) iff (c): We have

Branch b satisfies the groundedness test
& Vse HS(b):IDB*U{«+ -B|Be€ EDB\HS(b)}U{-A+ } F s«
& IDB*U{-A« }U{« -B|Be€EDB\HS)}F{-s+ |se HS(b)} *

v

D N A

The indicated definitions of D, A and A prepare for the application of Lemma 3.2. For
the (a) = (c) direction, Lemma 3.2 is to be applied in the only-if direction. To do so,
we have to show first that D U —A is satisfiable: clearly, IDB* U {—A « } is satisfiable,
because we are given a tableaux with open saturated branch b for it. No clause + —B
such that B € EDB \ HS(b) can be used to close b, because then we would have to
have =B € b, which implies B € HS(b). But B cannot be in both EDB \ HS(b) and in
HS(b). Thus, b remains an open branch when {< —B | B € EDB \ HS(b)} would be
added to the clause set IDB* U {—A « }. Further, b remains finished, because adding
negative clauses does not enable other extension steps than those closing branches. Thus,
together, D U —A is satisfiable, because b constitutes a model for it.

Hence, Lemma 3.2 is applicable as suggested, and from line (*) we conclude that
IDB*U{-A+ }U{«+ -B|Be€ EDB\ HS(b)}U{—-s«+ |se€ HS(b)} (**

D N A

is satisfiable and HS(b) is minimal (in the sense stated in item (2b) in Lemma 3.2).
From this minimality property it follows easily that [b] is an EDB*-minimal model for
IDB* U {—A} as claimed. Hence, the (a) = (c) direction is proven.

The proof of the (¢) = (a) direction is quite similar: suppose that [b] is an EDB*-
minimal model for IDB* U {=A}. Then, line (**) is satisfiable, and HS(b) is minimal
(in the sense stated in item (2b) in Lemma 3.2) due to the EDB*-minimality of [b].
But then, Lemma 3.2 is applicable in the if-direction, and we conclude line (*). By the
equivalences preceding line (*), b satisfies the groundedness test. O

View Deletion on Databases 27

5.2. AN ALTERNATIVE PROOF

Now we follow an alternative way to show the rationality of Algorithm 2. We do this
in order to gain more insight on how Algorithm 2 is related to the previous approach
presented in Section 2.2 that generates (abductive) explanations and computes hitting
sets of these explanations. To better understand the relationship it is imperative to find
where the explanations are in the hyper tableau approach. We first define the notion of
cut in this direction.

DEFINITION 5.5 (EDB-CUT)
Let T be an update tableau with open branches b;,...,b,. A set S = {A;,...,4n} C
EDB is said to be a EDB-cut of T iff = A; € b;, for 1 < i < n. [|

That is, an EDB-cut is obtained from T by picking exactly one negated EDB-atom from
each open branch in T. Notice that for non-trivial update tableau an EDB-cut always
exist, as every open branch contains at least negated FDB-atom then.

EXAMPLE 5.6 (EDB-CUT)
Consider this database:

IDB: p ¢« gAr EDB: q +
p « t T
t <«
So, % = {p, q,r,t} and IDB* is as follows: Hyper Tableau:
DB ¥ . P EDB-cuts:
: . '_1r —
q b p /\ {q, 7'}
— '_1p
—|q -ar {t’ 7'}
An update tableau for delete request —p is {q,1}
shown on the right. Below the leaves of the ‘ ‘ {t}
branches are the hitting sets (both satisfy it it
minimality). All the EDB-cuts are displayed
on the right. {q,t} {r,t}

Readers familiar with abduction might have already realized that an EDB-cut across
the tableau constitutes an explanation for the view atom being deleted. More precisely:

LEMMA 5.3

Let T be a non-trivial update tableau for IDB U EDB and delete request - A. Let S be
the set of all EDB-closed minimal abductive explanations for A wrt. IDB. Let S' be the
set of all EDB-cuts of T. Then the following hold:

e SCJY
e VA'e §':JA € S st. ACA!

PRrROOF. For the first item, let EDB D A € S be a given minimal abductive explanation

28 C. Aravindan and P. Baumgartner

for A. We have to show that there is an EDB-cut of T which consists of the same literals as
A. First, note that IDBUAU{-A} is inconsistent, and that IDBUA'U{—A} is consistent,
for each A’ C A (*). Since the renaming transformation preserves satisfiability, it holds
that IDB* U A* U {-A « } is inconsistent as well, where A* :={ «+ —A| A € A}.
Further, since IDB U{—A} is consistent (for syntactical reasons: IDB contains no facts),
IDB* U {-A « } is consistent as well. Notice that by definition of update tableau, T
is a hyper tableau for just this set.

By soundness of hyper tableaux (Theorem 3.1), T must contain open branches. Fur-
ther, every open branch b; in T, for 1 < i < n, must close with some (negative unit)
clause of the form <+ —A; € A*. This holds, because otherwise, by completeness of
hyper tableaux (Theorem 3.1), we would have a contradiction to the inconsistency of
IDB* U A* U{-4 « }. Furthermore, each of the negative unit clauses in A* must
be used (at least once) to close a branch, because otherwise we would have together
with soundness of hyper tableaux a contradiction to the minimality of A, as stated in
(*). Thus, in other words, collecting the respective EDB-atoms from the b;’s gives the
EDB-cut A of T.

The argumentation for the second item is similar. Let A’ € S’ be an arbitrary element
in S1. By definition of EDB-cut, for each A € A’ there is an open branch in T containing
-4, and vice versa. Hence, the additional negative unit clauses A* := { + -A| A€ A’}
can be used to close T. Recall that T is a hyper tableau for the clause set IDB* U
{=A « }. Thus, by soundness of Hyper tableaux, IDB*UA*U{—A4 + }is inconsistent.
Renaming does not affect consistency. Hence IDB U A’ U {—A} is inconsistent as well.
Equivalently, IDB U A’ = A. Since IDB U A’ is consistent for syntactical reasons (this
set contains no negative clauses), A’ is an (EDB-closed) abductive explanation for A by
Def. 2.3 (notice that KB; there is just IDB here). Trivially A’ contains a minimal such
explanation A. That is, A € S as desired. O

REMARK 5.7
Unfortunately, and contrary to what one might expect, it is not possible to strengthen
the second item in this lemma towards

VA'eS':IA € Sst. A=A,

even if we restrict to update tableaux satisfying minimality. The canonical counterexam-
ple is in the preceding Example 5.6. Now consider the atom p. There are two minimal
abductive explanations for p, which are {t} and {g,7}. An update tableau (even sat-
isfying minimality) for —p, however, will also admit the EDB-cuts {q,t} and {r,t}, as
displayed in the tableau in Example 5.6. This example demonstrates that computing
minimal hitting sets and computing minimal abductive explanations are rather different
things.]

The above lemma precisely characterizes which explanations are generated by an up-
date tableau. It is obvious then that a branch cuts through all the explanations and
constitutes a hitting set for all the generated explanations. This is formalized below.

LEMMA 5.4 ([AD95, ARA95])
Let S and S’ be sets of sets s.t. S C §' and every member of S'\ S contains an element
of S. Then, a set H is a minimal hitting set for S iff it is a minimal hitting set for S'.

View Deletion on Databases 29

LEMMA 5.5

Let T be a non-trivial update tableau for IDB U EDB and a delete request = A that
satisfies the minimality test. Then, for every open finished branch b in T, HS(b) is a
minimal hitting set for all the abductive explanations of A.

Proor. Follows from Lemma 5.3 and Lemma 5.4. O

From the belief dynamics results recalled in Section 2 (Algorithm 1 and Theorem 2.1),
it follows that Algorithm 2 is rational. Thus, another proof of our main result Theorem 5.1
along these lines can be given.

6. Concluding Remarks

We have presented an algorithm for deleting a view atom from a definite database.

Moreover, we have shown in Theorem 5.1 that this algorithm is rational in the sense
that it satisfies the rationality postulates that are justified from a philosophical angle.

The key idea of our approach is to transform the given database into a disjunctive
logic program in such a way that updates can be extracted from the models of this
transformed program. More precisely, every minimal model wrt. a certain set S’ of
predicates represents the actions to be taken to satisfy the update. Thus, we have also
shown that deleting a view atom can be rephrased as a circumscription problem, where
S? are the predicates to be minimized, and all other predicates vary. At the heart of our
algorithm is a minimality test that cancels non-rational update candidates. We showed
that this minimality test is equivalent to the groundedness test known from the literature.
Furthermore, we have sketched how a diagnosis machine can be used to compute view
updates.

In contrast to previous approaches for view updates, our algorithm is of polynomial
space complexity. The reason is, that the new algorithm does not compute possibly
exponentially many abductive explanations in a first step and then extract updates by
means of a minimal hitting set.

Instead, a candidate update is directly extracted from a model construction for the
transformed clause, which is done by the hyper tableaux calculus. Hyper tableaux need
to consider only one branch at a time, and the length of each branch is bounded by the
regularity condition by the number of atoms in the input language. The final minimality
test where update candidates have to qualify as minimal updates does not influence this
polynomial space complexity.

As a by-product when investigating the relation to previous approaches, we got a new
soundness and completeness result (Lemma 5.3) for abductive explanation computation
with hyper tableaux.

Our approach works on the assumption that the EDB is available and the complete
EDB is indeed used for the transformation. It is interesting to study whether this ap-
proach can be effectively used in situations where EDB is very huge or not completely
known. It should not be difficult to work with only that part of the EDB upon which the
current view update request depends on, but a formal study in this regard is necessary.

30 C. Aravindan and P. Baumgartner

Acknowledgments

The authors would like to thank all the members of the Artificial Intelligence Re-
search Group at the University of Koblenz, Germany, for stimulating discussions on this
topic. This research is a part of projects on Automated Deduction and Disjunctive Logic
Programming funded by DFG (grants Fu 263/2-2 and Fu 263/3-1 respectively). Three
reviewers gave very helpful suggestions for improvements.

[ABY7]

[Abig8]

[AD95)

[AGMSS5]

[Ara95]

[Bau98]

[BFFN97a]

[BFFN97b)]

[BFN96]

[BIAR97]

[Bry90]

References

Chandrabose Aravindan and Peter Baumgartner. A Rational and Efficient
Algorithm for View Deletion in Databases. In Jan Maluszynski, editor, Logic
Programming - Proceedings of the 1997 International Symposium, Port Jef-
ferson, New York, 1997. The MIT Press.

S. Abiteboul. Updates: A new frontier. In M. Gyssens, J. Paredaens, and
D. Van Gucht, editors, Proceedings of the second international conference
on database theory, volume Lecture Notes in Computer Science 326, pages
1-18. Springer-Verlag, 1988.

Chandrabose Aravindan and Phan Minh Dung. Knowledge base dynamics,
abduction, and database updates. Journal of Applied Non-Classical Logics,
5(1):51-76, 1995.

C. E. Alchourrén, P. Giardenfors, and D. Makinson. On the logic of theory
change: Partial meet contraction and revision functions. The Journal of
Symbolic Logic, 50(2):510-530, 1985.

Chandrabose Aravindan. Dynamics of Belief: Epistemology, Abduction, and
Database Updates. PhD thesis, Computer Science Program, Asian Institute
of Technology, Bangkok, Thailand, 1995.

Peter Baumgartner. Hyper Tableaux — The Next Generation. In Harry
de Swaart, editor, Automated Reasoning with Analytic Tableaux and Related
Methods, number 1397 in Lecture Notes in Artificial Intelligence. Springer,
1998.

Peter Baumgartner, Peter Frohlich, Ulrich Furbach, and Wolfgang Nejdl.
Semantically Guided Theorem Proving for Diagnosis Applications. In 15th
International Joint Conference on Artificial Intelligence (IJCAI 97), pages
460-465, Nagoya, 1997. International Joint Conference on Artificial Intelli-
gence.

Peter Baumgartner, Peter Frohlich, Ulrich Furbach, and Wolfgang Nejdl.
Tableaux for Diagnosis Applications. In Didier Galmiche, editor, Automated
Reasoning with Analytic Tableaux and Related Methods, number 1227 in Lec-
ture Notes in Artificial Intelligence, pages 76-90. Springer, 1997.

Peter Baumgartner, Ulrich Furbach, and Ilkka Niemeld. Hyper Tableaux.
In Proc. JELIA 96, number 1126 in Lecture Notes in Artificial Intelligence.
European Workshop on Logic in AI, Springer, 1996.

Patrick Blackburn, Jan Jaspers, and Maarten de Rijke. Reasoning about
changing information. South African Computer Journal, 19:2-26, 1997.
Francois Bry. Intensional updates: Abduction via deduction. In D. H. D.
Warren and P. Szeredi, editors, Proceedings of International Conference on
Logic Programming, pages 561-575. The MIT Press, 1990.

View Deletion on Databases 31

[BT98)

[BY96]

[CL73]
[CTO1]

[DB82]

[Dec90]

[Dec96]

[EG93]

[Fit90]

[FHO1]

[G#r92)
[GL90]
[GL91]

[GMY5]

[GRY5]

[Han91a]

[Han91b]

Francois Bry and Sunna Torge. A Deduction Method Complete for Refuta-
tion and Finite Satisfiability. In Proc. 6th European Workshop on Logics in
AI (JELIA), LNAI. Springer, 1998.

Francois Bry and Adnan Yahya. Minimal Model Generation with Positive
Unit Hyper-Resolution Tableaux. In P. Miglioli, U. Moscato, D. Mundici, and
M. Ornaghi, editors, Theorem Proving with Analytic Tableaux and Related
Methods, number 1071 in Lecture Notes in Artificial Intelligence, pages 143—
159. Springer, 1996.

C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

Luca Console and Pietro Torasso. A spectrum of logical definitions of model-
based diagnosis. Computational Intelligence, 7(3):133-141, 1991.

U. Dayal and P. A. Bernstein. On the correct translation of update opera-
tions on relational views. ACM Transactions on Database Systems, 8(3):381—
416, 1982.

Hendrik Decker. Drawing updates from derivations. In Proceedings of the
Third International Conference on Database Technology. Springer-Verlag,
1990.

Hendrik Decker. An extension of SLD by abduction and integrity mainte-
nance for view updating in deductive databases. In Michael Maher, editor,
Proceedings of Joint International Conference and Symposium on Logic Pro-
gramming, pages 157-169. The MIT Press, 1996.

Thomas Eiter and Georg Gottlob. Propositional circumscription and ex-
tended closed world reasoning are w5-complete. Theoretical Computer Sci-
ence, 114:231-245, 1993.

M. Fitting. First Order Logic and Automated Theorem Proving. Texts and
Monographs in Computer Science. Springer, 1990.

H. Fujita and R. Hasegawa. A Model Generation Theorem Prover in KL1
using a Ramified-Stack Algorithm. In Proc. of the Fighth International Con-
ference on Logic Programming, pages 535—548, Paris, France, 1991.

P. Gardenfors. Belief Revision: An Introduction. In P. Gérdenfors, editor,
Belief Revision, pages 1-28. Cambridge University Press, 1992.

A. Guessoum and J. W. Lloyd. Updating knowledge bases. New Generation
Computing, 8, 1990.

A. Guessoum and J. W. Lloyd. Updating knowledge bases II. New Genera-
tion Computing, 10, 1991.

Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized
views: Problems, techniques, and applications. IEEE DE Bulletin, 18(2):3—
19, 1995.

P. Gérdenfors and H. Rott. Belief Revision. In D. M. Gabbay, C. J. Hogger,
and J. A. Robinson, editors, Handbook of Logic in AI and Logic Program-
ming, volume IV: Epistemic and Temporal Reasoning, pages 35-132. Oxford
University Press, 1995.

S. O. Hansson. Belief base dynamics. PhD thesis, Uppsala University, Swe-
den, 1991.

S. O. Hansson. Belief contraction without recovery. Studia Logica, 50(2):251—
260, 1991.

32 C. Aravindan and P. Baumgartner

[Kel85]

[KMO0]

[Lan90]
[L1087]

[MB83]

[McC85]

[Nie96b)

[Nie96¢]

[Poo89)
[Rei87]
[Rob65]

[Tom88]

A. M. Keller. Algorithms for translating view updates to database updates
for views involving selections, projections, and joins. In Proceedings of the
Fourth ACM Symposium on Prinsciples of Database Systems, pages 154-163.
ACM, 1985.

A. C. Kakas and P. Mancarella. Database updates through abduction. Tech-
nical report, Department of Computing, Imperial College, London, U.K.,
1990.

R. Langerak. View updates in relational databases with an independent
scheme. ACM Transactions on Database Systems, 15(1):40-66, 1990.

J. W. Lloyd. Foundations of Logic Programming. Springer—Verlag, second
extended edition, 1987.

Rainer Manthey and Francgois Bry. SATCHMO: a theorem prover imple-
mented in Prolog. In Ewing Lusk and Ross Overbeek, editors, Proceedings
of the 9t Conference on Automated Deduction, Argonne, Illinois, May 1988,
volume 310 of Lecture Notes in Computer Science, pages 415-434. Springer,
1988.

John McCarthy. Circumscription — a form of non-monotonic reasoning. Ar-
tificial Intelligence, 13:27-39, 1985.

Ilkka Niemeld. Implementing circumscription using a tableau method. In
W. Wahlster, editor, Proceedings of the 12" European Conference on Arti-
ficial Intelligence, pages 80-84. John Wiley & Sons Ltd, 1996.

Tlkka Niemeld. A tableau calculus for minimal model reasoning. In P. Migli-
oli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Proceedings of the
fifth workshop on theorem proving with analytic tableaux and related meth-
ods, number 1071 in Lecture Notes in Artificial Intelligence, pages 278-294.
Springer-Verlag, 1996.

David Poole. Explanation and prediction: An architecture for default and
abductive reasoning. Computational Intelligence, pages 97-110, 1989.
Raymond Reiter. A Theory of Diagnosis from First Principles. Artificial
Intelligence, 32(1):57-95, April 1987.

J. A. Robinson. Automated deduction with hyper-resolution. Internat. J.
Comput. Math., 1:227-234, 1965.

A. Tomasic. View update translation via deduction and annotation. In
M. Gyssens, J. Paredaens, and D. van Gucht, editors, Proceedings of the
International Conference on Database Technology, volume Lecture Notes in
Computer Science 326, pages 338-352. Springer-Verlag, 1988.

