The Hyper Tableaux Calculus with Equality and an
Application to Finite Model Computation

Peter Baumgartner Bjorn Pelzer
NICTA, Canberra Universitat Koblenz-Landau, Koblenz
Australia Germany
Peter .Baumgartner@nicta.com.au bpelzer@uni-koblenz.de

Ulrich Furbach
Universitat Koblenz-Landau, Koblenz
Germany

uli@uni-koblenz.de

September 5, 2008

Abstract

In most theorem proving applications, a proper treatment of equational theories
or equality is mandatory. In this paper we show how to integrate a modern treat-
ment of equality in the hyper tableau calculus. It is based on splitting of positive
clauses and an adapted version of the superposition inference rule, where equations
used for superposition are drawn (only) from a set of positive unit clauses, and su-
perposition inferences into positive literals is restricted into (positive) unit clauses
only. The calculus also features a generic, semantically justified simplification rule
which covers many redundancy elimination techniques known from superposition
theorem proving. Our main results are soundness and completeness of the calculus,
but we also show how to apply the calculus for finite model computation, and we
briefly describe the implementation.

1 Introduction

Tableau calculi play an important role in theorem proving, knowledge representation
and in logic programming. Yet, for automated first-order theorem proving the influ-
ence of tableau calculi decreased in the last decade. The CASC competition [SS06] is
dominated by saturation-based provers, and a tableau system like SETHEO, which was
several times among CASC winners, is not even entering the competition any more.
Among the reasons are the problems tableau calculi have with efficient handling of
equality. Of course there are numerous papers on equality handling in tableau calculi.
Various approaches have been discussed, for instance, in [Bec97]. It is not clear, however,
whether they can be a basis for high performance theorem proving. This has to do with
the usage of free variables in most semantic tableau calculi. The nature of these free

Peter.Baumgartner@nicta.com.au
bpelzer@uni-koblenz.de
uli@uni-koblenz.de

variables, their rigidness, seems to be a major source for difficulties to define efficient
proof procedures, even without equality. For instance, proof procedures often suffer
from excessive backtracking and enumerate whole tableaux in an iterative-deepening
fashion, typically based on the number of v-rule applications in a tableau.

To avoid the problems of rigid variables for equality reasoning, in [DV96] the authors
combine a superposition based equality reasoning system with a top down semantic
tableau reasoner. Yet, certain substitutions still have to be applied globally to all
variables in the tableau, which thus are still treated rigidly. As with most free-variable
tableau calculi, the important property of proof confluence does not hold or is not known
to hold.

Other free-variable tableau methods are based on solving (simultaneous) rigid E-
unifiability problems [DV98] but still face the same problem of not exploiting proof
confluence.

A more recent stream of equality handling in free-variable tableaux has been initi-
ated by Martin Giese. It is (also) motivated by addressing the excessive backtracking
of the methods mentioned above. In [Gie02] the author gives a calculus for free variable
tableaux with superposition-type inference and proves completeness by adapting the
model generation technique for superposition [BG98, NRO1]. One improvement, com-
pared with [DV96] and other free-variable methods is that unification constraints leading
to a closed tableau are now held locally together with tableau literals. This allows one
to avoid backtracking over the tableaux generated in a derivation, but instead amounts
to combining local substitutions in a compatible way for the purpose to witness a closed
tableau (see [GieOl] for details). A drawback of this approach is its potentially high
memory consumption, as, in essence, it does not admit a one-branch-at-a-time proof
procedure.

In [Gie03], simplification rules and reasoning with universal variables' are added to
the framework of [Gie02], but without equality. Equality aside, the most relevant con-
tribution in [Gie03] from the viewpoint of this paper is the instantiation of the calculus
there to a variant of the hyper tableau calculus [BFN96].” An important difference
to [BFN96] is that [Gie03] uses rigid variables for variables that are shared between pos-
itive literals in clauses. For instance, a clause like Vz,y (p(z,y) Vq(z)) then is treated by
p-expansion with the formulas Yy p(X,y) and ¢(X), where X is a rigid variable shared
between branches. In contrast, the hyper tableaux of [BFN96] would branch out on
the formulas Vy p(t,y) and ¢(t), where ¢ is some “guessed” ground term of the input
signature.’

In this paper we stick with the hyper tableau calculus and its “obviously ineffi-
cient” approach of guessing ground terms for shared variables, as opposed to using free

"Variables that are local to a clause or literal and that are universally quantified.

2Hyper tableaux is a tableau model generation method, which is applied to clauses and needs only
one inference rule, which can be seen as a tableaux [-rule. It is applied in a “hyper-way”, such that
all negative literals are “resolved away” by positive literals in the branch. The remaining literals are
positive and are split after that. This basic idea stems from SATCHMO [MB88], which is extended in
hyper tableaux by making better use of universally quantified variables.

3Notice that Resolution- or Superposition calculi, also those with Splitting [WeilO1], do not split

Va,y (p(z,y) V q(x)).

variables. More precisely, we show how to incorporate efficient ordering-based equality
inference rules and redundancy elimination techniques from the superposition calcu-
lus [BG98, NRO1] into a tableau calculus. We believe the hyper tableau calculus [BEN96]
is a good basis for doing that, for the following reasons.

e All variables in a hyper tableau are universally quantified in the branch literal they
occur. This facilitates the adaption of the superposition framework and enables
powerful redundancy criteria.

e As far as we know, none of the free-variable calculi mentioned above can be used
as a non-trivial decision procedure for function-free clause logic. The same holds
true for any known resolution refinement.

On the other hand, our calculus is a non-trivial decision procedure for this frag-
ment (with equality), which captures the complexity class NEXPTIME. Many
practically relevant problems are NEXPTIME-complete, e.g. first-order model ex-
pansion (relevant for constraint solving).

e Advanced techniques are available to restrict the domain of the guessed ground
terms (like ¢ above). For instance, the preprocessing technique in [BS06] can
readily be used in conjunction with our calculus without any change. *

e Specific to the theory of equality and in presence of simplification inference rules,
that domain can even be further reduced. This occasionally shows unexpected
(positive) effects, leading to termination of our system, where e.g. superposition
based systems do not terminate. See Section 6 for details and Section 7 for ex-
ploiting this idea for finite model computation.

Also, the hyper tableau calculus is the basis of the KRHyper prover, which is used
in various applications [FO06, BF03, BFGHS04, e.g.] from which we learned that an
efficient handling of equality would increase its usability even more.

The closest approximation of the superposition calculus to E-hyper tableaux is ob-
tained by using a selection function that selects all negative literals in a clause and using
a prover that supports splitting (of variable-disjoint subclauses) like SPASS [Wei01].
Even then, there remain differences. We discuss these issues in Section 6.

The article [LS02] discusses various ways of integrating equality reasoning in dis-
connection tableaux. It includes a variant based on ordered paramodulation, where
paramodulation inferences are determined by inspecting connections between literals of
two clauses. Only comparably weak redundancy criteria are available.

In [BT05], the model evolution calculus is extended by equality. Model evolution is
a lifting of propositional DPLL to the first order case. The model construction method
behind admits semantically justified redundancy elimination criteria.

Both caluli belong to the family of instance-based methods, which are conceptually
rather different to resolution- or tableau calculi as considered here.

“For example, the calculus described here does not admit a finite (fair) derivation from the clause
set {Vz p(z) V q(z),r(f(c))}, but in conjunction with the techniques in [BS06] it does.

This paper is organised as follows: we start with preliminaries in the following
section. In Section 3 we present superposition inference rules for clauses together with
a static completeness result. In Section 4 we introduce E-hyper tableaux and soundness
and completeness properties. In Section 6 we consider improvements for splitting and
discuss the relation with splitting in the SPASS prover. Section 7 shows how to apply
the calculus for finite model computation. Section 8 describes the implementation of
the E-KRHyper system. A number of the results in this paper have first been desribed
in [BFPO7]. Apart from updating the presentation and including the new Section 7 we
have extended the paper with a full complement of proofs in Section A.

2 Preliminaries

Most of the notions and notation we use in this paper are the standard ones in the field.
We report here only notable differences and additions.

We will use an infinite set of variables X, and x and y denote elements of X. We
fix a signature ¥ throughout the paper. Unless otherwise specified, when we say term
we will mean ¥-term. If ¢ is a term we denote by Var(t) the set of ¢’s variables. A term
t is ground iff Var(t) = 0.

A substitution o is a mapping from X to X, with a finite domain dom(c) = {z |
xo # x} and a finite range ran(o) = {zo | xo # z}, v € X. A ground substitution
7 is a substitution with vars(ran(y)) = (0. A renaming p is a substitution which is a
bijection of X onto itself. Given two terms s and ¢, a substitution o is a unifier for s
and t if so = to. o is a most general unifier (mgu), if for any other unifier 7 for s and ¢
there is a substitution A with oA = 7.

A term s is an instance of a term ¢ if there is a substitution ¢ such that soc =t. s
is a variant of ¢ if there is a renaming p such that sp = t. A variant is fresh as long as
it shares no variables with any other term. All of the above is extended from terms to
literals and clauses in the obvious way.

The notation s[t], denotes the replacement of a subterm of s at position p with a
term ¢, as usual. We leave away the subscript p if clear from the context. The notion
of positions is extended from terms to literals in the obvious way.

In this paper we restrict ourselves to equational clause logic. Therefore, and essen-
tially without loss of generality, we assume that the only predicate symbol in ¥ is ~.
Any atom A that is originally not an equation can be represented as the equation A ~ t,
where t is some distinguished constant not appearing elsewhere. (But we continue to
write, say, P(a) instead of the official P(a) ~ t.) This move is harmless, in particular
from an operational point of view.” An atom then is always an equation, and a literal
then is always an equation or the negation of an equation. Literals of the latter kind,
i.e., literals of the form —(s ~ t) are also called negative equations and generally written
s # t instead. We call a literal trivial if it is of the form ¢t ~ ¢ or ¢ 2 ¢.

®Strictly speaking, one has to move to a two-sorted signature with different signatures for function
symbols and predicate symbols, and all variables are of the sort of terms. We ignore this aspect
throughout the paper because it does not cause any complications.

We denote atoms by the letters A and B, literals by the letters K and L and by L
the complement of a literal L.

A clause is a finite multiset of literals, written as a disjunction A;V---V A, VBV
--+V =B, or an implication Aq,...,A,, < B1,...,B,, where m,n > 0. Each atom A;,
for e =1,...,m, is called a head atom, and each atom Bj, for j = 1,...,n, is called a
body atom. We write A, A «— B, B to denote a clause with head atoms {A} U A and
body atoms {B} U B, where A and B are multisets of atoms. As usual, clauses are
implicitly universally quantified.

We suppose as given a reduction ordering > that is total on ground Y-terms. © The
non-strict ordering induced by > is denoted by >, and < and < denote the converse
of = and ». The reduction ordering > has to be extended to rewrite rules, equations
and clauses. Following usual techniques [BG98, NRO1, e.g.], to a given ground clause
A — B we associate to each head atom s ~ ¢ in A the multiset {s,¢} and to each body
atom u ~ v in B the multiset {u,u,v,v}. Two atoms then (head or body) are compared
by using the multiset extension of >, which is also denoted by . This will have the
effect of a lexicographic ordering, where, first, the bigger terms of two equations are
compared, then the sign (body atoms are bigger) and at last the smaller sides of the
equations. To compare clauses the two-fold multiset extension of > is used, likewise
denoted by >. Given two clauses C' and D, C' > D holds iff C' and D are not variants
and for each literal L exclusive to D there exists a literal K exclusive to C' with K > L.
When comparing ground rewrite rules they are treated as unit clauses.

A central notion for hyper tableaux is that of a pure clause [BFN96]: a clause
Ay, ..., Ay — Bi,..., By is called pure iff Var(A;) N Var(A4;) =0, forall 1 <i,57 <m
with ¢ # j. That is, in a pure clause variables are not shared among head literals. (In the
rest of this paper we will need this concept for positive clauses only.) Any substitution
that turns a clause C' into a pure instance C is called a purifying substitution (for C).

A (Herbrand) interpretation I is a set of ground Y-equations—those that are true
in the interpretation. Satisfiability/validity of ground X-literals, 3-clauses, and clause
sets in a Herbrand interpretation is defined as usual. We write I = F' to denote that
satisfies I, where F'is a ground X-literal or a 3-clause (set).

Since every interpretation defines in effect a binary relation on ground X-terms, and
every binary relation on such terms defines an interpretation, we will identify the two
notions in the sequel.

An E-interpretation is an interpretation that is also a congruence relation on the
Y-terms. If I is an interpretation, we denote by I the smallest congruence relation on
the ¥-terms that includes I, which is an E-interpretation. We say that I E-satisfies F
iff I® = F. Instead of I® = F we generally write I =g F. We say that F' E-entails
F’, written F' =g F', iff every E-interpretation that satisfies F' also satisfies F’. We say
that F and F’ are E-equivalent iff F =g F' and F' = F.

8 A reduction ordering is a strict partial ordering that is well-founded and is closed unter context
i.e., s = s’ implies t[s] = t[s’] for all terms ¢, and liftable, i.e., s = ¢ implies s§ > t§ for every term s and
t and substitution 6.

Redundant Clauses. Intuitively, a clause is redundant iff it follows from a set of smaller
clauses. We will formalize this now, following [BG98]. There is a related notion of
“redundant inference” which will be introduced in Section 3.1 below.

If D is a ground clause and C is a set of ground clauses then let Cp = {C € C | D >
C'}. When C is a set of non-ground clauses and when writing Cp we identify C with the
set of all ground instances of all its clauses.

Now, a ground clause D is redundant wrt. a set of clauses C iff Cp =g D. That
is, D is redundant wrt. C iff D follows from smaller clauses taken from C.” When D
is a non-ground clause we say that D is redundant wrt. C iff every ground instance of
D is redundant wrt. C. For instance, using any simplification ordering, P(f(a)) «
is redundant wrt. {P(a) < , f(z) ~ = < }, because {P(a) «— ,f(a) ~ a «— } Erg
P(f(a)) < and each clause in the premise is smaller than P(f(a)) « .

3 Inference Rules on Clauses

The following three inference rules are taken from the superposition calculus [BG9S|
and adapted to our needs. We need in addition a splitting rule that will be defined
afterwards. All rules will later be embedded into the hyper tableau derivation rules.
An equation [~ r always also denotes its symmetric version r ~ [.
The sup-left rule (superposition left®) applies a superposition step to a body literal:

I’ is not a variable,

Sup—left(a) A — S[[I] ~t B [~7r « ” o is a mgu of [and
(A« s[r] ~t,B)o lo £ ro, and
so Ato

If the last condition is dropped, then the resulting inference rule is called ordered
paramodulation left. This rule will not be used in our calculus.

The unit-sup-right rule (unit superposition right) applies a superposition step to a
positive unit clause:

I’ is not a variable,

o is a mgu of [and ',
if ¢ (s~t)o A(l~r)o,

lo A ro, and

so Ato

unit-sup-right(o)

The last condition can be dropped, and the resulting inference rule is then called ordered
unit paramodulation right.

The general superposition right inference rule of [BG98] between non-unit clauses
is not needed, essentially due to the presence of the splitting rule below.

"By compactness, even from a finite set of clauses.
8With our notation for clauses, the name superposition left is actually counterintuitive, but we keep
it for compatibility with corresponding rules in the superposition calculus.

3.1 Redundant Inferences and Saturation 7

The ref rule (reflexivity) eliminates a body literal on the grounds of being trivially
true (after applying a substitution).

A—s~t,B
ref(o) if o is a mgu of s and ¢

(A~ B)o

Finally, the announced splitting rule. It takes a disjunctive fact, applies a purifying
substitution 7 to it and returns the instantiated head atoms, one conclusion per head
atom.

. A,.. . A >9
split(m) ! m if{ m 2 2, and

A — o AT — m is a purifying substitution for Ay, ..., A,, «—

3.1 Redundant Inferences and Saturation

We write C, D =5 1eft(s) £ to denote a sup-left inference, i.e., an instance of the sup-left
inference rule with left premise C, right premise D, conclusion E and substitution o that
satisfies the rule’s side condition. We use analogous notation for an application of the
sup-right inference rule, and for an application of ref we write, similarly, C' =) E.
Likewise, C' =gpjit(r) A1 < ..., Am < denotes a split inference with premise C,
purifying substitution 7 and conclusions Ay < ..., Ay, «— .

An R-inference, with R € {sup-left, unit-sup-right, ref} is ground iff its constituent
clauses C, D and E are ground. The substitution ¢ in a ground inference is irrelevant
and may be assumed, without loss of generality, to be the empty substitution e.

If C,D =g E is an R-inference (with D absent in the case of ref) and ~ is
a substitution such that Covy, Doy =pg() E7v is a ground inference, then the latter
inference is called a ground instance of the inference C, D = () E.

For instance, by taking v = {z — a} one sees that the ground inference

(P(f(a)) <_)7 (f(a) =a<) :>Sup-right(e) P(a) —

is a ground instance of the inference

(P(f(x)) —)7 (f(y) =Y —) :>sup—right({y>—>m}) P(I) —

In contrast,

(P(f(f(a))) A)7 (f(a) =a<—) :>sup—right(e) P(f(a)) —

is not a ground instance of the inference above, for any substitution ~. Intuitively, only
such ground inferences can be ground instances of inferences where paramodulation
takes place at positions that exist also at the non-ground level. This excludes ground
inferences that are not liftable because they would require paramodulation into or below
variables. We can define these notions for the split rule analogously: a split inference is
ground if the premise is ground (and hence all its conclusions are ground). Similarly as

3.1 Redundant Inferences and Saturation 8

above for the other rules, the purifying substitution 7 can always be assumed to be the
empty substitution then.

If C =gpiit(r) A1 < 5., A < is a split inference and + is a substitution such that
Cmy =split(e) A17 < 5.+, AmY < is a ground split inference, then the latter inference
is called a ground instance of the former inference.

Let D be a set of (possibly non-ground) clauses. A ground inference C, D =5 jeft(c)
E or C,D =gpiight(e) E is redundant wrt. D iff E is redundant wrt. Do U {D}. A
ground inference C' = ef) E is redundant wrt. D iff E is redundant wrt. Do. And a
ground inference C' =i A1 < ..., Am < is redundant wrt. D iff there is an i with
1 < i < m such that A; « is redundant wrt. Dc.

For all inference rules sup-left, unit-sup-right, ref and split, a (possibly non-ground)
inference is redundant wrt. D iff each of its ground instances is redundant wrt. D.

Intuitively, a ground inference is redundant wrt. D iff its conclusion follows from a
set of smaller clauses than the left premise, while fixing the right premise. Because all
(ground) inferences work in a strictly order-decreasing way, adding the conclusion of an
inference to the clause set the premises are taken from renders the inference redundant
wrt. that set.” For instance, adding P(a) «— to the set {(P(f(a)) <), (f(a) ~a <)}
renders the obvious sup-right inference redundant wrt. the resulting set.

It is not only redundant inferences that can be neglected. Also inferences where one
or both parent clauses are redundant can be neglected. This is captured by the following
definition.

Definition 3.1 (Saturation up to redundancy)
A clause set C is saturated up to redundancy iff for all clauses C' € C such that C' is not
redundant wrt. C all of the following hold:

1. Every inference C' =gpjig(r) A1 <, ..., Am < such that Cr is not redundant wrt.
C, is redundant wrt. C.

2. Every inference C, D =g, E, where R € {sup-left, unit-sup-right} and D is a
fresh variant of a positive unit clause from C, such that neither Co nor Do is
redundant wrt. C, is redundant wrt. C.

3. Every inference C' = (¢f(,) £ such that Co is not redundant wrt. C, is redundant
wrt. C.

O]

For instance, the (satisfiable) propositional clause set C = {(4,B «),(«— A)} is not
saturated up to redundancy. By an application of the split rule to A, B « one can infer
A «— and B « , and adding, say, B « to C renders the clause A, B « redundant.
As an example for a non-ground split inference consider a clause P(z),Q(x) <
from some clause set. One may want to avoid applying all purifying substitutions to it.
Fortunately, Definition 3.1-1 does not prescribe that at all. For instance, when the clause
set includes an equation a ~ b <+ (where a > b), then purifying P(z),Q(x) «— by m =

9This property makes it obvious that fair derivations, as defined later, exist.

{z/b}, yielding P(b), Q(b) < , and adding P(b) < to the clause set is sufficient to render
the split inference with purifying substitution {z/a} redundant, as the clause P(a) <
follows from P(b) «— and a ~ b « , both of which are smaller than P(a), Q(a) < .

Theorem 3.2 (Static Completeness)
Let C be a clause set saturated up to redundancy. If 0 ¢ C then C is E-satisfiable.

The proof employs the model-construction technique originally developed for the super-
position calculus, but adapted to our needs. The difference come from the facts that
in our case all side premises are unit clauses, and so there is no equality factoring (or
merging paramodulation) inference rule, and that we need a splitting rule.

Notice that Theorem 3.2 applies to a statically given clause set C. The connection
to the dynamic derivation process of the E-hyper tableau calculus will be given later,
and Theorem 3.2 will be essential in proving the completeness of the E-hyper tableau
calculus.

4 E-Hyper Tableaux

In [BFN96], based on [LMG94], hyper tableau have been introduced as labeled trees over
literals (which are universally quantified, and hence can be seen as unit clauses). For
our purposes, however, a generalization towards trees over clauses is better suited. This
is, because new clauses can now be derived as the derivation proceeds, and these clauses
are context dependant (branch local), and tableaux are an obvious data structure to
deal with this context dependency.

A tree is a pair (N, E) where NV is the set of the nodes of 7 and £ is the set of the
edges of 7. A labeled tree over a set M is a pair (7, \) consisting of a finite, ordered
tree 7 and a labeling function A that maps each node of 7 to some element from M.
A (clausal) tableau over a signature 3 is a labeled tree over the set of Y-clauses.

We use the letter T to denote tableaux.

Let B be a branch of a tableau T of length n, i.e., a sequence of nodes (Ny,...,N,),
for some n > 0, where N is the root and N, is the leaf of B. Each of the clauses A(N;),
fori=1,...,n, is called a (tableau) clause of B.

Occasionally it is convenient to read a branch B as the multiset of its tableau clauses
A(B) :={D | D is a tableau clause of B}. This allows us to write, for instance, C' € B
instead of C' € A(B). Furthermore, if B is a branch of a tableau T we write B - C
and mean the tableau obtained from T by adding an edge from the leaf of B to a fresh
node labeled with C'. Furthermore, we write B - B’ to denote the branch obtained by
concatenating the branch B and the node sequence B’.

4.1 Extension Rules

We define two derivation rules for extending branches in a given tableau.
The Split rule branches out on an instance of a positive clause; its conclusions are
labeled as “decision clauses”, as indicated by the annotation 4. The role of this labeling

4.1 Extension Rules 10

will become clear below in Section 4.2.

there is a clause C' € B and
a substitution 7 such that

Spllt BAl _d B.A d if O:>sp|it(7'r) A1<—,...,Am<— and
m

B contains no variant of A; « ,

foreachi=1,...,m

The clause C is called the selected clause (of a Split inference).
The Equality rule applies an inference rule for equality reasoning from Section 3 to
a body literal.

there is a clause C € B,
a fresh variant D of a positive unit clause in B, and
a substitution o such that
C,D =gy E with R € {sup-left, unit-sup-right} or
C = (o) E, and
B contains no variant of £

Equality

In both rules, the test for the conclusion(s) being not contained in B is needed in
interplay with deletion of clauses based on non-proper subsumption (see the Del below).

Without this test, it is conceivable the calculus derives the following sequence of
branches:

, (P(z) <)

. (P(x) <), (Ply) <)
. (t:t<—), (P(y)<—)

, (t=te), (Ply) <), (P)<)
L (t=t—), (t=t«—), (Px)«)

, (txt—), (txte), (Plx)«<), (Ply)<)
o (txte), (txte—), (txt—), (Ply) <)

The calculus alternately adds and deletes unit clauses. For the additions the calculus
alternates between P(z) <« and P(y) <« . The Del applications delete the next-
youngest unit respectively. As the inference conclusions are not checked for already
having variants in the branch, there always exist one or two variants of P(x) < , even
though no particular instance ultimately persists. In spite of no new clauses being
added, the branch grows indefinitely. The problem with such situations is there is no
“well-founded” way to argue in the completeness proof that P(x) <« will be satisfied
by the candidate model.

For later use, we say that an application of a Split, Sup-left, Unit-sup-right or Ref
derivation rule to a branch B is redundant iff its conclusion (at least one of its conclu-
sions, in the case of Split) is redundant wrt. B.

4.2 Deletion and Simplification Rules 11

4.2 Deletion and Simplification Rules

From a practical point of view, deletion of redundant clauses and simplification opera-
tions on clauses are crucial. We will introduce these now. Adding such rules is a major
addition to the hyper tableau calculus and involves a more sophisticted technical treat-
ment than that in [BFN96]. This is, because hyper tableau as defined in [BFN96] are
non-destructive, in the sense that extending a branch goes along with increasing the set
of its corresponding labels (unit clauses). This is no longer the case in presence of, for
instance, the Del rule (deletion) below, which removes a clause that is redundant in a
branch or subsumed by another clause in the branch.

Also, to preserve the calculus’ soundness, arbitrary deletion of redundant clauses is
not possible. A clause can be deleted only on the condition that none of the clauses which
make the clause redundant is a clause which has been introduced at a later “decision
level” (i.e. one that occurs further down in the tree below a more leafwards decision
clause). This is formalized next.

B.c@. B, - B, . (1) C i? redundant wrt. B - By, or some
Del Bt~t—d .B,-B if clause in B - By non-properly subsumes C', and
bt — -By - By

(2) B; does not contain a decision clause

The notation (¥ is meant to say that if there is a label 4, it is preserved when replacing
Chbyt~t«—.

Observe that our redundancy notion does not cover non-proper subsumption.'® For
instance, the clause P(a) « is not redundant wrt. {P(z) < } (and neither is the clause
P(y) <). Therefore, deletion of non-properly subsumed clauses has been taken care of
explicitly.

The next rule, Simp (simplification), replaces a clause by another one that is smaller
in the ordering:

B.C@.B,.B, (1)B-C-By g D,
Simp B. D@ . B, . B if (2) C is redundant wrt. B - D - By, and
. -B1 - B,

(3) By does not contain a decision clause

The Simp rule covers, for instance, standard rewriting by unit clauses.

The condition (2) in Del is needed for completeness reasons, and the condition (3) in
Simp is needed for both completeness and soundness reasons. They make sure that no
deletion or simplification step is justified by a clause from a decision level further down
in the tableau. Such a step would in general be justified only in the branch containing
the used clauses, but not in the other branches. For illustration consider the following
clause set.

P(a) — M)
— P(b) (2)
a~b, Q«— (3)

10A clause C' non-properly subsumes a clause D iff Co = D for some substitution o.

4.3 Derivations 12

After a Split with clause (3) a branch containing the decision clause a ~ b «+— comes
up. If condition (3) in Simp were dropped (and a > b), then clause (1) could be simplified
to P(b) « , leading to a refutation. This would be unsound because the simplification
is not justified in the branch containing) « although it would contain the simplified
literal. But with the restrictions in place we arrive at the following lemma.

Lemma 4.1
For each of the derivation rules Split, Equality, Del and Simp, if the premise of the rule
is E-satisfiable, then one of its conclusions is E-satisfiable as well.

For similar reasons as for Simp, the Del rule cannot just delete the clause C¢ men-
tioned in the premise, as the deletion would remove the separation of B and B; by a
decision clause (while the replacement by t ~ t « ¢ preserves the separation).

A different approach to deletion and simplification is implemented in the SPASS
prover [Wei0l]. The corresponding rules in SPASS are even more general than ours
as they allow to ignore the decision levels. But then, in general, a deleted or sim-
plified clause must be reinserted on backtracking to an earlier decision level. This is
never necessary in our case, essentially because of disallowing “backward” deletion and
simplification steps across decision levels, as just discussed in the previous example.

4.3 Derivations

In the following, the letter x will denote an ordinal smaller than or equal to the first
infinite ordinal.

We say that a branch of a tableau is closed iff it contains the empty clause O0.'' A
branch that is not closed is also called open. A tableau is closed iff each of its branches
is closed, and it is open iff it is not closed (i.e., if it has an open branch).

An (E-hyper tableau) derivation from a set {C4,...,Cy} of ¥-clauses is a possibly
infinite sequence (i.e. of length) of tableaux D = (T;)o<i<, such that

1. Ty is the clausal tableau over X that consists of a single branch of length n with
tableau clauses Ci,...,C,."%, and

2. for all ¢ > 0, T; is obtained from T;_; by a single application of one of the
derivation rules in Sections 4.1 and 4.2 to some open branch of T;_1, called the
selected branch.

Recall that a tableau T is of the form (7, \), where 7 is a tree, i.e., a pair (N,)
where N is the set of the nodes of 7 and & is the set of the edges of 7.

A derivation D = (N, &), Ai)i<x determines a limit tree (U, Ni,U;<, &)- Tt is
easy to show that a limit tree of a derivation D is indeed a (possibly infinite) tree.

1We write O instead of ¢ « 7.

2The order does not matter, as the collection of tableau clauses of a branch will be seen as sets. For
technical reasons we assume that no clause C; is a variant of a clause Cj, for all 1 < i < j <n, but this
is obviously not an essential restriction.

4.3 Derivations 13

Now let T be the limit tree of some derivation, let B = (IN;);<, be a (possibly
infinite) branch in T with x nodes, and let B; = (Ny,...,N;) be the initial segment
of B with ¢ nodes, for all i < k. Define Boo = ;o (Ni<jcy Aj(B;), the multiset of
persistent clauses (of B).

Recall that tableaux clauses can be labeled as decision clauses. These labels are
preserved when building the limit tree, i.e., the tableaux clauses in a limit tree are
possibly also labeled as decision clauses. However, the labels are ignored when building
the persistent clauses of a branch. If two clauses differ only in their label, they count as
equal then.

Intuitively, the central property of a limit branch is a ”static” one, saturation up to
redundancy, for which the labels are not relevant. However, the derivation of a limit
branch needs to take the labels into account.

Definition 4.2 (Exhausted Branch)

Let T be a limit tree, and let B = (IN;);<, be a branch in T with x nodes. The branch
B is ezhausted iff it does not contain the empty clause, and for every clause C' € B
and every fresh variant D of every positive unit clause in By, such that neither C' nor
D is redundant wrt. B, all of the following hold, for all ¢ < x such that C' € B; and D
is a variant of a clause in B;:

1. if Split is applicable to B; with underlying inference
C =gpiit(r) A1 < ..., Am < and Cr is not redundant wrt. B;, then there is a
J < r such that the inference C' =gpjig(r) A1 < ..., Ay < is redundant wrt. Bj.

2. if Equality is applicable to B; with underlying inference C, D =p(,) E, for some
R € {sup-left, unit-sup-right}, and neither Co nor Do is redundant wrt. B;, then
there is a j < r such that the inference C, D = p(,) E is redundant wrt. B;.

3. if Equality is applicable to B; with underlying inference C' = (¢¢,) E and Co is
not redundant wrt. B;, then there is a j < x such that the inference C' = ¢,) F
is redundant wrt. B;.

A refutation of a clause set C is a finite derivation of C that ends in a closed tableau.

A derivation is fair iff it is a refutation or its limit tree has an exhausted branch.

In the preceeding definition, actually carrying out a Split inference with a clause C'
and purifying substitution 7, when applicable, will achieve the conclusion, i.e. make C'w
redundant wrt. B;. The analogous holds for the Equality inferences in items 2 and 3.
This observation indicates that proof procedures implementing fair derivations indeed
can be given.

Theorem 4.3 (Soundness of E-Hyper Tableaux)
Let C be a clause set that has a refutation. Then C is E-unsatisfiable.

For the completeness direction we need the following result:

14

Proposition 4.4 (Exhausted branches are saturated up to redundancy)
If B is an exhausted branch of a limit tree of some fair derivation then B, is saturated
up to redundancy.

Proposition 4.4 and Theorem 3.2 entails our main result:

Theorem 4.5 (Completeness of E-Hyper Tableaux)
Let C be a clause set and T be the limit tree of a fair derivation D of C. If D is not a
refutation then C is E-satisfiable.

Because the proof of this theorem refers to the proof of Theorem 3.2, the model con-
structed in the proof of Theorem 3.2 provides a strengthening of Theorem 4.5 by being
more specific.

Corollary 4.6 (Bernays-Schonfinkel Class with Equality)
The E-hyper tableau calculus can be used as a decision procedure for the Bernays-

Schonfinkel class with equality, i.e., for function free formulae with the quantifier prefix
= A

The proof of Corollary 4.6 follows from the soundness and completeness results, and
the facts that the calculus cannot derive clauses that grow in length, or that grow in
term depth (using the assumption that no non-nullary function symbols are present) or
that are variants of clauses already contained in the branch. Therefore any (exhausted)
branch derivable must be finite.'® Because of the finite branching of hyper tableaux and
by Koenig’s Lemma it follows that any (limit) derivation must be finite.

5 Derivation Examples

Figure 1 shows an E-hyper tableau that has been derived from the given clauses (1)
- (6). The right branch of the tableau is open, and no further extension steps can be
applied. Clause (14) cannot be split, as the resulting decision clause R(b) ~ t « is
already an element of the branch. Del steps can be used to further overwrite clauses (7)
(redundant wrt. clause (8)) and (13) (redundant wrt. clause (14)).

Figure 2 illustrates the usage of the Del and Simp rules. Equality extensions are used
to construct the tableau consisting of clauses (1) - (14). Clause (10) is non-properly
subsumed by clause (14) and can thus be deleted, replacing it with (10°) - ¢ >~ ¢ «.
Clause (9) is redundant wrt. clause (12) and the simpler clause (3). The Simp rule
replaces clause (9) with (9°) - Q(a) ~t «—. As (9’) itself is again non-properly subsumed
by (3), it can be deleted in a further step. Note that clause (1) cannot be deleted by
clause (14), because there is a decision clause between the two clauses in the branch.

13The situation is slightly more complicated due to the Simp and Del rules.

15

) x=|a, R(x)=t — Q(a, x)=t
<2>f(xiy)=g(x) —
©) P(fl(a, x))=t, Q(x, y)=t — R(y)=t
@ R(llJ)=t<—
5) <—|P(g(x))=t
© < Qa)=t
Equality (sup-left) (3), (4)
) P(fla, x))=t, Q(x, b)=~t — t=t

Equality (ref) (7)
®) P(fla, x))=t, Q(x, b)=t

Split (8)
purifying substitution m={x < a}

O P(fla, @)=t «* (10) Q(a, b)=t «*
Equality (unit-sup-right) (2), (9) Equality (sup-left) (1), (10)

11) P(g(a))=t « (13) b~a, R(b)=t « t=t
Equality (sup-left) (5), (11) Equality (ref) (13)

(12) « t=t (14) b~a, R(b)=t
Equality (ref) (12)

O

Figure 1: Example: E-hyper tableau for given clauses (1) - (6)

16

(1) R(a)l':t -
@ P(f(xl))zt -

® Q(a)lzt “

“ R(x)lzt — R(g(a))=t

®) g(x)lzx < Q(gla))=t

© Q(g(@)=t, R(g(a))=t — P(f(b))~t

Equality (sup-left) (2), (6)
™ Qg@)=t, R(g(@))=t « t=t
Equality (ref) (7)

® Q(g(@)=t, R(g(a))=t «

Split (8)

=€

© Qg(@)=t «* (10) Rg(@)=t < *
Equality (sup-left) (5), (9) Equality (sup-left) (4), (10)

(11) g(x)=x « t=t (13) R(x) =t « t=t
Equality (ref) (11) Equality (ref) (12)

(12) gx)=x « (14) R(x) =t «

Del (10), (14)
Simp (3), (9), (12)

m R(a)lzt -
@ P(f(xl))=t -

®) Q(a)lzt -

“ R(x)lzt —R(g@)=t

®) g(x)|=x < Q(gla))=t

©) Q(g(la))=t, R(g(a))=t « P(f(b))=t
™ Q(g(la))=t, R(g@)=t « t=t

® Qg@)=t, R(g(@)=t «

© Q@)=t «* (10) t=t|+— d

|
(11)g(|x)=x<—t=t 13) R(x|)=t<—t=t
(12) g(x)=x « (14) R(x) =t «

Figure 2: Example: E-hyper tableau for given clauses (1) - (6)

17

6 Restricting Split and the Relation to Splitting in SPASS

For performance reasons it is mandatory to restrict the search space induced by hav-
ing to apply purifying substitutions in Split rule applications. The fairness criteria in
Definition 4.2 already support that. For instance, one can take advantage of avoiding
purifying substitutions that are reducible, as they lead to redundant inferences.

Definition 6.1 (Reducible substitution)

Let C be a clause set and o a substitution. We say that o is reducible wrt. C iff there is
a term t € Ran(o)'*, a unit clause [~ r «+ € C and a (matching) substitution z such
that [y occurs in ¢t and lu > ru. O

We say that o is irreducible wrt. C if o is not reducible wrt. C.

Obviously, for each (positive) clause C' = Aq,..., A, <« in a branch B and each
purifying substitution my for C' there is a maximal chain Cmy > Cmy > --- = Cmp, for
some n > 0, where m; is obtained from m;_; by one-step rewriting a term of its range
with a positive unit clause from B and such that m, is irreducible wrt. B. It is not
difficult to see that, by equality, applying Split with Cm, renders the Split inferences
with Cmg,...,Cm,—1 redundant (wrt. all branches obtained by splitting Cm,). No
reducible purifying substitution need therefore ever be considered in Split inferences to
obtain an exhausted branch, and this is what is implemented in our system.

An example of such a situation is C = P(z),Q(z) «— ,a ~ b «— € B, a > b,
mo = {z/a} and m = {z/b}. Split with P(b),Q(b) « alone to extend B is sufficient.

A different split rule is implemented in the SPASS prover [WeiO1]. It does not apply a
purifying substitution to force partitioning a clause into variable disjoint parts. Instead,
it splits on clauses only that are already partitioned.

It is not clear a priori which of these approaches to splitting is preferrable in practice.
An example where our approach is preferrable is as follows. Consider the clauses

fla) ~a — (1) flg(x)) ~g(f(x)) = (3)
g9la) ~a — (2) p(f(@)),p(g(x)) = (4)
Suppose a precedence f > g > a (or g = f > a, as the problem is symmetric in
f and g), lifted to any simplification ordering. All superposition inferences among the

clauses 1-3 are redundant, and a prover like SPASS will detect that. Among others,
there is a superposition inference between clause 4 and 3, which yields the clause

p(g(f(z))),p(g9(g())) « . (5)

In fact this inference is redundant, too. To see this, consider any ground substitution
~. It must map z to some term comprised of a combination of f’s, ¢’s and (one) a, e.g.
v ={x/f(f(g(f(a))))}. Now, any ground instance of clause 5, for instance,

plg(f(F(F(g(F(a))))));pl9(g(f(f(g(f(a))))))) —

1 As usual, the range of a substitution o is Ran(c) = {xo | zo # x}.

18

can be reduced by the unit clauses 1-3 in one or more steps to the clause p(f(a)),p(g(a)) «—

(they can be reduced even further), which is a ground instance of clause 4 and which
is smaller in the ordering than the ground instance of clause 5 we started with. By this
argument the superposition inference leading to clause 5 is redundant (and need not be
carried out).

Notice that this argumentation takes the clause set’s signature into account. How-
ever, the commonly implemented redundancy criteria do not do that. In particular, for
instance, SPASS does not find a finite saturation of the clause set above. In contrast,
E-hyper tableaux are aware of the input signature and the redundancy criteria based on
irreducible purifying substitutions, as mentioned above, are strong enough to achieve
termination.'” To see this, it is enough to observe that every purifying substitution,
like 7 = {z/f(f(g(f(a))))}, is reducible (to # = {x/a}) wrt. every branch containing
clauses 1 and 2. Thus, the only instance of clause 4 to be considered for splitting (in
presence of 1-3) is p(f(a)),p(g(a)) < (which can be simplified further). Moreover, this
can easily be achieved by adding the following “logic program”

dom(a) < (6)
dom(f(x)) < dom(z) (7)
dom(g(x)) < dom(z) (8)

which, in combination with rewriting by unit clauses will enumerate in its dom predicate
the ground terms of the input signature that are irreducible wrt. the orientable current
positive unit clauses. In presence of clauses 1 and 2 this is the singleton {a}. The general
form of the “logic program” has, of course, already been used within SATCHMO [MB88]
and some descendants. To our knowledge, though, it was never observed before that
equational reasoning can help to confine the dom-predicate.

In the following Section 7 we will build on the informal observations made here and
devise a sound and complete calculus for finite model computation based on E-hyper
taleaux.

7 Finite Model Computation

Finite model computation is the problem of computing an (E-)model of a given clause
set with a finite domain (or detecting there is none).

Notice that as soon as the clause set contains one single non-zero arity function sym-
bol, any finite model is necessarily not a Herbrand model. This indicates that standard
theorem proving paradigms, which are ultimately based on Herbrand interpretations,
cannot be used directly for finite model computation then. Indeed, methods for finite
model computation can be classified as those that directly search for a finite model,
like the extended PUHR tableau method [BT98]|, the methods in [Bez05, ANMO06] and
the methods in the SEM-family [Sla92, ZZ95, McC03], and those that are based on

More precisely, there is a finite derivation in the E-hyper tableau calculus, and any reasonable
implementation, like our E-KRHyper system, will find it.

19

transformations into (clausal) logic and which rely on readily available theorem provers
or SAT solvers.

The latter approach includes the family of MACE-style model builders [McCO03].
These systems search for finite models essentially by constructing a sequence of trans-
lations corresponding to interpretations with domain sizes 1,2, ..., in increasing order,
until a model has been found. The model builder from this class with the best perfor-
mance today is probably Paradox [CS03]. It is based on translation into propositional
logic, and it uses a (very efficient) SAT solver to decide if there is a model of the current
domain size.

However, there are several intrinsic problems with this and other approaches that
are based on translation into propositional logic. One of them is lack of space efficiency,
because the number of the ground instances of a clause grows exponentially in the
number of variables in the clause [CS03]. (See [BFANT07] for a more detailed discussion
of this issue and examples of problematic clause sets.)

To address the space efficiency problem of MACE-style model computation, [BFANT07]
proposes to employ a first-order theorem prover instead of a propositional SAT solver.
The target logic for the corresponding translation then is function-free clause logic (the
theorem prover used there, the Darwin system [BFTO06], is a decision procedure for that
fragment). This allows to avoid the exponential growth of the clause set as the domain
size increases, which is crucial for problems that have models of a relatively large size.

Yet, there remain other problems with the MACE approach, for instance lack of
decent equality handling. Because equality reasoning is not supported natively by the
underlying systems (naturally, equality reasoning does not apply to propositional SAT
solving), equality is translated away. This involves removing the whole term structure
by flattening all deep terms at the cost of introducing long clauses and turning each
n-ary function symbol into a n + l-are predicate symbol. This way, all equations are
translated away, too. This makes any built-in equational reasoning impossible then,
such as simplification by rewriting, which is one of the crucial techniques for efficient
equality reasoning. Using E-hyper tableau (or any other system supporting equational
reasoning) is pointless then.

Notice that equality comes in even if the original problem is not equational. If
the current domain size is n, then the translations into the target logic have to treat
disjunctions of the form

r~1V---Vz~n .

This leads to the motivation for our approach presented below: we propose yet
another MACE-style model finder, but this time using a theorem prover based on E-
hyper tableau. This way, the exponential space requirements of the translation into
propositional clause logic can be avoided while at the same time enabling more efficient
equality treatment.

We present here only the theoretical core of of our approach. We introduce a transfor-
mation on clause sets related to the transformation into range-restricted form described
at the end of Section 6, but that is adapted to enable finite model computation. More
precisely, our transformation is sound and complete (cf. Proposition 7.2 below) and E-

7.1 Transformation 20

hyper tableau (or related calculi, like hyper-resolution with equality and splitting) can
then be used to decide whether there is a model of a given size for a given clause set.
This is our main result in this section.

In [BS06] somewhat related techniques are discussed. However, the method there is
known to be incomplete for finite model computation. That is, it may fail to compute
a finite model for a given clause set although there is one.

In [HWO7] a streamlined version of the superposition calculus for finite model com-
putation is described. Indeed, the ideas in both approaches are quite similar. Our
approach can be seen as a simplified implementation of their approach. It is simpler in
the sense that it is based on preprocessing and exploiting the properties of the calculus
and standard redundancy criteria. Unlike [HWO07] it does not require modifications
to the prover itself. For fairness it has to be added, though, that some redundancy
criteria that have been specifically designed in [HWO07] will possibly be missed by our
transformation.

7.1 Transformation

We define a transformation FD4 on clause sets. It is parametrized by a positive integer
d, the current domain size. The transformation can be defined by a procedure carrying
out the following steps.

(0) Imitialization. Initially, let FD4(C) := C.

(1) Finite domain elements. Add to FD4(C) the clauses

dom(1) «
- (1)
dom(d) «
—i~j foralli,j=1,...,dwithi < j (2)
where 1,...,d are fresh constants.

(2) Finite domain constraints. For each n-ary function symbol f € C, where n > 0, add
to FD4(C) the clause

fleg, oo xn) =100 flag, . .yop) = d— . (3)

(3) Range restriction. For each clause A < B in FD4(C), let {z1,...,zx} be the set of
variables occurring in .4 but not in B. Replace A < B by the clause

A — B,dom(z1),...,dom(xg) . (4)

Example 7.1 Consider the following clause set C:

7.1 Transformation 21

Of course it has finite models, even of size 1, but E-Hyper tableaux, like any “bottom-
up” model generation method will fail to find any of them.

For the sake of illustration of our transformation let d = 3. Then, FD3(C) consists
of the clauses:

dom(1) «— dom(2) «— dom(3) «— (1)
—1~2 —1~3 —2~3 (2)
a~1l,a~2a~3« (3-a)

flz) =1, f(x) =2, f(x) =3 — dom(x) (3-1)

P(a) « (4-Cy)

P(f(z)) — P(x) (4-Co)

With appropriate simplification rules (see below), E-Hyper tableau derives a (finite)
exhausted branch consisting of the unit clauses

dom(1) « a~1«
dom(2) « f(1)~1«
dom(3) «— f(2) =1«

p(1) < fB) =1«

Notice that our transformation does not start from a clause
r~1V-.---Vz>~n

as mentioned above. Instead of our clauses (3), such a clause could be used in conjunc-
tion with the clauses

dom(f(z1,...,x,)) < dom(zy),...,dom(zy) ,

for each n-ary function symbol f € C.'® But observe that E-Hyper tableau can then
derive dom-literals with nested terms, such as dom(f(f(1))). These can always be
simplified into non-nested ones (in the example, any branch containing dom(f(f(1)))
must also contain f(1) = j, for some 1 < j < d). However, it is preferable not to derive
them in the first place. Indeed, the transformation as defined makes it impossible to
derive dom-literals with nested terms.

16Quch a translation then would be quite similar to the “classical” transformation into range-restricted
form [MB88, BY00].

7.2 Correctness 22

7.2 Correctness

The transformation FDy is sound and complete wrt. finite model of size d in the following
sense:

Proposition 7.2 (Correctness of FD)
Let C be a clause set and d a non-negative integer. Then C has a finite model with d
domain elements if and only if FD4(C) is E-satisfiable.

Notice that Proposition 7.2 alone is not sufficient for practical purposes. We still need
to know that E-Hyper tableau provide a procedure to decide satisfiability of FD4(C), for
any clause set C and non-negative integer d. To this end, one can define a concrete fair
strategy for derivations and prove that any derivation from FD4(C) is finite. To obtain
this result, a certain simplification technique has to be used. We refrain from laying out
the details here, in particular as only standard techniques are needed, and instead we
provide only a brief account.

Any fair derivation strategy will do, and the only redundancy elimination technique
needed is “eager rewriting by positive branch equations”. This will suffice to make
infinite extension of branches impossible.

More precisely, observe that according to the scheme (4) in the definition of FD, all
clauses are range restricted. In particular, thus, initially all positive unit clauses are
ground. Moreover, any new positive unit clause in any branch must be ground, too.
This follows inductively together with the design of the inference rule: in essence, any
Equality application then can only remove occurrences of variables in clauses, but never
add new ones. In consequence then and together with range restriction, if all negative
literals from a clause have been removed by enough Equality applications, any resulting
positive clause must be ground. Either it is a positive (ground) unit clause already or
Split turns it into some positive (ground) unit clauses, which are the only ways to obtain
new positive clauses.

From the just obtained fact that all positive unit clauses in branches are ground it
follows that there is no infinite sequence of applications of Equality inference rules to
clause bodies. This follows because, as said, any Equality application (ref or sup-left)
removes at least one occurrence of a variable, or otherwise it replaces a ground term by
a smaller ground term. Thus, the only way an infinite branch could be constructed is
by infinitely many Equality (unit-sup-right) or Split applications.

However, in both cases the selected clauses can be supposed to be maximally simpli-
fied by rewriting with the positive equations in the branch. By construction of FD, for
every n-ary function symbol f in C and any n integers i1,...,i, with 1 <iy,... i, <d,
there is a k with 1 < k < d such that f(i1,...,4,) ~ k < is contained in the branch (cf.
also the proof of proposition 7.2 above). Together, this suffices to rewrite any functional
term into one of the constants 1,...,d. If such rewriting is applied exhaustively prior to
adding new positive unit clauses it is clear that only finitely many different such clauses
exist. No branch need thus be extended infinitely. In conclusion, E-Hyper tableaux
(proof procedures) can be used as a decision procedure for finite satisfiability.

23

8 Implementation

We have implemented the E-hyper tableau calculus by extending our existing KRHyper
system. KRHyper is a hyper tableaux theorem prover, and as such it lacked equality
handling in the original version. The modified system, called E-KRHyper, adapts the
methods of its precursor to accommodate the new inferences, while at the same time
retaining the original functionality.

The derivation proceeds in a bottom-up manner. Internally, clauses are divided into
three sets, one containing the positive non-equational units (facts), the other consisting
of the positive non-unit clauses (disjunctions), and the third including both the unit
equations and the clauses with negative literals (rules). The hyper extension inference of
KRHyper is equivalent to a series of Sup-left, Ref and Split applications, and therefore
it is kept in place in E-KRHyper as a shortcut inference for the resolution of non-
equational atoms. The E-hyper tableau is generated depth first, with the current state
of the three clause sets always representing a single branch. The Split on a disjunction is
only executed when the other inference possibilities have been exhausted. An iterative
deepening strategy with a limit on the maximum term weight of generated clauses is
employed: the tableau is only extended by such inference results which fall within the
limit, and exceeding results are stored separately. If the tableau is exhausted and non-
redundant exceeding results have been found, then the limit is raised and E-KRHyper
backtracks to the point of the first weight transgression. This strategy ensures the
refutational completeness and a fair search control, as it prevents splitting from being
delayed indefinitely by other inferences.

Clauses are derived by a loop iterating over the rules, with each rule in turn accessing
indexes in the search for inference partners. The inferred clauses are added to their
respective sets after having passed the weight and subsumption tests. The dynamic
nature of the rule set represents a major change compared to the previous system version.
As the hyper tableaux calculus has no inferences that generate new rule clauses, this set
remained fixed throughout the derivation of KRHyper, and many optimizations on the
input could be delegated to preprocessing. Operations like the clause subsumption test
are necessary for the new calculus, and they are now employed to optimize the input
clauses as well.

The superposition inferences utilize a discrimination-tree based index [McC92] over
the subterms of clauses, and terms are ordered according to the recursive path ordering
(RPO). As an option, the backtracking mechanism allows the removal of redundant
clauses from the entire current branch, beyond the limits set in Section 4.2.

E-KRHyper supports input clauses in a Prolog-like syntax. The system also accepts
input in the common TPTP-syntax, both in clause normal form (CNF) and as first-order
formulas (FOF). As an option, E-KRHyper can apply the finite model transformation
(see Section 7). E-KRHyper is intended for embedding in knowledge-representation
applications and has a number of features for this purpose, including logic extensions
like stratified negation as failure, proof output for models and refutations as well as
for partial results, as well as rapid switching and retraction of input clause sets for an
efficient usage as a reasoning server. More details about the system can be found in

24

Table 1: Results for E-KRHyper on CNF Problems from the TPTP

’ status ‘ Horn ‘ range restricted ‘ No. of problems ‘ solved ‘
satisfiable yes yes 26 20 (77%)
satisfiable yes no 239 55 (23%)
satisfiable no yes 89 66 (74%)
satisfiable no no 470 | 140 (30%)

unsatisfiable yes yes 122 | 122 (100%)
unsatisfiable yes no 2016 | 924 (46%)
unsatisfiable no yes 335 | 232 (69%)
unsatisfiable no no 2027 | 666 (33%)
open/unknown | both both 953 0 (0%)
overall both both 6250 | 2225 (36%)

[PWOT7]; it is available under the GNU Public License from the E-KRHyper website at
http://www.uni-koblenz.de/ bpelzer/ekrhyper.

We have tested E-KRHyper on the CNF-problems of the current TPTP version 3.3.0
[GS98], using the 360 seconds timeout limit of the most recent CASC system competition
in 2007. No special transformations were applied to the problems. Table 1 summarizes
the results for various subsets of problems. The status open/unknown indicates those
problems that have not yet been solved by any theorem proving system. The most
difficult problems solved by E-KRHyper are SYN761-1.p, SYN788-1.p, SYN789-1.p and
SYN792-1.p with a TPTP-rating of 0.83. The average time for a successful proof is 10.4
seconds, and 77% of the proofs were found in less than one second.

The use of purifying substitutions may be necessary for those problems which oc-
cur in the subsets containing both non-Horn clauses and clauses which are not range
restricted. Recognizing which problems need purification is non-trivial. This can be
demonstrated with an example using the clause C' = p(x) V q(y) < r(z,y), which is
range-restricted and has no shared variables among its positive literals. Nevertheless,
if at any point during a derivation a branch contains a unit r(¢,¢) with ¢ being a non-
ground term, then an inference resulting in the positive disjunction p(t) V q(t) « is
possible. This disjunction will require purification upon splitting. If on the other hand
no such non-ground unit is ever derived, then the presence of C' in a set of clauses
will never make purification necessary. As the need for purification cannot be deter-
mined beforehand in an efficient manner, the domain required for purification must be
enumerated for all problems where purification might become necessary.

Further optimization of E-KRHyper is necessary, in particular regarding purely equa-
tional problems. Experiments with preprocessing steps like the finite model transforma-
tion may also yield improvements. We consider this version of E-KRHyper a first step
towards an efficiently applicable tableau prover with equality.

25

9 Conclusion

We have presented a tableau calculus with equality, by integrating superposition based
inference rules into the hyper tableau calculus rules. Our main result is its soundness and
completeness, the latter in combination with redundancy criteria. These are exploited to
obtain a sound and complete procedure for finite model generation. To our knowledge,
this is the first MACE-style approach to finite model computation that supports equality
reasoning natively instead of translating it away. The calculus is implemented in the
E-KRHyper system, an extension of our existing KRHyper prover.

References

[Bec97]

[Bez05]

[BF03]

[BFANTO7]

[BFGHS04]

[BFN9G6]

[BFPO7]

[BET06]

[BGYS]

Bernhard Beckert. Semantic tableaux with equality. Journal of Logic and
Computation, 7(1):39-58, 1997.

M. Bezem. Disproving distributivity in lattices using geometry logic. In
Proc. CADE-20 Workshop on Disproving, 2005.

Peter Baumgartner and Ulrich Furbach. Automated Deduction Techniques
for the Management of Personalized Documents. Annals of Mathematics
and Artificial Intelligence — Special Issue on Mathematical Knowledge Man-
agement, 38(1), 2003.

Peter Baumgartner, Alexander Fuchs, Hans de Nivelle, and Cesare Tinelli.
Computing finite models by reduction to function-free clause logic. Journal
of Applied Logic, 2007. In Press.

Peter Baumgartner, Ulrich Furbach, Margret Gross-Hardt, and Alex Sin-
ner. Living Book — Deduction, Slicing, and Interaction. Journal of Auto-
mated Reasoning, 32(3):259-286, 2004.

Peter Baumgartner, Ulrich Furbach, and Ilkka Niemela. Hyper Tableaux.
In Proc. JELIA 96, number 1126 in Lecture Notes in Artificial Intelligence.
European Workshop on Logic in AI, Springer, 1996.

Peter Baumgartner, Ulrich Furbach, and Bjorn Pelzer. Hyper tableaux
with equality. In Frank Pfenning, editor, CADE-21 — The 21st Interna-
tional Conference on Automated Deduction, volume 4603 of Lecture Notes
in Artificial Intelligence, pages 492-507. Springer, 2007.

Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Implementing
the model evolution calculus. International Journal of Artificial Intelligence
Tools, 15(1):21-52, 2006.

Leo Bachmair and Harald Ganzinger. Chapter 11: Equational Reasoning
in Saturation-Based Theorem Proving. In Wolfgang Bibel and Peter H.
Schmitt, editors, Automated Deduction. A Basis for Applications, volume

REFERENCES 26

[BS06]

[BTS]

[BTO5]

[BY00]

[CS03]

[ANMO6]

[DV6]

[DV9S]

[FO06]

[Gie01]

I: Foundations. Calculi and Refinements, pages 353-398. Kluwer Academic
Publishers, 1998.

Peter Baumgartner and Renate Schmidt. Blocking and other enhancements
for bottom-up model generation methods. In U. Furbach and N. Shankar,
editors, Automated Reasoning — Third International Joint Conference on
Automated Reasoning (IJCAR), volume 4130 of LNAI Springer, 2006.

Francois Bry and Sunna Torge. A Deduction Method Complete for Refu-
tation and Finite Satisfiability. In Proc. 6th Furopean Workshop on Logics
in AI (JELIA), LNAIL Springer, 1998.

Peter Baumgartner and Cesare Tinelli. The model evolution calculus with
equality. In Robert Nieuwenhuis, editor, CADE-20 — The 20th Interna-
tional Conference on Automated Deduction, volume 3632 of Lecture Notes
in Artificial Intelligence, pages 392—408. Springer, 2005.

F. Bry and A. Yahya. Positive unit hyperresolution tableaux for minimal
model generation. J. Automated Reasoning, 25(1):35-82, 2000.

Koen Claessen and Niklas Sorensson. New techniques that improve MACE-
style finite model building. In Peter Baumgartner and Christian G.
Fermiiller, editors, CADE-19 Workshop: Model Computation — Principles,
Algorithms, Applications, 2003.

Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure
based on finite model search. In U. Furbach and N. Shankar, editors, Proc.
International Joint Conference on Automated Reasoning (IJCAR), volume
4130 of LNAI Springer, 2006.

Anatoli Degtyarev and Andrei Voronkov. Equality elimination for the
tableau method. In Proceedings of the International Symposium on the De-
sign and Implementation of Symbolic Computation Systems (DISCO-96),
volume 1128 of Lecture Notes in Artificial Intelligence. Springer Verlag,
Berlin, Heidelberg, New-York, 1996.

Anatoli Degtyarev and Andrei Voronkov. What you always wanted to know
about rigid E-unification. J. Autom. Reasoning, 20(1):47-80, 1998.

Ulrich Furbach and Claudia Obermaier. Applications of automated reason-
ing. In Proc. of the 29th Gertman Conference on AI, LNAI 4314. Springer-
Verlag, 2006.

Martin Giese. Incremental closure of free variable tableaux. In Rajeev Goré,
Alexander Leitsch, and Tobias Nipkow, editors, Proc. Intl. Joint Conf. on
Automated Reasoning IJCAR, Siena, Italy, volume 2083 of LNCS, pages
545-560. Springer-Verlag, 2001.

REFERENCES 27

[Gie02]

[Gie03]

[GS98]

[HWO07]

[LMG94]

[LS02]

IMBSS]

[McC92]

[McC03]

[NRO1]

Martin Giese. A model generation style completeness proof for constraint
tableaux with superposition. In Uwe Egly and Christian G. Fermdiller, edi-
tors, Proc. Intl. Conf. on Automated Reasoning with Analytic Tableaux and
Related Methods, Copenhagen, Denmark, volume 2381 of LNCS. Springer-
Verlag, 2002.

Martin Giese. Simplification rules for constrained formula tableaux.
In Marta Cialdea Mayer and Fiora Pirri, editors, utomated Reasoning
with Analytic Tableauxr and Related Methods, International Conference,
TABLEAUX 2003, Rome, Italy, September 9-12, 2003. Proceedings, volume
2796 of Lecture Notes in Computer Science, pages 65—80. Springer-Verlag,
2003.

Christian Suttner Geoff Sutcliffe. The TPTP problem library: CNF release
v1.2.1. Journal of Automated Reasoning, 21(2):177-203, 1998.

Thomas Hillenbrand and Christoph Weidenbach. Superposition for finite
domains. Research Report MPI-I-2007-RG1-002, Max-Planck Institute for
Informatics, Saarbruecken, Germany, April 2007.

R. Letz, K. Mayr, and C. Goller. Controlled Integrations of the Cut Rule
into Connection Tableau Calculi. Journal of Automated Reasoning, 13,
1994.

Reinhold Letz and Gernot Stenz. Integration of Equality Reasoning into the
Disconnection Calculus. In Uwe Egly and Christian G. Fermiiller, editors,
TABLEAUX, volume 2381 of Lecture Notes in Computer Science, pages
176-190. Springer, 2002.

Rainer Manthey and Frangois Bry. SATCHMO: a theorem prover imple-
mented in Prolog. In Ewing Lusk and Ross Overbeek, editors, Proceedings
of the 9" Conference on Automated Deduction, Argonne, Illinois, May
1988, volume 310 of Lecture Notes in Computer Science, pages 415-434.
Springer, 1988.

William McCune. Experiments with discrimination-tree indexing and path
indexing for term retrieval. Journal of Automated Reasoning, 9(2):147-167,
October 1992.

W. McCune. Maced reference manual and guide. Technical Report
ANL/MCS-TM-264, Argonne National Laboratory, 2003.

Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem
proving. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, pages 371-443. Elsevier and MIT Press, 2001.

REFERENCES 28

[PWO7]

[S1a92]

[SS06]

[Wei01]

2295

Bjorn Pelzer and Christoph Wernhard. System description: E-KRHyper.
In Frank Pfenning, editor, Automated Deduction - CADE-21, 21st Inter-
national Conference on Automated Deduction, Bremen, Germany, July 17-
20, 2007, Proceedings, volume 4603 of Lecture Notes in Computer Science,
pages 508-513. Springer, 2007.

John Slaney. Finder (finite domain enumerator): Notes and guide. Tech-
nical Report TR-ARP-1/92, Australian National University, Automated
Reasoning Project, Canberra, 1992.

Geoff Sutcliffe and Christian Suttner. The State of CASC. AI Communi-
cations, 19(1):35-48, 2006.

Christoph Weidenbach. Combining Superposition, Sorts and Splitting. In
Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Rea-
soning. North Holland, 2001.

Jian Zhang and Hantao Zhang. Sem: a system for enumerating models.
In IJCAI-95 — Proceedings of the 14" International Joint Conference on
Artificial Intelligence, Montreal, pages 298-303, 1995.

29

A Proofs

The general technique to prove the E-hyper tableau calculus complete is taken from
the completeness proof of the superposition calculus [BG98, NRO1], but adapted to
our needs. One of the key concepts concerns the construction of a model of a clause set
under certain conditions. That model constructed is presented as a (convergent) rewrite
system. We will describe these concepts next.

A.1 Orderings and Rewrite Rules

Our approach makes heavy use of term rewrite systems and term orderings. We only
mention here some details specific to our framework and refer to the literature [BG98,
NRO1, e.g.] for standard definitions otherwise.

We assume a reduction ordering > that is total on ground Y-terms. The non-strict
ordering induced by > is denoted by >, and < and =< denote the converse of > and =,
respectively.

A (rewrite) rule is an expression of the form | — r where [and r are Y-terms. A
rewrite system is a (possibly infinite) set of rewrite rules. A ground rewrite system R
is ordered by = iff [= r, for every rule | — r € R, and R is lhs-irreducible if it contains
no two different rules of the forms [— r and s[l] — ¢. In other words, no left hand side
of a rule can be rewritten by another rule.

Notice that any ground rewrite system ordered by > and without lhs-overlaps is a
convergent ground rewrite system.'” It is well known that for any convergent rewrite
system R, and any two terms s and ¢, R =g s ~ t if and only if they have the same
normal, i.e. there is a term w such that s —% w and ¢ —% w and u cannot be rewrit-
ten further. This result thus applies in particular to ground lhs-irreducible convergent
rewrite systems.

In the sequel, the letter R will always denote a ground lhs-irreducible rewrite system.

By a slight abuse of notation we will write R |= F' for a ground rewrite system R
and clause (set) F' iff the interpretation {{ ~ r | [— r € R} satisfies I (similarly for
R Eg F).

A.2 Model Construction

This section presents the proof of Theorem 3.2 (Static Completeness). Let C be a
(possibly infinite) set of clauses. (In the completeness proof C will be obtained as a
certain limit branch of a tableau.) We show how C induces a ground lhs-irreducible
rewrite system Rc.

First, for a positive ground X-clause C we define by induction on the term ordering
> sets of rewrite rules ec and R as follows (we leave the parameter C implicit). Assume
that ep has already been defined for all ground Y-clauses D with C' = D. With Rc =

17A convergent rewrite system is one that is confluent and terminating.

A.2 Model Construction 30

Ucsp €D, we define

{l—>r} if C=1~r+« isaground instance of some positive
€c = unit clause in C, [> r, and [is irreducible wrt. R¢

0 otherwise

Then Re = |Jp €c, where C ranges over all ground Y-clauses.

By construction, R has no critical pairs, and is thus an lhs-irreducible rewrite
system. Since > is a well-founded ordering, R¢ is a convergent rewrite system by
construction. The given clause set C comes into play only in the first condition of the
definition of €c. An important detail is that according to our convention the equations
s ~t and t ~ s are treated as the same. Thus, if s < ¢ then s ~ ¢t « may still be
turned into the rewrite rule t — s in R¢ by means of its symmetric version t >~ s « .

Observe that even if C is a set of positive unit clauses, then R¢, even if convergent,
may be incomplete wrt. the equational theory presented by it. For instance, with C =
{(a b«),(a ~ ¢ <)} and the ordering a > b > c¢ the induced rewrite system
Re = {a — c} is clearly incomplete wrt. the equational theory {a ~ b,a ~ ¢}. In
general then it might be necessary to add enough positive unit clauses to C to make
R¢ complete, which the E-hyper tableau calculus does. Positive non-unit clauses are
handled differently, by splitting.

The following lemma states that satisfaction of a clause C' in R¢ is preserved as R¢
is being extended.

Lemma A.1
Let C be a clause set, C' a ground clause, and R and R’ rewrite systems such that
Rc CRCR CRe. If REg C then R g C.

Proof. Writing C' as the clause A < B, we suppose R =g A < B and show R’ g A «—
B.

If R =g B (reading B as a conjunction of atoms) then with R =g A « B it follows
R =g A, for some head atom A of A < B. From monotonicity of first-order logic with
equality, and with R’ 2 R it follows R’ g A and, trivially, R’ =g A < B. Hence
assume R f~p B from now on.

By way of contradiction assume R’ g B but R’ g A, for any head atom A
(of A «— B). As R’ =g B holds while R =g B does not hold, there is at least one
body equation s ~ ¢ in B such that R’ g s ~ t but R £g s ~ t. Because Rg is
convergent (this follows easily from its construction) and hence also its subsets R and
R’ are convergent, conclude that s ~ ¢ is joinable by R’ but not by R.

Every rule [— r € R is obtained from a ground instance [~ r < of a positive unit
clause from the clause set C. From | — r € (R'\ R) and R D R it follows | — r ¢ Rc.
By definition of R¢ then (I ~r «) > C. (In fact even (I ~ r <) > C because these
two clauses are different.) This entails that the head atom [~ r (of the unit clause
l ~ r «) is greater or equal than the body atom s ~ ¢, i.e. {l,7} = {s,s,t,t}. It
follows that [is greater than even the maximum of s and ¢. But then it is impossible

A.2 Model Construction 31

(essentially, by the subterm property of reduction orderings) that the rule I — r can be
used to rewrite the term s or the term ¢. Because this holds for every rule in (R’ \ R),
the R’- and R-normalforms of s and ¢ are the same. This leads to a contradiction to
the assumption that R’ g s ~ t holds but R =g s ~ ¢ does not hold. Hence, the
assumption that R’ =g B holds but R¢ =g A does not hold must be given up. This
entails R’ j£g B or R’ =g A, for some head atom A. Equivalently, R' g A« B. O

Occasionally the following lemma comes in handy.

Lemma A.2
Let C be a clause set and C and D ground clauses. If C' = D then Rp U ep C R¢

Proof. By definition R = Up,.per and Rp = Up.pep. With C = D it follows
ep C Rc and Rp C Re. Together, thus, Rp U ep C Rc. |

Proposition A.3 (Model construction)
Let C be a clause set that is saturated up to redundancy and such that O ¢ C. Then,
for every ground instance C' of every clause from C the following holds:

1. If Cc =g C then e¢ =) and R¢ =g C.
2. If Co g C then R U ec g C.

That is, either C' is redundant wrt. C and R¢ already satisfies C', or else, when C' is not
redundant wrt. C, extension of Rc by ec will satisfy C. However, the case ec = 0 is
possible. For example, when C = + a ~ b and C¢ = 0.

But, in either case the proposition gives R U e =g C.

Proof. The claim is proved by well-founded induction on the ground instances of the
clauses from C. Hence choose arbitrarily any ground instance C of a clause from C and
assume that the proposition holds for all ground instances D of all clauses from C such
that C >~ D.

1.Cc Er C.

Regarding item 1, assume Co =g C, i.e. C is redundant wrt. C. By induction, combining
cases 1 and 2, we get Rp U ep g D, for every clause D € Co. With Lemma A.2
conclude Rp U ep C Re, and with Lemma A.1 it follows Rc g D, for every clause
D € C¢. Equivalently, Rc =g Co. With Co =g C conclude Re g C, as desired. This
completes the proof of the second part of item 1.

To show ec = () assume, by contradiction, ec = {I — r}, where C' =1 ~ r «+ . Recall
we have just shown Ro |= C. As for any convergent rewrite system, two (ground) terms
are equal in the E-interpretation induced by R¢ iff their normal forms wrt. R¢ are the
same. Applied to the situation here, this means that [and r have the same Ro-normal
form. In particular, thus, some rule from Rc must be applicable to the larger term
(wrt. >) of [and r, which is [. But then, by definition we have e = (), which is a plain
contradiction. This completes the proof of the first item.

2. Co g C.

A.2 Model Construction 32

Turning to item 2, suppose from now on C¢ g C, i.e., C is not redundant wrt. C. It
follows that no clause D € C that C is a ground instance of can be redundant wrt. C
either. We use this fact below to enable using items 1-3 of Definition 3.1.

We distinguish various cases on the form of C', most of them leading to a contradic-
tion, though, thus ruling out that these forms are possible (in fact, when C' is of any of
these forms it will be redundant wrt. C). For the (two) non-contradictory subcases we
will show Rc U eo):E C.

2-1. C = (D[z])y and zy is reducible wrt. Rc:.

Suppose C' = D~, for some clause D € C and some (grounding) substitution -, such
that D contains a variable z, i.e., D = D[z], and x7y is reducible wrt. Rc. That is,
xy = z7y[l] for some rule | — r € Rc.

Let +' be the substitution that is the same as v, except for z, where we set z7' =
xv[r]. That is, 4/ is like y but with the rewrite rule I — r applied to z~y. From [> r it
follows D+" < D~. By the induction hypothesis Rp, U epy =g Dv'. From D+’ < Dvy
conclude Rp, U epy € Rp,. Together with Lemma A.1 it follows Rp, Er DY
Because of | — r € Rc, Dy = C and by definition of 4" conclude with congruence
R Eg C, a plain contradiction to Co g C as assumed above.

2-2.C = (A« s~t,B)y and sy = tv.

If C = (A« s~t, B)y, for some clause (A« s ~ t,B) € C and grounding substitution
7, and sy = t7 then there is an inference (A + s =~ t,B) = (ef(s) (A < B)o, where o is
a mgu of s and ¢t (and there is a substitution ¢ such that v = ¢9).

Neither the clause A « s ~ ¢,B nor the clause (A «— s ~ t,B)o is redundant
wrt. C. This follows trivially from the assumption of case 2, that their instance C
is not redundant wrt. C. By saturation (Definition 3.1-3), the inference (A «— s ~
t,B) =ref(o) (A < B)o is redundant wrt. C. In particular, thus, its ground instance
C =ref(c) (A < B)yisredundant wrt. C. By definition of redundancy, Cc g (A < B)y.
It follows trivially that Co =g C, a plain contradiction to Co g C as assumed above.

2-3. C = (A« s~t,B)y, sy =ty and sy is irreducible wrt. Rc.

Assume C = (A «— s ~ t,B)y for some clause (A «— s ~ t,B) € C and grounding
substitution . We may assume sy # ty because otherwise case 2-2 applies. Without
loss of generality let sy be the larger side of the equation (s ~ t)y, i.e. sy > ty. Assume
further sv is irreducible wrt. Rc. This entails that sy and ¢y are not joinable wrt. R¢.
Thus, Re g sy ~ tvy, which trivially entails Ro =g C. Finally, as C' is not a positive
unit clause we trivially have ec = (), which concludes this case.

2-4. C = (s>t)y, sy>ty and sv is irreducible wrt. Rc.

Assume C' = (s ~ t <)7 for some positive unit clause (s ~ ¢t <) € C and grounding
substitution . We may assume sy # t7y because otherwise the claim follows trivially.
Without loss of generality let sy be the larger side of the equation (s ~ t)~, i.e. sy > t7.
Further assume that sy is irreducible wrt. Rc. Thus, ec = {sy — tv}, which trivially
entails R U ec g C.

2-5.C = (Ay,...,Ap <)y, for some m > 2.

A.2 Model Construction 33

Assume C' = D~ for some positive non-unit clause D = (A4y,..., A, «—) € C, where
m > 2, and with grounding substitution . It is not difficult to see that « can be obtained
by composition of some purifying substitution 7w for D and some other substitution d,
i.e. ¥ = md. Such a substitution 7 always exists, it could be ~ itself.

Neither D nor D7 is redundant wrt. C. This follows trivially from the assumption
of case 2, that their instance C' = D+ = D={ is not redundant wrt. C. By saturation
(Definition 3.1-1) the inference D =>pjig(r) A17 < ..., Apm « is redundant wrt. C. In
particular, thus, its ground instance C' =gyjie(e) A1y < ..., Amy < is redundant wrt.
C. By definition of redundancy, Cc =g A;y < , for some ¢ with 1 < ¢ < m. It follows
trivially Co =g C, a plain contradiction to Co feg C' as assumed above.

2-6. C = (D[s])y and sv is reducible at a non-variable position.

To make the case analysis exhaustive assume that C does not fall into one of the cases
2-1 — 2-5. We further analyze the form C' can take. Assume C' = D~ for some clause
D € C and grounding substitution

In the first case D has a non-empty body. Because the cases 2-2 and 2-3 are excluded,
D can be written as A <+ s ~ ¢, B, where sy > ty and s7 is reducible wrt. R¢.

In the second case D has an empty body. Because the cases 2-4 and 2-5 are excluded,
and we are given that C does not contain the empty clause, D must be a positive unit
clause and can be written as s ~ ¢t « , where sy > ¢ty and sv is reducible wrt. R¢.

Doing both cases together, consider any rule | — r € R¢c that rewrites sy. Because
case 2-1 is excluded, | — r does not rewrite sy at or below a variable position of s. That
is, any position p such that sy[l], holds is a non-variable position of s.

We continue the proof doing both cases together.

By construction the rewrite rule [— r is obtained from a ground instance of some
positive unit equation from C. Let E = I’ ~ v’ «+ be a fresh variant of that positive
unit equation. Because it is fresh, we may assume ~ has been extended so as to give
U!v=1land r'y=r.

We must have C' > FEv because otherwise I’y — r'y € R¢ (ie, | — r € Re)
would be impossible. Therefore we can apply induction to Ev. If case 1 applies, i.e.
Cey EE Ev then €, = 0 and so I'y — r’'y(= | — r) could not be a rewrite rule in R¢
and thus neither in Rc. Case 1 is thus impossible. Therefore we must have Cg,, g E7.
In other words, E7 is not redundant wrt. C.

As said above, D can take two different forms. If D is of the form A «— s ~ ¢, B
consider the ground sup-left inference

(Ay — sy[I'7]p > t7, BY), By =supiefe(e) (Ay — s7[r'v]p =~ t7, BY) . (1)
Because p is a position of a non-variable term in s, say, I”, the sup-left inference
(-A — S[ZH]p ~, B), E :>sup—|eft(a) (A — 5[7“,}1) ~t, B)G (2)

exists, where o is a mgu of I’ and I”, and v = o6 for some substitution §. The ground
sup-left inference (1) then is a ground instance of the sup-left inference (2).

(*) Above we concluded that E7 is not redundant wrt. C. Therefore the more general
clause Fo cannot be redundant wrt. C either. A global assumption in case 2 is that D

A.3 Soundness 34

is not redundant wrt. C. By saturation (Definition 3.1-2) the inference (2) is redundant
wrt. C. In particular, thus, its ground instance (1) is redundant wrt. C. For economy of
notation let F' = Ay «— sy[r'y], =~ ty, By be the conclusion of the inference (1).

By definition of redundancy Cc U {E~} =g F. By induction, combining cases 1
and 2, we get Rg U eg =g G, for every clause G € Co. With Lemma A.2 conclude
Rg U eg € Re, and with Lemma A.1 it follows Rc g G, for every clause G € Ce.
Equivalently, Rc g Cc.

Because Ey = (I’ ~ r’)v is present as a rewrite rule (I'y — r'y) = (I — r) € R¢ it
trivially follows that Rc g Evy. Together with Ro =g Co and Co U {E~v} Eg F (by
redundancy of the inference, as mentioned above) conclude R¢ =g F. From [— r € R¢
conclude by congruence R¢ =g C, which is a plain contradiction to C¢ g C' as assumed
to hold for case 2. This case is thus impossible.

Similarly, if D is of the form s ~ ¢ «+ consider the ground unit-sup-right inference

(S’Y[llp)/]p >~y —)7 Ef)/ :>unit—sup—right(6) (SV[TI’Y]p >y =) : (3>

Because p is a position of a non-variable term in s, say, I, the unit-sup-right inference

(3[1//]10 >)) E :>unit-sup-right(0') (S[T/]p >)U (4)

exists, where o is a mgu of I’ and I”, and v = 06 for some substitution §. The ground
unit-sup-right inference (3) then is a ground instance of the unit-sup-right inference (4).
The rest of the proof of this case is the same as from (*) above and is omitted
(obviously, F' = (sy[r'v]p, ~ ty <) this time).
In conclusion, the case 2-6 is impossible, too. O

Theorem 3.2 (Static Completeness)
Let C be a clause set saturated up to redundancy. If 0 ¢ C then C is E-satisfiable.

Proof. Suppose [0 ¢ C. To show that C is E-satisfiable it suffices we show that R¢ is an
E-model of C. For this, it suffices to show R¢ [Eg C7y for an arbitrarily chosen clause
C € C and an arbitrarily chosen grounding substitution v for C. To prove R¢ =g Cv,
we first use Proposition A.3 and conclude Rcy U ecy =g Cy. From that, Re =g Cvy
follows immediately by Lemma A.1. O

A.3 Soundness

Lemma A.5
For each of the derivation rules Split, Equality, Del and Simp, if the premise of the rule
is E-satisfiable, then one of its conclusions is E-satisfiable as well.

Proof. Let us first focus on the inference rules sup-left and unit-sup-right. Assume the
premises of such a rule are E-satisfiable and let I be a E-model; from the axioms of
congruence we can immediately conclude for both rules, that I is an E-model for the
conclusion as well. For ref the claim follows directly from reflexivity.

For Equality the claim is an immediate consequence from the above. For Split assume
that there is an E-model I for the premise B. Let Ai,---,A,, < be the selected

A.4 Completeness 35

clause from B. Then I is an E-model for (A;,---, A, «<)7 where 7 is the purifying
subsitution for Aq,..., A,,. Aim, ..., A, have no variables in common and all variables
are implicitly universally quantified; hence V(A7 V...V A,,7) is equivalent to VA 7 V
... VVA,,7m and we conclude that [is an E-model for VA7 V... VVA,, .

Hence there is an E-model for one of B - Ajm <4 B- A7 «9.

For Del the claim obviously holds, and for Simp assume an E-model [for the premise.

Let C,D,B and B as in the definition of Simp; from condition (1) there, (B - C -
B,) =r D, we conclude that D also holds in I. Here we make also use of condition (3)
in the definition of Simp, the rationale behind which was explained in Section 4.2. O

Theorem A.6 (Soundness of E-Hyper Tableaux)
Let C be a clause set that has a refutation. Then C is E-unsatisfiable.

Proof. Let T be the resulting closed tree of the refutation. From the contrapositive of
Lemma A.5 we conclude that if a tree T; of a derivation contains only E-unsatisfiable
branches, this holds for its predecessor T;_1 as well. The final tableau T of the refutation
clearly consists only of E-unsatisfiable branches and hence by induction of the length
of the refutation (which is by definition a finite derivation), we can conclude that the
initial tableau T, which consists of one branch with the tableau clauses from C, is
E-unsatisfiable. O

A.4 Completeness

Lemma A.7
Let C1 and Cy be ground clauses and C a set of ground clauses. If (B;)c, U C =g Cy
for some j < k then (Bs)c, U C =g Co.

Proof. The proof is by well-founded induction. Suppose the result to hold for all ground
clauses C] such that C] < C4.

Suppose (B;)c, U C =g Cs holds for some j < k. Let D’ be a finite subset of (B;)c,
such that D" U C =g Cs. Such a set D’ exists by compactness of first-order logic with
equality.

The first step is to deal with Del applications applied to B;, Bj11,... that remove a
clause by non-proper subsumption that can be instantiated to a clause in D’. To trace
such applications, let initially D = B;. Then, for all j,j + 1,..., if Del is applied to
B, to remove a clause by non-proper subsumption that is also in D then replace in D
the removed clause by the non-proper subsuming clause of that step. It is easy to see
that this process maintains the invariant D' C D¢,. With D’ U C =g C5 this entails
D01 ucC):E Cs.

It is a simple inductive consequence of the definition of the Split and Equality deriva-
tion rules that no clause set derived can contain a clause and a variant of it. Hence,
in the considered Del application the non-proper subsuming clause and the subsumed
clause cannot be variants. Because the ordering based on the converse relation, proper
generalization, is well-founded, there is a time [such that no clause that is also in D
is removed by non-proper subsumption deletion from By, B;y1,... . (It is possible that

A.4 Completeness 36

clauses from D do not occur in these branches at all, because they have been removed
by some prior Del or Simp application.) Together with the definition of D this implies
that D is a set of clauses so that no non-proper subsumption Del step is ever applied to
any of them.

If Do, € (Boo)c, then the claim follows from the monotonicity of first-order logic
with equality and D¢, U C =g Ca, as concluded above.

Otherwise let B := D'\ (B), be those clauses from D’ that are not an instance
of any persisting clause in Bo,. Choose any clause C’ € B’ arbitrarily. By construction,
it is a ground instance of some clause C' € D such that C' ¢ By. This means that C
has been removed from the clause set B labeling the node Ny of the branch B, for
some k < k. In other words, the Del or Simp derivation rule has been applied to By
with selected clause C. However, as argued above, by the definition of D this cannot
have been a non-proper subsumption deletion Del application.

Hence, by definition of the Del and Simp derivation rules, the clause C, and hence
its instance C” is redundant wrt. a specific subset B” C Bjy,1.'® That subset B” is
specified in the definition of the Del and Simp derivation rules. For our purpose the only
important fact is that with B” C By it (trivially) follows that C” is redundant wrt.
By as well.

That C’ is redundant wrt. Bg, 1 means by definition of redundancy (By11)c Eg C'.
This implies by monotonicity of first-order logic with equality (Bg11)cr UC g C'. With
C' € B'C D' CDg, it follows C' < C;. By the induction hypothesis then

(Boo)C’ uc ’:E c . (5)
From C' < C it easily follows that (Boo)cr € (Bwoo)c,- Together with (5) and by
monotonicity of first-order logic with equality it follows

(Boo)oy UCERC . (6)

Recall from above D' U C =g Cs. Because C' € D' we can replace in this entailment C”
in D’ by the stronger set (Boo)c, U C. More formally, D’ U C =g Cs and (6) entail

(Boo)e, UC) U (D'\{C'}) UC ROy . (7)

Repeating this procedure for each of the (finitely many) members of B’ allows to con-
clude

(Boo)oy UC) U (D'\B) UC g Cs (8)

Recall that B’ = D'\ (Bo)¢y, which implies by elementary set theory D'\ B’ C (Bu) ¢, -
But then, (Bs), U C =g C; follows from (8) immediately.

8This argument uses the fact that Del and Simp can be applied to clauses within the same “decision
level” only, as explained in Section 4.2. Formally, the conditions (2) and (3) in Del and Simp, respectively,
ensure that these rules do not touch a clause in a different branch in the derivation tree, a branch that
would not provide the required justification by redundancy or non-proper subsumption, as stated in the
other applicability conditions of Del and and Simp.

A.4 Completeness 37

Lemma A.8
If C is redundant wrt. B;, for some j < k then C' is redundant wrt. B.

Proof. Suppose C' is redundant wrt. B;, for some j < . Let D be an arbitrarily chosen
ground instance of C. By definition, D is redundant wrt. B, which means (B;)p =g D.
With Lemma A.7 it follows (Bso)p FEr D. In other words D is redundant wrt. Bo.
Because D was chosen as an arbitrary ground instance of C, C is redundant wrt. Be.

(|

Lemma A.9
If R =g, C and C is redundant wrt. C then R =g C.

Proof. Suppose R =g C and C is redundant wrt. C. Let D be an arbitrarily chosen
ground instance of C. It suffices to show R =g D. Since C' is redundant wrt. C, by
definition, its ground instance D is redundant wrt. C. Equivalently, Cp =r D, which
entails R =g D provided R =g Cp holds. The latter however follows immediately from
R |=g C and the trivial fact that Cp is a subset of the set of all ground instances of all
clauses from C. O

Lemma A.10

Let C be a clause and D a positive unit clause. Then, any inference C,D =g E,
where R € {sup-left, unit-sup-right}, or C =ref(o) L that is redundant wrt. Bj, for some
J < kK, is redundant wrt. B.

Proof. Suppose an inference C, D = p(,) E, where R € {sup-left, unit-sup-right}, redun-
dant wrt. B;, for some j < k. Let v be an arbitrary ground substitution for C' and D
such that v = o6 for some substitution ¢ and such that Cy =g E¢ is a ground in-
stance of C, D = p(,) E. Because chosen arbitrarily, it suffices to show that this ground
instance Cy = g() £ is redundant wrt. B.

Because the inference C, D = g(,) E is redundant wrt. By, its instance Cy =pg() £
is redundant wrt. B;. By definition of redundancy this means

(Bj)oy U A{D7} e ES (9)

By Lemma A.7 then
(Boo)oy U DV} e EO (10)

which, by definition, means that the inference Cy =pg() EJ is redundant wrt. B,
which was to be shown.
The proof of the case of an inference C' = () £ is similar and is omitted. O

Lemma A.11

Let C be a positive clause and w a purifying substitution for C. If the inference
C =elit(r) A1 < ..., A < is redundant wrt. Bj, for some j < k, then it is re-
dundant wrt. B.

A.4 Completeness 38

Proof. Suppose an inference C' =gyji(r) A1 < ..., Ay < that is redundant wrt. By,
for some j < k. Let « be an arbitrary ground substitution for C' such that v = 7 for
some substitution § and such that Cy = gjie(e) A16 <, ..., Amd < is a ground instance
of €' =gpiit(r) A1 < ..., A < . Because chosen arbitrarily, it suffices to show that the
ground inference Cy = gjie(e) 410 <, ..., Amd < is redundant wrt. Beo.

Because the inference C' =yjit(r) 41 < ,..., Ay < is redundant wrt. By, its
instance C7y =gpjie(e) A10 < ,..., Apd < is redundant wrt. B;. By definition of
redundancy this means that A;0 < is redundant wrt. B, for some ¢ with 1 <7 < m. By
Lemma A.8 then A;0 < is redundant wrt. Bo.. It follows immediately that the ground
inference Cy =gpjig(e) A10 < ..., And « is redundant wrt. B, which remained to be
shown. O

Proposition 4.4 (Exhausted branches are saturated up to redundancy)
If B is an exhausted branch of a limit tree of some fair derivation then B, is saturated
up to redundancy.

Proof. Suppose B is an exhausted branch of a limit tree of some fair derivation. Ac-
cording to Definition 3.1 it suffices to choose arbitrarily a clause C € B, that is not
redundant wrt. B, and to prove the properties 1-3 claimed there for C.

Before doing that, notice that if there is a j < k such that C is redundant wrt.
B;, then by Lemma A.8 the clause C' is redundant wrt. B,, and nothing remains to
be shown for C'. Hence suppose from now on that C' is not redundant wrt. B;, for all
J < K.

1. C = split(m) Ay — . Ay, —
Suppose there is an inference C' =gpjip(r) A1 < ..., Am < . It suffices to show that
this inference is redundant wrt. B, or that C7 is redundant wrt. Bg.

If there is a j < s such that Cr7 is redundant wrt. Bj, then by Lemma A.8 Cr is
redundant wrt. B, and nothing remains to be shown. Hence suppose that C'7 is not
redundant wrt. B;, for all j < k.

It suffices to show that an arbitrarily chosen ground instance of the inference C' = ¢yji¢(r)
Ay — ..., A, < is redundant wrt. B,,. Hence let v be an arbitrary ground substitu-
tion for C' such that v = 7d for some substitution d, and such that Cy =gpjip(e) 410 —
yoo s Amd « is a ground instance of the inference C' =gyjig(r) A1 < ..., Am < . We
will show that this ground inference is redundant wrt. Bo.

From C € B it follows there is an ¢ < k such that for all j > ¢ with j < k it holds
C € Bj. Because of C =yjig(r) A1 < ..., Ay < Split is applicable (in particular) to B;
with underlying inference C' =gpjig(r) A1 < ..., Ay < unless A;j <, for some j with
1 < j < m is contained as a variant in B;. In this case, by virtue of the ground instance
Ajd «— of Aj « it follows that the ground instance Cy = gpjig(e) 410 < ..., Amd —
is redundant wrt. B; and nothing remains to be shown.

Recall we are considering the case that C'r is not redundant wrt. B;, for every j < x.

But then, by Definition 4.2-1 there is a k < r such that the inference C' = ¢yji(r) A1 <
yeeoos A — is redundant wrt. By, By Lemma A.11 then, this inference is redundant
wrt. Boo. Therefore, in particular its (ground) instance Cy = gyjig(e) A10 < ..., Amd
is redundant wrt. B, which remained to be shown.

A.4 Completeness 39

2. C,D =gy E, where R € {sup-left, unit-sup-right }

This case is concerned with Equality inferences. More precisely, suppose there is an
inference C, D = p(,) E, where R € {sup-left, unit-sup-right} and where D is a fresh
variant of a positive unit clause from B, and ¢ is some substitution.

It suffices to show that this inference is redundant wrt. B, or that Co or Do is
redundant wrt. Bo.

If there is a j < & such that Co is redundant wrt. B;, then by Lemma A.8 Co is
redundant wrt. B, and nothing remains to be shown. Hence suppose that C'o is not
redundant wrt. Bj, for all j < k. By exactly the same argumentation, this time applied
to Do, we may assume that Do is not redundant wrt. Bj, for all j < &.

It suffices to show that an arbitrarily chosen ground instance of the inference C, D = g,
FE is redundant wrt. Bo,. Hence let v be an arbitrary ground substitution for C' and
D such that v = ¢4 for some substitution ¢, and such that Cv, Dy =pg() Ed is a
ground instance of of the inference C, D = p(,) £. Hence we will show that this ground
inference C'y, Dy = () E¢ is redundant wrt. Boo.

From C € B it follows there is an ¢ < k such that for all j > ¢ with j < k it holds
C € B;. Likewise, from D being a variant of a clause in B it follows there is an ¢’ such
that for all j* > ¢’ it holds D is a variant of a clause in Bj;. Without loss of generality
assume ¢ > i'. It follows D is a variant of a clause in By, for all j > 1.

From the just said, and because of C, D = pg(,) F, Equality is applicable (in particu-
lar) to B; with underlying inference C, D = () E unless E is contained as a variant in
B;. In this case, the inference C, D = pg(,) £ is redundant wrt. B; and nothing remains
to be shown.

Recall that we are currently considering the case of neither C'o nor Do being redun-
dant wrt. B, for every j < k.

But then, by Definition 4.2-2 there is a k < such that the inference C, D =g, E
is redundant wrt. Bx. By Lemma A.10 then, this inference is also redundant wrt. B,.
Therefore, in particular its (ground) instance Cy, Dy = () £9 is redundant wrt. Bo,
which remained to be shown.

3. C :>ref(o-) FE
This case is concerned with an Equality inference, more precisely with an application of
the ref rule. The proof is done analogously to case 2 and is omitted.

O

Theorem 4.5 (Completeness of E-Hyper Tableaux)
Let C be a clause set and D a fair derivation of C. If D is not a refutation then C is
E-satisfiable.

Proof. Suppose that D is not a refutation. Therefore its limit tree T has an exhausted
branch. Let B be any such exhausted branch.

By Proposition 4.4 the clause set B, is saturated up to redundancy. Moreover, By,
cannot contain the empty clause, because if it did, then B would also contain the empty
clause, but no exhausted branch can contain the empty clause.

With Theorem 3.2 it follows By is satisfiable. Moreover, the proof of Theorem 3.2
gives us a convergent rewrite system Rp__ such that Rp_ g Bo.

A.4 Completeness 40

To prove the theorem it suffices to show Rp_ =g C. To show that, let C' be any
clause from C, and it suffices to show Rp__ g C. By definition of derivation, C' € By,
where By is the (single) branch of the initial tableau Ty of the derivation D.

As a first step we trace possible Del applications that remove C by non-proper
subsumption. More formally, let Cy = C, and for all j = 0,1,..., if Del is applied to
B, with selected clause C; then let Cj;1 be the non-proper subsuming clause of that
Del application, and otherwise let Cj1; = C}. Clearly, to show Rp__ =g C it suffices to
show Rp_ [=g Cj, for any j > 0.

As an easy inductive consequence of the definition of the Split and Equality derivation
rules, no clause set Bg, B, ... ever derived can contain both a clause and a variant of
it. Hence, if C; is removed by non-proper subsumption, C; must be a proper instance
of Cj11. Because the ordering based on the converse relation, proper generalization, is
well-founded, there is a time [such that Cj is a tableau clause in B; (the case [= 0 is
possible) that is not removed from any branch B;, B; 1, ... by non-proper subsumption
(C; it could be removed by some other Del or Simp application, though).

If C; € By then with Rp_ g Bo immediately conclude Rp, Fgr Cj, and so
Rp_ =g C. Hence suppose C; ¢ Bo, from now on.

From C; € B; and) ¢ By it follows that Cj has been removed at some time k < k
from the clause set By by an application of the Del or the Simp derivation rule. We deal
with both cases at once. But notice we have already excluded the possibility that C;
has been removed in a Del application by means of non-proper subsumption.

This means, C; is redundant wrt. a specific subset B’ of the derived branch By,
where B’ is specified in the definition of the Del and Simp derivation rules.'® Because
B’ C By it trivially follows that C; is redundant wrt. B, 1.

By Lemma A.8, Cj is redundant wrt. Bo,. With Rp__ g Bo and Lemma A.9 it
follows Rp_ =g Ci, and so Rp_, g C, which remained to be shown. O

Proposition 7.2 (Correctness of FD,)
Let C be a clause set and d a non-negative integer. Then C has a finite model with d
domain elements if and only if FD4(C) is E-satisfiable.

Proof. For the soundness direction suppose that FD4(C) is E-satisfiable. We have to
show that C has a finite model with d domain elements. The proof is easiest done by
exploiting the soundness and completeness results of E-Hyper tableaux, Theorems A.6
and 4.5.

Consider any fair derivation D of FD4(C). Because FD4(C) is E-satisfiable, by The-
orem A.6 the derivation D cannot be a refutation. By Theorem 4.5 and the comments
following it, D contains an exhausted branch B. It is clear from inspection of the clause
set FD4(C) and how the calculus works, that the persistent clauses B, of B contain the
clauses (1) and (2) from the definition of FD; above (we make the assumption, though,
that the domain elements 1,...,d are the smallest terms in the ordering). Further, as
per scheme (3), for every n-ary function symbol f in C and any n integers iy, ..., iy

9For this fact to hold, the same argument as in the proof of Lemma A.7 on “decision levels” is
implicitly used here.

A.4 Completeness 41

with 1 <iq,...,%, < d, there is a k with 1 < k < d such that B, contains the clause
fli1,...,in) =~ k < . These clauses together define a finite interpretation I; for all
function symbols occurring in C on the domain {1,...,d} in the obvious way.

Again with the completeness theorem and the underlying model construction, all
ground instances of all clauses (4) in FD4(C) are satisfied in the E-Herbrand interpreta-
tion induced by Bo,. In particular, thus, all those ground instances that can be obtained
by instantiating with domain elements 1, ..., d only are satisfied by that interpretation.
Because 1,...,d are exactly the domain elements of I; it is not difficult to see that I
is a (non-Herbrand) E-model of C.

For the completeness direction suppose there is a finite model I; of C with d domain
elements. Let 1,..., d be these elements. It is clear from inspection, that I satisfies the
clauses (1), (2) and (3) from the definition of FD4. Because I, satisfies C, I trivially
also satisfies the clauses (4). Together, thus I, satisfies FD4(C). In other words, FD4(C)
is E-satisfiable, which was to be shown. O

	Introduction
	Preliminaries
	Inference Rules on Clauses
	Redundant Inferences and Saturation

	E-Hyper Tableaux
	Extension Rules
	Deletion and Simplification Rules
	Derivations

	Derivation Examples
	Restricting Split and the Relation to Splitting in SPASS
	Finite Model Computation
	Transformation
	Correctness

	Implementation
	Conclusion
	Proofs
	Orderings and Rewrite Rules
	Model Construction
	Soundness
	Completeness

