Hyper Tableaux and Disjunctive Logic
Programming

Peter Baumgartner - Ulrich Furbach
Universitat Koblenz
Institut fir Informatik
Rheinau 1
56075 Koblenz
Germany
E-mail: {peter,uli}@informatik.uni-koblenz.de

For disjunctive logic programs (DLPs) there are several proposals for defining interpreters,
like the nearHorn-Prolog-Family [Loveland, 1987], SLI-Resolution [Lobo et al., 1992], SLO-
Resolution[Rajasekar, 1989], Model Tree construction [Fernandez and Minker, 91], Restart
Model Elimination [Baumgartner et al., 1995, Baumgartner and Furbach, 1994]. There have
also been different approaches to assign least fixpoints to DLPs.

This paper proves that there exist an efficient proof procedure, namely hyper tableaux,
which can be understood as a direct implementation of some of the well known fixpoint itera-
tion techniques. We show how a hyper tableaux refutation can be transformed into a restart
model elimination refutation. This result links the bottom-up to a top-down semantics for
DLPs, and thus generalizes the standard result in [Lloyd, 1987] saying that any finite iteration
of the T-operator for definite programs can be simulated top-town in a SLD-refutation.

A different approach to obtain a top-down calculus is to replace all literals in the in-
put clause set by their complements. We demonstrate that in this setting hyper tableaux
generalize Rajasekar’s SLO-Resolution.

In the next section we give the proof theoretical part of this paper, which is based on
the hyper tableaux calculus from [Baumgartner et al., 1996]. In the following two sections
we compare this calculus to fixpoint iteration techniques: there is one seminal paper by
Minker and Rajasekar [Minker and Rajasekar, 1990] which introduces a consequence oper-
ator to define a semantics for positive disjunctive logic programs by fixpoint iteration over
states. We will relate hyper tableaux to this iteration. Another approach by Fernandez and
Minker ([Fernandez and Minker, 91]), gives a bottom up evaluation of hierarchical disjunctive
databases. We will demonstrate, that this approach is a special case of hyper tableaux.

In Section 5 we discuss the relation of hyper tableaux to SLO-resolution, and in Section 6
we relate hyper tableaux to restart model elimination.

1 Preliminaries

In what follows, we assume that the reader is familiar with the basic concepts of first-order
logic. A clause is a multiset of literals, usually written as the disjunction A1V ---V A, V
=B V.-V =B, or the implication Ay,... , A, + Bi,...,B, (m > 0, n > 0). As usual,
the variables occurring in clauses are considered implicitly as being universally quantified, a
clause is considered logically as a disjunction of literals, and a (finite) clause set is taken as
a conjunction of clauses. A ground clause is a clause containing no variables. Literal K is an
instance of literal L, written as K > L or L < K, iff K = L~y for some substitution . Let L
denote the complement of a literal L. Two literals L and K are complementary if L = K.

Let X be a literal or a clause. X9 is the set of all ground instances of X (wrt. a given
signature which contains at least one constant symbol). Similarly, if X' is a clause set or
literal set, then X9 := (Jxcp X7.

Definition 1.1 (Literal tree, Clausal Tableau) [Letz et al., 1994])

A literal tree is a pair (t,A) consisting of a finite, ordered tree ¢ and a labeling function A
that assigns a literal to every non-root node of t. The empty tree contains one single node
only.

The successor sequence of a node N in an ordered tree ¢ is the sequence of nodes with
immediate predecessor N, in the order given by t.

A (clausal) tableau T of a set of clauses S is a literal tree (¢,A) in which, for every
successor sequence Ni,..., N, of a node N in ¢ labeled with literals K1, ..., K, respectively,
there is a substitution o and a clause {Li,...,L,} € S with K; = L;o for every 1 < i < n.
{Ki,...,Ky} is called a tableau clause (below N) and the elements of a tableau clause are
called tableau literals. If § is a substitution, then T'0 denotes the literal tree which is obtained
from literal tree T by application of § to the labels of all nodes of T'. That is, if T' = (¢,)
then T'd = (t, \'), where X'(N) = (A(IN))d for every node N in T

We define for a given clausal tableau 7' the extension of branch b with clause C (or,
equivalently, we say that b is extended by C) to be the tableau 7" which is the same as T,
except that 7" contains the tableau clause C below the leaf node of b. [

Definition 1.2 (Branch, Open and Closed Tableau, Selection Function)

A branch of a tableau T is a finite sequence Ny,..., N, (n > 0) of nodes in T such that
Ny is the root of T', N; is the immediate predecessor of N;;; for 0 < i < n, and N, is
a leaf of T. We say branch b = Ny,... ,N, is a prefiz of branch ¢, written as b < ¢ or
c>b,if c=Ny,...,Np,Npy1,... ,Npig for some nodes Npi1,... , Nptg, & > 0. Branch
concatenation is written with “”, as in (b1, b9) or (b, N) (throughout this paper the letter b
is used for branches, and the letter N is used for nodes).

The branch literals of branch b = Ny, ... , N, are the set lit(b) = {A(N1),... A(N,)}. We
find it convenient to use a branch in a place where a literal set is required to mean its branch
literals. For instance, we will write expressions like A € b instead of A € lit(b). Further, we
will confuse a node with its label and write, for instance “(b, L)”, where L is a literal, instead
of (b, N), where A(N) = L”; also, we say the “node L” instead of “the node labeled with
L.

In order to memorize the fact that a branch contains a contradiction, we allow to label a
branch as closed; branches which are not labeled as closed are said to be open. A tableau is
closed if each of its branches is closed, otherwise it is open.

A selection function is a total function f which maps an open tableau to one of its open
branches. If f(T) = b we also say that b is selected in T by f. O

Fortunately, there is no restriction on which selection function to use. For instance, one can
use a selection function which always selects the “leftmost” branch.

Definition 1.3 (Branch Semantics)

Let L be a possibly infinite set of literals. Define
LY := {VL|L € L} as the clause set of £, where VF denotes the universal closure of formula
F. Whenever we take an atom set 4 where a set of formulae were required, we implicitly
assume its clause set AY. By the model of an atom set A we mean the minimal Herbrand

model of A which we denote by [A]. Using a previous convention, we thus identify in par-
ticular a branch b with the clause set (lit(h))”. Hence, it is meaningful to say that a branch
b is unsatisfiable, and also [b] = C is defined (the least Herbrand model of the clause set of
b satisfies the clause C). O

2 Hyper Tableaux

We are going to define the calculus of hyper tableaux as given in [Baumgartner et al., 1996].
For this, we need one more preliminary definition.

Definition 2.1 (Pure clause)

A clause C = Ay,..., A, < Bi,...,B, is called pure iff variables are not spread over
distinct head literals, i.e. iff Var(A4;) N Var(4;) = 0, for 4,5 € {1,... ,m} and 7 # j. A
substitution 7 is a purifying substitution for C' iff C'r is pure. O

Obviously, every non-pure clause can be turned into a pure instance thereof by application
of an appropriate substitution.

Definition 2.2 (Hyper tableau)

Let S be a finite set of clauses and f be a selection function. Hyper tableauz for S are
inductively defined as follows:

Initialization step: The empty tree is a hyper tableau for S. Its single branch is marked
as “open”.

Hyper extension step: If

1. T is an open hyper tableau for S, f(T') = b (i.e. b is selected in T by f), where b is an
open branch, and

2. C = Ay,... , Ay < By,...,By, is a clause from S (m > 0, n > 0), called extending
clause in this context, and

3. o is a most general substitution! such that [b] = V(B1 A---A By)o (referred to as hyper
condition), and

4. 7 is a purifying substitution for Co,

then the literal tree T" is a hyper tableau for S, where T" is obtained from T by extending b

by C, and then marking every new branch (b, (4107)), ..., (b, (Apom)) with positive leaf as
“open”, and marking every new branch (b, (mBjow)),... ,(b,(=Byon)) with negative leaf as
“closed”.

We will write the fact that 7" can be obtained from T' by a hyper extension in the way
defined as T' by ¢ 5. 1", and say that C is applicable to b (or T'). Note that the selection func-
tion does not appear explicitly in this relation; instead we prefer to let f be given implicitly
by the context. [

Note that in the hyper extension step we do not take new variants, and that the substitution
o7 is not applied to the whole tableau but only to the extending clause. Condition 3, the
hyper condition, expresses that all (instantiated) body literals have to be satisfied by the

'Here, “most general” means that whenever [b] |= V(B1 A --- A B,)é for some substitution §, then ¢ <
0 [Var(B1 A --- A By)]. The notation o < § [V] means the restriction of the “more general” relation < to the
variables V. See [Siekmann, 1989].

branch to be extended. This similarity to hyper resolution [Robinson, 1965] coined the name
“hyper tableaux”.

Expressing the hyper condition slightly differently, we mark a branch as “closed” if and
only if it is unsatisfiable. For instance, a branch containing literals P(x) and —P(y) is closed.
In the standard tableaux with rigid variables (e.g. in [Fitting, 1990]) a branch is considered
as closed if it contains a complementary pair of literals (notice that P(z) and —P(y) are not
complementary). Of course, these notions coincide in the ground case.

The need for a purifying substitution in condition 4 in the hyper extension step will
guarantee the soundness of hyper tableaux calculi (i.e. if a clause set S admits a refutation
then S is unsatisfiable). The underlying property is the easily provable observation that
V(AV B) = (VA V VB) holds if clause AV B is pure. The substitutions ¢ and 7 have to
be applied in this order because if applied in the other order, there is no guarantee that the
resulting instance of the extension clause is pure. This would destroy soundness.

Example 2.3 For illustration consider the single-literal branch b = r(f(X)) and the clause
C = p(X),q(X,Y) < r(X). Then, [b] E Vr(X)o, where 0 = {X « f(X')}. The head
(p(X),q(X,Y))o = p(f(X"),q(f(X"),Y) is impure. Taking e.g. a purifying substitution
m = {X’ < a} enables a hyper extension step, yielding the hyper tableau whose two open
branches are by = (r(f(X)),p(f(a))) and by = (r(f(X)),q(f(a),Y)). Now, the intended
model candidates for the input clause set are just [b1] or [bo]. It is important to note that
the models are derived “locally” from the paths alone, but not from the whole tableaux.
However, for this construction to be sound we have to require that Vb; V Vby is a logical
consequence of Vb, which indeed holds due to the application of =. O

We return to Definition 2.2. The hyper condition in hyper extension step is — intention-
ally — given in a pure semantical way. With view to a proof procedure it is mandatory to
decide (and not only to semi-decide) whether a clause C and most general substitution o as
required exist. Fortunately, this is possible:?

Proposition 2.4 (Implementing the Hyper Condition)

For every finite atom set A and conjunction of atoms C = Bi A --- A By: if there is a
substitution y for C' such that [A] = Y(B1 A --- A By)y then there is a SLD resolution
refutation of the clause set P = AU{—=B1V...V-B,} with computed answer o < y [Var(C)]
and using exactly |C| resolution steps. If there is no such vy, then each of the finitely many
SLD derivations of P finitely fails.

Notice that the input clause set for SLD resolution is very simple: it consists of only one
negative clause and some positive unit clauses. We prefer this formulation over the unit hyper
resolution procedure in [Chang and Lee, 1973] because its answer completeness result gives
us immediately that ¢ is a most general substitution as required in the hyper condition.

The hyper extension step has the property that a branch is closed if and only if it ends
in a negative literal. Thus it holds:

Proposition 2.5
Every hyper tableau is a clausal tableau where every inner node is labeled with a positive
literal. The converse does in general not hold.

2The missing proofs for this section are contained in the long version of [Baumgartner et al., 1996). It can
be obtained in the WWW using the URL http://www.uni-koblenz.de/universitaet/fb4/publications/
GelbeReihe/RR-8-96.ps.gz

Definition 2.6 (Hyper Tableaux Derivation)

Let S be a finite clause set, called the set of input clauses, and let f be a selection func-

tion. A (possible infinite) sequence Ti,... ,T),,... of hyper tableaux for S is called a hy-

per tableauz derivation from S iff 11 is obtained by an initialization step, and for i > 1,
Ti 1 Fy_y,Ciov,0i-1,mi1 L; for some clause C; 1 € S, and some substitutions o; 1 and m;_;.

This is also written as

T oy cn,00,m T2 - To Foy, Covonmn Tl s

A hyper derivation is called a hyper tableaux refutation if it contains a closed tableau. [

Note that extension steps are no longer applicable to a closed hyper tableau. Figure 1 shows
an example refutation.

1 r(z{)v r(f)((Zyz +— + /(1)\
2 q(X, r
p(Q(qx,)f) ©)

—p(a) —p(f(b))

Figure 1: A sample hyper tableaux refutation. The clause set is given by clauses (1)—(5). Variables
are written in capital letters. The usage of the clauses in extension steps is indicated at the edges. The
initial tableaux is set up with clause (1) (there is no other choice). Extension at r(a) with clause (2)
uses 0 = {z < a}; since Y is pure in the resulting head, we can choose 7 = £ which leaves us Y as a
universal variable. This extension step is indicated as “(2)a” (the body literals are not depicted). The
further refutation of the left subtree should be obvious. For the right subtree we can extend r(f(Z))
with clause (2) again: first compute o = {z + f(Z)}. The resulting head p(f(2)) V ¢(f(Z),Y) of
clause (2) is not pure; we guess m = {Z < b} in order to find the refutation immediately.

For a further discussion of this calculus and especially to its relation to resolution we refer
the reader to [Baumgartner et al., 1996].

3 States

In this section we relate hyper tableaux to the fixpoint semantics from [Lobo et al., 1992].
Let P be a set of ground clauses which contains no purely negative clause; we call P a set of
program clauses.

DHB, the disjunctive Herbrand base for P is the set of disjunctions, that can be formed
by atoms of the Herbrand base of P. The transformation I'¥ : 2PHE _y 2DHB ig given by?

r(D)={C € DHB|C' < By,... ,B,€P, V1<i<n: B;VC;€D,
C"=CyV...vC, V', C is the smallest factor of C"}

30Obviously, this operator is dependent of the program P; we assume this will be clear from the context.

A state for P is a subset of DHB. An ezpanded state ST for P is a state, such that ST =
exp(ST), where

exp(ST) = {C € DHB | C € ST or 3C' € ST : C' is a subclause of C}

In [Lobo et al., 1992] it is shown that the operator I'¥ is continuous, hence its least fixpoint
exists and the [fp-Operator yields I'*% w.

We do not introduce model states explicitly, moreover we use their characterization as
fixpoints and logical consequences:

Theorem 3.1 (Lobo et al. 92)
Let P be a set of program clauses and C € DHB. Then P |= C iff C € exp(Ifp(T%)).

In the following we assume S to be a minimal unsatisfiable set of ground clauses and 7" to
be a hyper tableau for S. ST is this set without the purely negative clauses. Then S* only
consists of program clauses and is consistent. Furthermore we assume that S is in goal normal
form. By this we mean the transformation of every clause of the form + Bj,...,B, into
G < By,..., By, where G is a new predicate symbol, and furthermore adding the clause -G
as the only goal.

A clause C is a cut of T iff

Vb branch of T': AN € b: 3L € C such that A(N) = L, and (1)
VL € C: 3b branch of T : 3N € b such that A(N) = L. (2)

The following lemma relates hyper tableaux derivations to I'°-iterations.

Lemma 3.2
For every i and C € T'S1 i there is a hyper tableau T such that there is a cut C' of T were
C is the smallest factor of C'.

Proof. Induction on 3.

Induction start i = 1: The set T'91 0 contains all smallest factors of (disjunctive) facts from
ST. Let Aq,...,A, < be such a fact, then construct a hyper tableau with an initial step
and a hyper extension step using this fact. The cut A,,..., A, < of this tableau has the
desired property.

Induction step i — i+1: If C € T°1 i + 1, we know by definition of I'®, that C' is the smallest
factor of C; V...V C, V C', such that C' <~ By,... ,B, € St and {B1VCi,... ,B,VC,} C
"1 4. Induction hypothesis gives us, that there exists hyper tableaux 71, ... , T}, such that
Bj Vv Cj is the smallest factor of a cut C;- of Tj.

All we have to do is to link these tableaux together to one hyper tableau: Select a branch
b; from tableau T; which contains the literal B;. Take the leaf N; of this branch and use it
as the new root of the tableau T}y;. The result is again a hyper tableau. If this linking is
done for j from 1 to n — 1 we get a hyper tableau which fulfills by construction the stated
property. Q.E.D.

As an example, assume the following set of clauses ST = {bV ¢,a < b,a + c}. There
is a hyper tableau which consists of the two branches with {b,a} and {c,a} as sets of labels
of its nodes. A set of cuts of this tree is {a V a,a V b,bV c,a V c}. Note that there is no
sequence assumed in which the literals from different branches have to occur within a cut.

The iteration of the I'S-operator gives It 0 = {bV ¢}, It1 = {bV c,a Vc,a V b} and
I't2={bVecaVeaVba}=I%w.

Having these close relation of hyper tableaux and the fixpoint iteration over states we can
use this result to prove completeness of ground hyper tableaux. Note that a proof for full first
order clauses is given in [Baumgartner et al., 1996], which includes a fairness consideration.
Here we only want to establish the close relationship of the approaches.

Theorem 3.3 (Completeness of Hyper Tableaux)
For every unsatisfiable ground clause set S in goal normal form there is a closed hyper tableau
for S.

Proof. Since S is a minimal unsatisfiable set of clauses, we know by compactness that S is
finite and that ST is consistent. The only clause which is not contained in S is the goal clause
-G, and hence we know that ST |= G. From theorem 3.1 we learn that G € exp(Ifp(T'?)).
Since G is an atom it must be contained in Ifp(I'"®) alone. From continuity of the I'S-operator
we conclude that there is an i such that G € T'9% 4.

Lemma 3.2 gives us the existence of a hyper tableau T' with a cut C’, such that G is the
smallest factor of C'. Hence C’ has the form G V...V Gj; in other words every branch of
the tableau contains the literal G. This tableau can be closed by using the goal clause —G.

Q.E.D.

4 Model Trees

The other approach we want to relate hyper tableaux to, is that of bottom up evaluation of
disjunctive deductive databases. In [Fernandez and Minker, 91] and [Furbach, 1992] a bottom
up consequence operator I'M for disjunctive deductive databases is given which acts on sets
of interpretations, thus yielding models for the given set of clauses. In [Seipel et al., 1995]
this approach is related to the consequence operator on states which we discussed above.
Fernandez and Minker also introduce model trees as a calculus to compute this operator, this
is done in detail in [Lobo et al., 1992]. We will demonstrate that this is related closely to
hyper tableaux calculus.
The consequence operator I'M over sets of Herbrand interpretations is given by

M 277 _, 9277 '™ (T) = min(D'N7 (7))
DINT 0B o B DINT(T) = |) MOD(T®(I))
IceT

where MOD gives all models of a state and min filters out the minimal models. The latter
operator looks harmless; it will turn out later in this paper, that this is a rather important
step. Its definition is given by:

min(Z)={IeZ|-3JeZ:JCI}

In [Baumgartner et al., 1996] we gave a proof that the branches of a hyper tableaux
correspond to partial models of the program and in particular that in fair derivations branches
correspond to models.

In the following we additionally depict the relation between one step with the T'™ operator
and hyper extension.

Definition 4.1

Let T be a hyper tableau and b an open branch. A complete extension of T" at b is a tree
T', which can be obtained from T' by applying every possible extension step with expanding
clauses C from P, such that

e only branches b’ are selected, which contains b as a prefix,
e only literals from b are used for an extension step,

e if a clause C is the expanding clause for a branch b’ it has to be used for expansion for
all other branches o', which contain b as a prefix. After this the clause C cannot be
used for further extension steps.

O

The last condition could be strengthened by using a well known strong regularity condition
(“no literal occurs more than once in a branch”). For our purposes the above somewhat
weaker formulation is sufficient.

The following lemma, establishes the connection of partial branches, i.e. models from a
hyper tableaux to the iterations using the I'Moperator.

Lemma 4.2
Let T be a hyper tableau consisting of one single branch b and let T' be a complete extension
of T at b. Then {[V'] | b' € T'} C MOD(T'(lit(b)))

5 SLO-Resolution

In [Rajasekar, 1989] SLO-Resolution is introduced as a generalization of SLD-Resolution.
This interesting approach offers a goal-directed approach for the interpretation of positive
disjunctive programs. In a subsequent paper, Rajesakar and Yusuf offer a modification of
the WAM for an implementation. However there is one missing point: there is only a ground
completeness result; e.g. SLO-resolution can not answer the query < p(z) with respect to
the program p(a),p(b) <—. In this section we will demonstrate, that hyper tableau can be
easily used to simulate SLO-resolution, by simply inverting the signs of all literals. We do
not claim that this transformation is original, it has been used e.g. in [Yahja, 1996] to turn
a bottom-up prover into a goal-directed top-down one; moreover we want to point out that
this simple technique can be used to simulate and to extend SLO-resolution.

The following definitions are taken from [Rajasekar, 1989]

A goal for a disjunctive program is of the form < (Ci,...,Cy),wheren > 0 and the C;
are positive clauses.

Definition 5.1

Let P be a positive disjunctive logic program and let G be a goal. An SLO-derivation from
P with goal G consists of a (finite or infinite) sequence of goals Gy = G, G4, .., such that for
all 4 > 0, G;41 is obtained from G; =« (C1,... ,Cp, ... ,Cy) as follows:

1. C,, is a clause in G;. C,, is called the selected clause.
2. C < By,...,By is a program clause in P.

3. C subsumes C,, with most general unifier 6.

4. Git1 is the goal « (C1,... ,Cp—1,B1VCn,... ,BgV Cr, Cryg1, ..., Ck)0

As usual derivations of the empty clause from G using P are called refutations; one also says
that the goal G succeeds for P.
O

The following ground completeness theorem is proven by induction over the fixpoint
operator I'S.

Theorem 5.2
Let P be a disjunctive logic program and let C be a ground clause. If C is a logical consequence
of P then there is an SLO-refutation from P with goal < C.

Without loss of generality we assume in the following only goals of the form < C where
C is a positive disjunction. Note that a negative clause < A, ... , A, is different from a goal
— A; V...V Ap; the latter is standing for a set of negative units.

Definition 5.3
The dual P? of a clause P = Ay,... ,A, < Bi,...,B,, is obtained by inverting the arrow,
ie. P* = By,...,B,, < Ai,...,A,. This could be alternatively formulated, by saying
that signs of every literal in P = A1 V...V A, VB V...V B, are complemented to get
Pl=-A,V...V-A,VBi V...V B,

Note that the dual of a goal G =« A;1V...VA, is the set of clauses {A; -, ..., A, +
}, since G , written in clause form is the set of negative units {<- A;, ..., < A,}. This
transformation is extended to set of clauses in an obvious way. [

Lemma 5.4
A clause set S is unsatisfiable iff S¢ is unsatisfiable.

Proof. It only requires the trivial observation that if I is a model for S then I? is a model
for S¢, where I¢(L) = I(L) for every literal L. Since the %-operator is involutory the other
direction follows. Q.E.D.

Example 5.5 The following example demonstrates how a SLO-derivation of P with goal G
can be seen as a notation for a hyper tableau derivation of P U {G}:

P: AB+«C,D (1)
B,C «+ (2)
A,D (3)

G: +—~ AVB (4)

An SLO-refutation starting with G is as follows:
«— AVB (5)
<~ CVAVB, DVAVB from4)and]l) (6)
«~DVAVB from 6) and 2) (7)
— from 7) and 3) (8)

A

\
PN

Figure 2: A hyper tableaux refutation of PU{G}. The negative leaf nodes are not displayed.

In order to use the hyper tableau calculus to simulate this derivation we construct the dual
program

P! C,D+ AB 9)
«~ B,C (10)

+— A,D (11)

(12)

and from the goal G we get two dual clauses

A<+ (13)
B + (14)

Applying hyper tableaux to this clause set gives a closed tableau depicted in 2. The starting
goal 5 in the SLO-refutation corresponds to the fist two extension steps with the two facts
A < and B « from the dual program P¢, resulting in the tableau with the two nodes A
and B. The SLO-step yielding in line 6 the goal <~ CV AV B, DV AV B, corresponds
to a hyper extension with C, D + A, B. The two branches from the tableau in figure 2 are
coded in line 6 by the two clauses in the goal. The step resulting in goal 7 corresponds to

the extension step with < B, C and the last step to the extension with < A, D. O
Lemma 5.6
Given a ground SLO-derivation from P with ground goal <— C and derived goal +— C1,... ,Cy,.

Then there is a hyper tableau T for P% and a substitution o such that for all b € T there is
a C; containing Lo, for any label L from b.

Based on the previous lemma we are currently investigating how SLO-resolution can be
improved by applying the concepts of hyper tableaux. By this it is possible to make SLO-
resolution complete with respect to logical consequences and to get rid of some of the rigidly
treated variables.

6 Hyper Tableaux and Restart Model Elimination

In this section we will provide a procedural, top-down semantics for hyper tableaux. We do so
by relating hyper tableaux to the restart model elimination (RME) calculus of [Baumgartner
and Furbach, 1994].

Unlike hyper tableaux, RME is a top-town calculus, i.e. derivations start with a (negative)
goal clause and ends at the (positive) facts. Our main result below shows how any closed

hyper tableau can be transformed into a RME refutation. This transformation will essentially
“reverse” a hyper tableau from the leaves to the root, where a splitting in hyper tableau
corresponds to a “restart step” in RME.

This result is in close relationship to the standard result in [Lloyd, 1987] saying that
any finite iteration of the T-operator over definite programs can be simulated top-town in a
SLD-refutation. In fact, we generalize this result to the non-Horn case.

6.1 Restart Model Elimination

We will briefly review the RME calculus as presented in [Baumgartner and Furbach, 1994].
However, for ease of presentation we will use a slightly different notation in the style of
Definitions 1.1 and 2.2.

Definition 6.1 (Restart Model Elimination)
Let S be a finite set of clauses and f be a selection function. Restart Model Elimination
(RME) tableauz for S are inductively defined as follows:
Initialization step: A clausal tableau obtained by extending the root node of the empty
tree by a negative clause < B1,... , B, € §is a hyper tableau for S. All branches are marked
as “open”.
Linked extension step: If
1. T is an open RME tableau for S, f(T') = b (i.e. b is selected in T by f) with negative
open leaf node —A, and
2. C=Ay,... Ay < By,...,B, is a new variant of a clause from S (m > 1, n > 0),
called extending clause in this context, and
3. o is a most general unifier for A and some A; (where 1 < i < m),
then the literal tree T"c is a hyper tableau for S, where T” is obtained from T by extending
b by C, and then marking the new branches

(b, Al)a T (b, Ai—l)a (ba Ai—{—l), tee (ba Ai—l)a tee (ba _'Bl), tee (ba _'Bn)
as “open”, and marking the new branch (b, A;) as “closed”.
Reduction step: If

1. T is an open RME tableau for S, f(T') = b (i.e. b is selected in T' by f) with negative
open leaf node —A, and

2. A’ € b is a positive literal in b, and
3. o is a most general unifier for A and some —A’,

then the literal tree T"c is a hyper tableau for S, where T” is obtained from T by marking b
as “closed”.
Restart step: If

1. T is an open RME tableau for S, f(T) = b (i.e. b is selected in T' by f) with positive
open leaf node A, and

2. C =« By,..., B, is a new variant of a negative clause from S (n > 0),

then the literal tree T" is a hyper tableau for S, where T" is obtained from T by extending b
by C.
The notion of derivation and refutation is taken from Definition 2.6. [

Consider the clause set in Example 5.5 again. Figure 3 contains a RME refutation.

‘ Extension step
~B Reduction step|
/\ ****** Restart step
B C <«

* |
|
my
A B -C -D
TN
-B
* A
|
-A
*

Figure 3: A RME refutation of the clause set of Example 5.5. Notice that the goal < AV B
stands for the two clauses A < and B.

6.2 Mapping Hyper Tableaux to Restart Model Elimination

Theorem 6.2 (Top-Down Semantics for Hyper Tableaux)

Let Ty be a closed hyper tableau containing the tableau clauses S. Let G =< Bi,...,B,
be a tableau clause in Ty (which closes a branch). Then there is a RME refutation of S with
goal clause G.

Proof. Let Sy be the multiset of tableau clauses occurring in Ty. Let k(Sg) denote the
number of occurrences of positive literals in Sy minus the number of non-negative clauses*
in Sy (k(Sy) is a measure for the “Hornness” of Sg; it is related to the well-known ezcess
literal parameter). Now we prove the claim by induction on k(Sq).

Base case: k(Sg) = 0. Sy and thus also S must be a set of Horn clauses. Apply Lemma 6.3.

Induction step: k(Spg) > 0. As the induction hypothesis assume the result to hold for closed
hyper tableau for clause sets S, satisfying k(S%) < k(Sg). Figure 4 depicts the proof.

Some ancestor node A of the tableau clause G =< By, ... , B, must have one or more posi-
tive brother nodes, because otherwise Sy would be a Horn multiset. Let C = (Ay,... ,Ap, A
B) € Sy be the tableau clause where the node A is contained in. Here, B is understood as
a (possibly empty) sequence of positive literals. Below we will also write expressions like -8
and mean the clause \/ g5 —B.

We split T in m+1 closed hyper tableaux: the hyper tableaux Tf} is obtained from Ty by
replacing the tableau clause C by A < B (and thus deleting the subtrees below Ay, ..., A.),
and the hyper tableaux Tﬁi is obtained from Ty by replacing C by A; (for i =1,... ,m).

Let Sfl and Sfli be the tableau clause multisets corresponding to Tj{‘l and Tgi. It holds
that k(S7) < k(Sg) and k(SfIi) < k(Sw). Notice that T} still contains G. Hence, by the
induction hypothesis, there is a RME refutation T&f‘ME5 of 4 with goal clause G.

Similarly, by applying the induction hypotheses m times we learn that there are RME
refutations Tﬁj/[1 of S4i with some respective goal clauses + G; € S4i. Since splitting does
not affect the negative clauses it holds that < G; € S. Hence, T ﬁj/[E is a RME refutation
of SU{A; «+}. Notice that positive unit clauses like A; < can be used in RME refutations
only to close branches (as indicated in Figure 4).

1A non-negative clause is a clause containing at least one positive literal.
5To be precise, there is a RME refutation generating Tisz; but we will confuse this.

Ty: T4: T, TA™,

H H H
Split
A Am A -B A B A A,
* *
/‘% T e /
Bn —.[11 R ﬁfn . .
ﬁ/ /}nduction A Induction [\ Induction
Replace and glue TI?M B \L T]f{“]{/j B $ TI?ATZE
—|Bl _‘Bl - _.Bn —|g1 —|gm
\ \
1 m
/\ j /\ j A _‘Al A —Am
—-A —A
-A | 1 A | m A
[Ay * Am *
A -B _~A -B * *
*

HGm A)
A\—‘AA'“\ ~Am

Figure 4: Proof of Theorem 6.2.

Now we can put things together. Consider TjéME again. It (possible) uses the clause
A « B. However, this clause is (possibly) not contained in S. In order to turn T4, into
a RME refutation of S, we first replace every occurrence of the tableau clause A < B in
T#ye by C. This leaves us with open branches ending in (possibly several occurrences of)
Ay, ... ,A,. Now, at each of these branches ending in A; we can restart with the clause
< G;. Then we append below the upcoming tableau clause —~G; the refutation ng/l g and we
replace possible extension steps in Tﬁjw p with A; < by reduction steps to the branch literal
A; where the restart occurred. As a result we get the desired RME refutation Tryg of S
with goal clause G. Q.E.D.

The next lemma, rephrases in our setting the corresponding Result from [Lloyd, 1987],
which links the T-operator and SLD-Resolution. It was needed as a special case (induction
start) in the proof of the previous Theorem 6.2.

Lemma 6.3
Let Ty be a closed hyper tableau containing the tableau clauses S, which is a Horn clause
set. Let G =< Bi,..., B, be a tableau clause in Ty (which closes a branch). Then there is

a RME refutation of S with goal clause G.

Proof. Let Sy be the multiset of tableau clauses occurring in Ty. Let k(Sy) denote the
number of occurrences of definite clauses in Sy with non-empty body. Now we prove the
claim by induction on k(Sg).

Base case: k(Sp) = 0. Thus all definite clauses in Ty are positive unit clauses. Ty consists
of one single branch p with G fanned below it, and p contains nodes By, ... ,By,. It is easy
to find a RME refutation for this case (cf. Figure 5, “Base case”).

Induction step: k(Sg) > 0. As the induction hypothesis assume the result to hold for closed
hyper tableau for clause sets S, satisfying k(Sy) < k(Sm). Figure 5 (“Induction Step”)

depicts the proof.

Base Case:
Ty: Tryr:
Unit Clauses —Bj ---—Bp
B;, B;, « ‘ ‘
B B;
B;, B;, + xR
/\
-B1---0By,
* *
Induction Step:
Ty: _— TA: T58:
" Split H H
S e \
A -B A -B
* *
/\ /\
By —Bn By 0By .
* " * * Induction
Inducti -8B
ndauction TRME‘
\
Replace and glue -
TRME TgME B
B AN
“Bl ..ﬁBn ﬁBl---‘an *
- _\A
A A
A A - *
Figure 5: Proof of Lemma 6.3.
Some ancestor node A of the tableau clause G =« Bq,..., B, must have one or more

(negative) brother nodes, because otherwise k(Sy) = 0. Let C = (A + B) € Sy be the
tableau clause where the node A is contained in. Here, B is understood as a (possibly empty)
sequence of positive literals. Below we will also write expressions like =B and mean the clause
VBes ~B-

We split Ty in 2 closed hyper tableaux: the hyper tableaux Tﬁl is obtained from Ty by
replacing the tableau clause C by A (and thus deleting the subtrees below —=3), and the hyper
tableaux TP is obtained from Ty by replacing C' by —B.

Let 81‘3 and S;IB be the tableau clause multisets corresponding to quq and TI}B . It holds
that k(S7;) < k(Sk) and k(SZP) < k(Sw). Notice that T still contains G. Hence, by the
induction hypothesis, there is a RME refutation T&f‘ME of 4 with goal clause G.

Similarly, by applying the induction hypotheses we learn that there is a RME refutation
T8 5 of S™8 with goal clauses < B € S75.

Now we can put things together. Consider TQME again. It possible uses the clause A +
(as extending clause in extension steps). However, this clause is possibly not contained in S.
In order to turn T;QM 5 into a RME refutation of S, we first replace every occurrence of the
tableau clause A in Ty, by C. This leaves us with zero or more open branches labeled with
the literals from —B. Now, each of these branches can be extended by T35 5. As a result we

get the desired RME refutation Trysr of S with goal clause G. Q.E.D.

We consider the result of this Section — Theorem 6.2 — as an initial investigation in the
relationship between Hyper tableaux and RME. It would be interesting to investigate the
complexity of this mapping and to improve it. Currently each single hyper extension step
might result in many extension and restart steps. It might be possible to improve the situation
by additional RME inference rules like factoring.

References

[Baumgartner and Furbach, 1994] P. Baumgartner and U. Furbach. Model Elimination without Con-
trapositives and its Application to PTTP. Journal of Automated Reasoning, 13:339-359, 1994. Short
version in: Proceedings of CADE-12, Springer LNAT 814, 1994, pp 87-101.

[Baumgartner et al., 1995] P. Baumgartner, U. Furbach, and F. Stolzenburg. Model Elimination,
Logic Programming and Computing Answers. In 14th International Joint Conference on Artificial
Intelligence (IJCAI 95), volume 1, 1995. (Long version in: Research Report 1/95, University of
Koblenz, Germany. To appear in Artificial Intelligence).

[Baumgartner et al., 1996] P. Baumgartner, U. Furbach, and I. Niemels. Hyper Tableaux. In JELIA
96. European Workshop on Logic in AI, Springer, LNCS, 1996. (Long version in: Fachberichte
Informatik, 8-96, Universitit Koblenz-Landau).

[Chang and Lee, 1973] C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving. Aca-
demic Press, 1973.

[Fernandez and Minker, 91] J.A. Fernandez and J. Minker. Bottom-up evaluation of hierarchical
disjunctive deductive databases. In Koichi Furukawa, editor, Proc. 8th International Conference
on Logic Programming, pages 660—675, 91.

[Fitting, 1990] M. Fitting. First Order Logic and Automated Theorem Proving. Texts and Mono-
graphs in Computer Science. Springer, 1990.

[Furbach, 1992] U. Furbach. Computing answers for disjunctive logic programs. In Pearce and Wag-
ner, editors, Logics in AI, JELIA’92. Springer, LNAT 633, 1992.

[Letz et al., 1994] R. Letz, K. Mayr, and C. Goller. Controlled Integrations of the Cut Rule into
Connection Tableau Calculi. Journal of Automated Reasoning, 13, 1994.

[Lloyd, 1987] J. Lloyd. Foundations of Logic Programming. Symbolic Computation. Springer, second,
extended edition, 1987.

[Lobo et al., 1992] J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Program-
ming. MIT Press, 1992.

[Loveland, 1987] D.W. Loveland. Near-Horn Prolog. In J.-L. Lassez, editor, Proc. of the 4th Int.
Conf. on Logic Programming, pages 456-469. The MIT Press, 1987.

[Minker and Rajasekar, 1990] J. Minker and A. Rajasekar. A fixpoint semantics for disjunctive logic
programs. J. Logic Programming, 9:45-74, 1990.

[Rajasekar, 1989] Arcot Rajasekar. Semantics for Disjunctive Logic Programs. PhD thesis, University
of Maryland, 1989.

[Robinson, 1965] J. A. Robinson. Automated deduction with hyper-resolution. Internat. J. Comput.
Math., 1:227-234, 1965.

[Seipel et al., 1995] D. Seipel, J. Minker, and C. Ruiz. Model generation and state generation for
disjunctive logic programs. Technical report, Univ. of Tiibingen, 1995.

[Siekmann, 1989] Jorg H. Siekmann. Unification Theory. Journal of Symbolic Computation, 7(1):207—
274, January 1989.

[Yahja, 1996] Adnan Yahja. Query Answering in Disjunctive Deductive Databases. Dagstuhl-Seminar
on Disjunctive logic programming and databases: Non-monotonic aspects, 1996.

