Peter Baumgartner

Theory Reasoning in
Connection Calculi

August 25, 1998

Springer-Verlag

Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest

Preface

Certainly, the ability to draw inferences is a central operation in any Artificial
Intelligence (AI) system. Consequently, automated deduction is one of the
most traditional disciplines in AI. One core technique, the resolution principle
[Robinson, 1965b] nowadays seems to be even standard knowledge of any
computer scientist.

Although resolution is particularly well-suited for implementation on a
computer, it soon became clear after its invention that even more elaborate
techniques are needed to cope with the tremendous search space. One of
these techniques is theory reasoning, where the idea is to incorporate spe-
cialised and efficient modules for handling general domain knowledge into
automated reasoning. These theory reasoning modules might, for instance,
simplify a goal, compute solutions, lookup facts in a database, etc. Also, the
most suitable knowledge representation formalism might be used for this.

This book is on extensions of calculi for automated theorem proving to-
wards theory reasoning. It focuses on connection methods and in particular
on model elimination. An emphasis lies on the combination of such calculi
with theory reasoners to be obtained by a new compilation approach.

Several theory-reasoning versions of connection calculi are defined and
related to each other. In doing so, theory model elimination (TME) will be
selected as a base to be developed further. The final versions are search-
space restricted versions of total TME, partial TME and partial restart TME.
These versions all are answer-complete, thus making TME interesting for
logic programming and problem-solving applications.

A theory reasoning system is only operable in combination with an (ef-
ficient) background reasoner for the theories of interest. Instead of hand-
crafting respective background reasoners, a more general approach — lin-
earizing completion — is proposed. Linearizing completion enables the au-
tomatic construction of background calculi suitable for TME-based theory
reasoning systems from a wide range of axiomatically given theories, namely
Horn theories.

Technically, linearizing completion is a device for combining the unit-
resulting strategy of resolution with a goal-oriented, linear strategy a la Pro-
log in a refutationally complete way.

VI Preface

Finally, an implementation extending the PTTP technique (Prolog based
Technology Theorem Proving) towards theory reasoning is described, and
the usefulness of the methods developed in this text will be experimentally
demonstrated.

This book was written during my employment! as a research assistant at
the institute for computer science at the University Koblenz-Landau (Ger-
many). It is the revised version of a doctoral dissertation submitted and
accepted at this institute.

I would like to thank all those who contributed in this work in one way
or the other:

In the first place I am grateful to Ulrich Furbach. He conducted me to
scientific work, and he always found time for helpful discussions. His advice
and criticisms pushed me ahead quite a few times.

Further I want to thank the other reviewers of my thesis, which are Peter
Schmitt (University of Karlsruhe, Germany), David Plaisted (University of
North Carolina, USA), as well as Karin Harbusch (University of Koblenz-
Landau, Germany), who substituted Prof. Plaisted in my thesis defence talk.

It was really a great pleasure for me to spend the last years in company
with nice colleagues. Jiirgen Dix, Frieder Stolzenburg und Stefan Briining
(Technische Hochschule Darmstadt, Germany) furthermore read this lengthy
text. Several improvements resulted from their suggestions.

Several bright students supported me a lot through implementational
work and discussions. Never tired to turn my ideas into running code had
been Katrin Erk, Michael Kiihn, Olaf Menkens, Dorothea Schéfer and Bernd
Thomas.

Koblenz, August 1998 Peter Baumgartner

! Funded by the DFG (Deutsche Forschungsgemeinschaft) within the research pro-
gramme “Deduction”.

Contents

1. Introduction 1
1.1 Theory Reasoning: Motivation 1

1.2 Historical Notes ot e 5

1.3 Furtherreading 8

1.4 Overview and Contributions of this Book 9

2. Logical Background.................. it 15
2.1 Preliminaries.ttt i 15

2.2 Syntax of First-Order Logic........ 17

2.3 Semantics of First-Order Logic 20

2.4 Clause Logic .. .ot 27
2.4.1 Transformation into clause logic 27

2.4.2 Herbrand Interpretations 30

2.4.3 Unification 34

2.5 Theories. .. ovi i e e e e 36
2.5.1 Sample theoriescoiiiiii it 38

2.5.2 Properties of Theories oo .. 41

2.5.3 Universal Theories and Herbrand Theory Interpretations 44

3. Tableau Model Elimination 49
3.1 Clausal Tableauxi ittt iiiaannn 49

3.2 Inference Rules and Derivations 52
3.2.1 ADSWeTS. ..ottt 57

3.2.2 Clausal Tableaux vs. Branch Sets................... 58

3.3 Improvements............oiiniiiiniiii i 60
3.3.1 Independence of the Computation Rule 60

3.3.2 Regularity ...t 61

3.3.3 Factorization i 62

3.3.4 Reduction Steps. 63

4. Theory Reasoning in Connection Calculi.................. 65
4.1 Basics of Theory Reasoning............. 65
4.1.1 Total and Partial Theory Reasoning 68

4.1.2 Instances of Theory Reasoning 72

VIII

Contents

4.2 A Total Theory Connection Calculus...................... 80
4.2.1 Theory Refuting Substitutions 81
4.2.2 Definition of a Total Theory Connection Calculus 85
4.2.3 Soundness of TTCC 89

4.3 Theory Model Elimination — Semantical Version........... 90
4.3.1 Motivation 90
4.3.2 Definition of Theory Model Elimination 92
4.3.3 Relation to TTCC-Link, 95

4.4 Total Theory Model Elimination — MSR-~Version........... 101
4.4.1 Complete and Most General Sets of 7-Refuters 102
4.4.2 Definition of TTME-MSR, oo ... 106
4.4.3 Soundness and Answer Completeness of TTME-MSR . 109
444 Related Work 112
4.4.5 A Sample Application: Terminological Reasoning 113

4.5 Partial Theory Model Elimination - Inference Systems Version 115
4.5.1 Theory Inference Systems 118
4.5.2 Definition of PTME-Z i, 120
4.5.3 Soundness and Answer Completeness 123
4.5.4 An Application: Generalized Model Elimination 128

4.6 Restart Theory Model Elimination........................ 129
4.6.1 Definition of Restart Theory Model Elimination 130
4.6.2 Soundness and Answer Completeness 135
4.6.3 Regularity and First-Order Completeness............ 137
Other Refinements. oot 139
Linearizing Completion 141
5.1 Introduction e 142
5.1.1 Linearizing Completion and Theory Reasoning 142
5.1.2 Related Work i 143
5.1.3 Relation to Knuth-Bendix completion 147
5.1.4 Informal Description of the Method 148
5.1.5 Linearizing Completion and Resolution Variants. 153
5.1.6 Preliminaries i 157

5.2 Inference Systemsc.cooiiiiiiiiiiiiiii . 157
5.2.1 [Initial Inference Systems 160
5.2.2 Completeness of Initial Inference Systems 162
5.2.3 Subderivations o il 163

5.3 Orderings and Redundancy 165
5.3.1 Orderings on Nested Multisets with Weight 165
5.3.2 Derivation Orderings........ 167
5.3.3 Redundancy i 168

5.4 Transformation Systems 171
5.4.1 Limit Inference Systemsiio... 174
5.4.2 Fairness and Completion 175

5.5 Complexity-Reducing Transformation Systems 177

Contents X

5.6 Completenesst e 180
5.6.1 Ground Completeness.cooivuiienao.... 181
5.6.2 The Link to Theory Model Elimination 183
5.6.3 First-Order Completeness 185
5.7 Sample Theories.ot 186
5.7.1 Equality and Paramodulation 186
5.7.2 Equality plus Strict Orderings 189
5.7.3 Modal Logicsooviiniiii 190
6. Implementation........... i, 193
6.0.4 SCAN-IT. i 193
6.0.5 LC .. 194
6.1 PROTEINt 195
6.1.1 High Inference Rate Based Theorem Proving......... 195
6.1.2 The PTTP Implementation Technique 196
6.2 Practical Experiments............c.c. i 200
7. Conclusions. i 207
A. Appendix: Proofs........ 211
A.1 Proofs for Chapter 4 — Theory Reasoning 211
A.11 Completeness of TTME-MSR 215
A.1.2 Ground Completeness of PTME-I 235
A.2 Proofs for Chapter 5 — Linearizing Completion 239
A.2.1 Section 5.2 — Inference Systems................... 239
A.2.2 Section 5.3 — Orderings and Redundancy 241
A.2.3 Section 5.4 — Transformation Systems 246
A.2.4 Section 5.5 — Complexity-Reducing Transformation
SYSEEINS . o o vt 250
A.2.5 Section 5.6 — Completeness 257
B. What is Where? i 263

1. Introduction

1.1 Theory Reasoning: Motivation

Certainly, the ability to draw inferences is a central operation in any Artificial
Intelligence (AI) system. Consequently, automated deduction is one of the
most traditional disciplines in AI. A major goal of research here is to develop
general algorithms or semi-decision procedures for the solution of problems
formulated in first-order predicate logic. One core technique, the resolution
principle [Robinson, 1965b] nowadays seems to be even standard knowledge
of any computer scientist. Resolution made popular the use of clause logic and
of unification in theorem proving calculi. In particular, the use of unification
is a major point, as calculi were predominated at that time by reducing first
order logic to propositional logic by more or less blindly guessing ground
instantiations of formulae.

But soon after the invention of the resolution principle it became clear
that even more elaborate techniques are needed to cope with the tremendous
search space. One of these techniques is theory reasoning, where the idea is
to incorporate specialised and efficient modules for handling general domain
knowledge into automated reasoning. These theory reasoning modules might,
for instance, simplify a goal, compute solutions, lookup facts in a database,
etc. Also, the most suitable knowledge representation formalism might be
used for this.

Let us take a more technical point of view: suppose as given a set F' of
predicate logic formulas and a predicate logic formula G. We would like to
know if G follows from the F, i.e. whether F' = G holds. In principle, any
complete predicate logic calculus can be used to semi-decide this question.
In a refined situation, G is of the form JxG' (for some formula G’), and the
task is to compute solutions for the variables x of the problem G. The calculi
developed in this book are answer complete, and hence allow to compute, in
a sense, all of them.

The emphasis in this book, however, is on theory reasoning: In a theorem
prover supporting theory reasoning, one can think of F' as partitioned in
F =T UFg (read T as “theory”), and T would be handled by a specialised
“background reasoner k7 ”, while Fiz and G would be treated by a general
first-order “foreground reasoner F ”. Typically, these parts heavily interact
in the combined system k., (cf. Figure 1.1).

2 1. Introduction

Problem Foreground Calculus

TUFs EG ——p | Fc+, G

Theory @ Background Calculus
T J ‘:} [=7

Figure 1.1. Principle of Theory Reasoning

Since predicate logic is such an expressive language, many practically
arising problems match the scheme “Does F' imply G”. But which parts of F'
should be separated away as a theory 7 into the background reasoner? I list
some typical instances in order to convey some intuition how this splitting
typically is done:

Application area FEG

Mathematics Group TheoryNx z-z=1E=Ve,yz-y=y -2

Knowledge

Representation T-Boz, A-Box Clauses = Conceptl C Concept2
N-fault assumption,

Diagnosis System description, = IComp Diagnosis(Comp)
Observation

Reachability Relation,

Modal Logic Axioms

= Theorem

Here it is not necessary to have a detailed look at F' and G. Instead the
point to be made is that on the one side F' contains general, but domain-
specific knowledge (written in italic letters). Usually this constitutes the the-
ory part 7. On the other side F' contains knowledge Fz dependent from the
concrete problem G to be solved.

Partitioning F in this way (and not the other way round) is motivated by
reuse, because the domain-specific knowledge might used in other contexts
or problems as well. Thus, some effort for its realization as a background
reasoner may pay off well. At best, the background reasoner would be general
enough to handle theories from a wide range of problem instances.

For instance, group theory can be compiled into a (finite) term-rewriting
system by means of the Knuth-Bendix completion procedure [Knuth and
Bendix, 1970], and feeding it into an inference mechanism based on narrowing
[Hullot, 1980] would constitute a background reasoner for group theory. Now,

1.1 Theory Reasoning: Motivation 3

a foreground reasoner capable of equality reasoning might replace unification
by calls to the background reasoner in order to generate solutions for pure
group theory problems (see e.g. [Furbach et al., 1989b]).

For terminological knowledge representation languages like ALC and its
descendants (see e.g. [Schmidt-SchauB, 1989]), a lot of work has been spent
into the development of decision procedures for e.g. concept subsumption, or
deciding whether a A-Box is consistent with a T-Box (Figure 1.2 depicts a
toy knowledge base for software configuration).

T-Box:

isa
Application

Operating
System
i isa isa

A__B_______in_st_ar;c_e ________ ~ instance|
-Dox: Linux | runs-with Em:lacs

Linux:Unix
Emacs:Editor
(Emacs,Linux):runs-with

isa
runs-with

Figure 1.2. A toy knowledge base.

Since concept languages typically are subsets of first-order predicate logic,
a concept subsumption task could also be passed to any general first-order
theorem prover. However, the termination property typically would be lost
then!. Hence, it is very appealing to employ a specialised terminological rea-
soner for this decidable fragment (in Section 4.4.5 such a combination is
proposed).

This application area als shows that theory reasoning system can some-
times be also seen as a means to extend the expressivity of an existing rea-
soner (here: the terminological reasoner) in order to represent knowledge
which would not or only in a difficult way be representable otherwise. Using
a theory reasoning system, we could, for instance have a scenario like the one
in Figure 1.2 above and use the predicate logic formula

Vz,y Editor:z Ay : OperatingSystem A (Emacs, y) : runs-with
— (z,y) : runs-with

! However, there are — successful — attempts to tune general theorem provers for
this task [Paramasivam and Plaisted, 1995].

4 1. Introduction

to express the fact that an operating system y running Emacs also runs all
other editors (because Emacs simulates them all). Thus, in such a system
the “usual” A-Box language simply consisting of assertions about concept
individuals and roles between them would be generalised towards a rule-
language over A-Box literals.

In the diagnosis domain, following e.g. the consistency-based approach
of Reiter [Reiter, 1987], one has a description of a system (for instance, a
digital circuit), and an observation about its faulty behaviour. The task of
the diagnosis system is to suggest certain components of the device such that
a supposed failure of these components is consistent with the observed faulty
behaviour. These components are called a diagnosis, and usually the task
is to compute (subset-)minimal diagnosis. While the minimality property of
diagnosis can be formulated in predicate logic, it is preferable to employ a
special background reasoner for this, because it can save exponentially many
axioms (see [Baumgartner et al., 1997)).

Like in the mathematics example, for certain modal logics with corre-
sponding reachability relations for their Kripke semantics, specialised back-
ground reasoners can even be compiled from the respective axioms for the
reachability relations (see Chapter 5 on linearizing completion). By this ap-
proach, efficiency can be achieved which would not be possible when using
a flat predicate logic formulation (i.e. proofs are often discovered in much
shorter time).

To sum up, theory reasoning is an instance of hybrid reasoning where
the one part is comprised of an (implementation of a) first-order calculus,
and the other part implements general knowledge about a special problem
domain (also called a theory). It is convenient to refer to the former part as
the foreground reasoner (or “foreground calculi” if we refer to a calculus but
not a proof procedure or a concrete implementation), and to the latter part as
the background reasoner (or “background calculi”). Whenever this coupling
is done in a formal way we will speak of a “theory reasoning system”.

For further illustration some more instances of theory reasoning will be
mentioned next. Chapter 4.1 contains a more exhaustive overview.

A very prominent example of theory reasoning is equality handling. There
is a simple way of specifying this theory, namely by stating the axioms of re-
flexivity, symmetry, transitivity and by stating the substitution axioms of
function and predicate symbols. If these formulas are added to the formulas
to be proven by the system, the usual inference rules are able to process this
theory. A better approach is to supply special inference rules for handling
the equality predicate with respect to the equality theory, like e.g. paramod-
ulation [Robinson and Wos, 1969] (Section 4.1.2). This example also serves
as another motivation for theory reasoning: the hierarchical structure intro-
duced by theory reasoning often allows a more natural structuring of proofs
and presentation at a higher level than it would be possible with a “flat”
specification.

1.2 Historical Notes 5

Another very well-investigated example for theory-handling is the cou-
pling of a foreground reasoner with efficient unification procedures for ded-
icated theories (e.g. for order-sorted logics [Oberschelp, 1962; Schmitt and
Wernecke, 1989] or equational theories [Siekmann, 1989)).

Besides such efficiency concerns, theory reasoning is also motivated by the
possibility of combining systems which handle different kinds of knowledge,
typically also using different representations thereof. Examples of this kind
are hybrid systems, made of a resolution calculus and a taxonomical knowl-
edge representation system, such as KRYPTON [Brachmann et al., 1983).

The spectrum of theories which fit into the framework of theory reasoning
is wide. The “upper bound” in order to obtain a complete foreground calculus
is given by the class of universal theories, i.e. theories that can be axiomatised
by a set of formulas that does not contain 3-quantifiers (cf. Section 2.5.3).
This restriction is necessary because “unification” is not applicable for exis-
tentially quantified variables (see [Petermann, 1992]). Universal theories are
expressive enough to formulate e.g. the theory of equality or interesting tax-
onomic theories.

If the background theory is given in predicate logic form, the restriction to
universal theories is not essential. A theory which contains existential quan-
tifiers may be transformed by Skolemization into a universal theory which is
equivalent (wrt. satisfiability) to the original one (cf. Section 2.4.1).

1.2 Historical Notes

According to the title of this book, historical remarks can be divided into
those on theory reasoning and those on connection calculi. Let us consider
connection calculi first.

Connection Calculi

The early roots of connection calculi trace back to Gentzen’s famous invention
of the sequent calculus [Gentzen, 1939]. The sequent calculus was developed
as a method to encode proofs in Gentzen’s calculus of natural deduction.
To accomplish this an additional syntactical level of “sequents” was intro-
duced which lies above the level of quantifiers and logical connectives. Later,
building of work done by Beth (he coined the name “semantic tableaux”),
Hintikka and Schiitte, R. Smullyan developed his analytic tableaux calculus
[Smullyan, 1968].

The term “analytic” should be opposed to “generative” and means that
in a sense no new new formulas are constructed in the course of a derivation;
merely, only subformulae of the given formula, instances or negations thereof
are handled. Analytic tableaux can be seen as a calculus isomorphic to the
sequent calculus, Put a bit loosely, one has to put a tableau upside down

6 1. Introduction

to get a sequent proof. For proof search one usually inverts the inference
rules of the sequent calculus in order to obtain the same top-down flavour
as in analytic tableaux. Smullyan’s analytic tableaux have a minimal set of
inference rules due to the uniform notation of a, 3, v and ¢ rules. Unlike the
sequent calculus, only (signed) first-order formula are kept in the nodes of
the trees, and due to the classification of inference rules and the absence of
structural rules, (meta-) proofs become considerably simpler.

First implementations of tableau calculi trace back into the 60s, and prob-
ably the most advanced implementation, which also contains a lot of improve-
ments of the basic calculus, is the HARP prover [Oppacher and Suen, 1988].

Of course, the development of the resolution principle [Robinson, 1965b)]
and in particular the insight in the importance of unification for theorem
proving had its influences on tableau calculi as well. Surprisingly, it took
quite a long time until unification was brought back into analytic tableaux.
As a predecessor work, in [Brown, 1978] unification was used to guide instan-
tiation of sequents (in an incomplete way). Independently from that and also
mutually independent, analytic tableaux with unification have been defined
in [Reeves, 1987; Schmitt, 1987; Fitting, 1990]. The perhaps most advanced
analytic tableaux automated theorem prover is [Beckert et al., 1996).

And what about connection calculi? Connection calculi, also called matrix
calculi, were developed independently by W. Bibel [Bibel, 1981; Bibel, 1983;
Bibel, 1992] and by P. Andrews [Andrews, 1976].

The central concept underlying connection methods is that of a “spanning
mating”. A spanning mating for a quantifier-free matrix (e.g. a conjunction of
clauses) contains for every “path” through the matrix a complementary set of
literals from that path, and hence indicates unsatisfiability of the matrix. Ac-
cording to Bibel [Bibel, 1987], any systematic approach for the construction
of spanning matrices qualifies as a “connection calculus”.

The close relationship between (clausal) connection calculi and (clausal)
tableau calculi became obvious in 80s only. There is agreement that tableau
calculi can be seen as connection calculi, and, of course, both include unifi-
cation. The construction of a closed tableau represents at the calculus level
the set of all (or sufficiently many) paths through a matrix and thus yields
a spanning mating. The converse, however, need not necessarily be the case:
it is conceivable that connection calculi can be developed which search for a
spanning mating in a completely different way than tableau calculi do.

In this book, model elimination [Loveland, 1968] is in the centre of inter-
est. So what about this calculus? By imposing a certain restriction on the link
structure in a tableau calculus, and restricting to clausal input formulas, one
immediately obtains a calculus which slightly generalises Loveland’s original
formulation of model elimination. Chapter 3 contains more about the rela-
tion between tableau calculi, connection calculi and model elimination. Model
elimination is very closely related to SL-Resolution [Kowalski and Kuehner,

1.2 Historical Notes 7

1971] (but it came earlier than SL-Resolution); the formulation of a “linear”
connection calculus first appeared in [Bibel, 1982b].

The connection between model elimination and tableau calculi was not
obvious at all for a long time and was recognised as late as in the 80 only;
making the relationships between model elimination, connection calculi and
tableau calculi precise and defining a unifying formal treatment can be at-
tributed to Reinhold Letz from the intellectics research group at the Technical
University Munich, Germany. At that time the group was led by Wolfgang
Bibel, and the major effort was the design of the model elimination — i.e.
connection method — theorem prover SETHEO [Letz et al., 1992], which is
today’s most developed implementation of that calculus.

It might be appropriate to mention the connection graph calculus [Kowal-
ski, 1974] here, as it has a “connection” in the name. Indeed, this paper seems
to have introduced the term connection, and it has the same meaning as in
connection methods. However, the connection graph calculus conceptually is
not a tableau calculus. It is a generative calculus and it is a certain restricted
resolution calculus.

Theory Reasoning

As mentioned above, soon after the development of the resolution principle
it became clear that refinements are needed for efficiency reasons. Possibly
the first attempt from the viewpoint of theory reasoning was to treat equality
by a special inference rule. In [Robinson and Wos, 1969] the paramodulation
inference rule was introduced; it formalises the idea of replacing “equals by
equals” within the resolution calculus. A different approach following soon,
which is based on more macroscopic inferences, is E-resolution [Morris, 1969].

A different approach to handle equations was proposed by Plotkin [Plotkin,
1972], where he proposed to build-in certain equational axioms (such as com-
mutativity, associativity) into the unification procedure. Such a unification
procedure would then replace an “ordinary” unification procedure in resolu-
tion. See [Siekmann, 1989] for an overview over “unification theory”.

The idea of explicitly coupling a foreground calculus to a background cal-
culus in an even more general way was formulated in the context of connection
calculi in [Bibel, 1982a]. The motivation for doing so was to achieve a better
structuring of knowledge. This was exemplified with a coupling of the con-
nection calculus to database systems. In the KRYPTON system [Brachmann
et al., 1983], the semantic net language KL-ONE is used as a theory defin-
ing language, which is combined with a theory resolution theorem prover.
The LOGIN logic programming language [Ait-Kaci and Nasr, 1986] gener-
alises unification towards feature unification, which is a language to represent
concept hierarchies in the tradition of KL-ONE with functional roles. These
description languages thus generalise order-sorted logics, which was first de-
fined and provided with a clear semantics by A. Oberschelp [Oberschelp,

8 1. Introduction

1962]. Surprisingly, it took quite some time until sorts were brought into
resolution [Walther, 1983).

The explicit term theory reasoning seems to be introduced by Mark Stickel
within the resolution calculus [Stickel, 1985]. This paper also contains a clas-
sification of theory reasoning, namely “total vs. wide” theory reasoning and
“partial vs. total” theory reasoning (cf. Section 4.1). By doing so, an appro-
priate generalisation of many special instances of theory reasoning known at
that time was developed. In particular, all the approaches listed so far are
captured. Indeed, [Stickel, 1985] contains an impressive list of instances of
theory reasoning (cf. also Section 4.1.2 below).

A different line of development is constraint reasoning. The motivation is
similar to theory reasoning — coupling specialised background reasoners to
logic. The essential difference (to my understanding) is this: theory reason-
ing means to call a background reasoner with a goal expression, which shall
return a (not necessarily unique) solution, i.e. a substitution®. In contrast
to this early computation of solutions, constraint reasoning means to allow
postponing the computation of solutions. In principle there is no need to
compute a concrete solution at all. Instead it suffices to show that a solution
ezists. Due to this, constraint reasoning is slightly more general than theory
reasoning, as calculi need not be based on Herbrand’s theorem. On another
side, constraint reasoning is more specific than theory reasoning as in con-
straint reasoning the foreground theory must be a conservative extension of
the background theory (see Section 4.1.2).

Historically, constraint reasoning was developed within logic program-
ming languages, i.e. Horn clause logic [Jaffar and Lassez, 1987]. The most
general resolution approach is due to Biirckert [Biirckert, 1990]. For model
elimination it was developed in [Baumgartner and Stolzenburg, 1995).

1.3 Further reading

Concerning the history of automated deduction, I recommend the source
book [Siekmann and Wrightson, 1983]. It contains classical papers written
between 1957 and 1970.

Between 1992 and 1998 the German research council, the DFG (Deutsche
Forschungsgemeinschaft), funded the research programme “Deduction”. The
research results are layed down by the participants in a three volume book
[Bibel and Schmitt, 1998]; it summarises the research on deduction carried
out in the mentioned period in Germany. In particular, Volume I contains
chapters on tableaux calculi, connection calculi and refinements, as well as
chapters on theory resoning.

2 possibly augmented by a condition (residue) under which the substitution is
indeed a solution.

1.4 Overview and Contributions of this Book 9

A good introductory text on first order tableau methods is [Fitting, 1990].
The handbook [D’Agostino et al., 1998] describes tableau methods both for
classical and non-classical logics; it also contains a more detailled historical
overview.

There are various journals and conferences which cover automated deduc-
tion in general and, in particular, connection methods and theory reasoning.
The probably most well-known journal is the Journal of Automated Reason-
ing (Kluwer), and the probably most important conferences are those on
Analytic Tableaux and Related Methods and the Conference on Automated
Deduction (both published by Springer in the LNAT series).

1.4 Overview and Contributions of this Book

The purpose of this section is to give an overview of the rest of this book,
thereby emphasising where I see the original contributions to the field. A
detailed discussion of related work will be carried out in the main parts
where appropriate.

The general motivation for my work, and in particular for this book, is the
desire to construct an efficient reasoning system for first order logic. The basic
assumption is that theory reasoning is an appropriate tool for accomplishing
this goal. Further, the primary calculus of interest is model elimination®.

In this text, I try to address as many issues as possible which are relevant
for building a theory-reasoning-based theorem-prover. Obviously, due to the
great variety of methods and tools available in the field, there is a need
for biasing the investigations. Nevertheless, I think that within the chosen
specialisation (to be described soon) the most important issues are addressed.
This concerns questions

- on the theoretical background of first-order logic,

- on foreground reasoners (or calculi) to consider for theory reasoning,

- on the interface to background reasoners,

- on the construction of suitable (wrt. the chosen foreground calculus) back-
ground reasoners,

- and on the implementation and practical feasibility of such systems.

These items shall be described in more detail now.

8 The reason for this choice is my personal scientific development in research groups
biased towards connection methods. I do not claim that these type of calculi
are superior to, for instance, resolution calculi. But neither would I claim the
contrary. Both have their pros and cons, are established in the literature, and in
my opinion, there is no evidence given so far that one method is superior to the
other.

10 1. Introduction

Theoretical Background

The theoretical background is presented in Chapter 2 and contains standard
notions such as the syntax and semantics of first-order logic, as well as basic
semantical facts about clause logic and theory reasoning.

Foreground Calculi

In accordance with most research on automated theorem proving we will
restrict ourselves to clause logic as input language. Then, suitable foreground
calculi are, for instance, resolution type calculi [Robinson, 1965b], or analytic
calculi within the family of connection methods [Bibel, 1987]* such as model
elimination (ME) [Loveland, 1968] or the connection calculus (CC) by Eder
[Eder, 1992].

Chapter 3 introduces the deductive formalism used in this book and re-
capitulates the latter calculi in a uniform notation.

General theory reasoning versions of CC and ME will be presented and
gradually refined in Chapter 4. By the term “general” I mean that no special
properties of a particular theory is made use of. In fact, the only restriction is
that they are “universal”, i.e. that they can be axiomatised by formula con-
taining no existential quantifiers (Definition 2.5.5 makes this precise). Fur-
ther, rather high-level principles for the interaction between the foreground
and the background calculi are employed.

Theory versions of both CC and ME are established in the literature. For
CC, the primary source is the work done by Petermann [Petermann, 1992;
Petermann, 1993a), and for ME it is my own work [Baumgartner, 1991b;
Baumgartner, 1992a; Baumgartner, 1994]. In order to investigate the dif-
ferences between these seemingly very similar calculi, the clausal tableau
calculus introduced in Chapter 3 is extended towards theory reasoning (Sec-
tion 4.2 and Section 4.3). This sets up a common framework to compare the
theory reasoning versions of CC and ME, which are obtained by further spe-
cialisation. This turned out to be necessary, because for the theory-reasoning
versions of these calculi some notable differences arise which are not an issue
for the non-theory versions; the most important one concerns the different
literals kept in the branches of ME vs. CC. ME needs strictly less of these
literals, and the conclusion will be that theory ME is the “weaker” calculus,
i.e. it can be simulated stepwise by CC.

The consequences of this result are described in Section 4.3.3. In brief, CC
allows for shorter refutations, but ME has less local search space. Having a
weak calculus is also important for theoretical reasons, since its completeness
implies the completeness of all “stronger” calculi (the reader might want to

4 According to Bibel [Bibel, 1987] any calculus which employs the idea of sys-
tematically investigating paths through clause sets for contradictory literals (i.e.
connections) qualifies to be a connection method. More technically, according to
Bibel [Bibel, 1987] any calculus based on Lemma A.1.5 is a connection calculus.

1.4 Overview and Contributions of this Book 11

have a look at Figure 4.1 on page 66 which contains all the calculi treated
in this text and their relationships). As a consequence of the completeness
of ME it can easily be shown, that a non-determinism hidden in the CC
inference rule “extension step” is fortunately a “don’t care” nondeterminism
(“order of extending clauses”, page 100).

Due to its “weakness”, it is ME which is considered for further refine-
ments. These refinements are regularity (“no subgoal needs to be proven
repeatedly”), factorisation, the independence of the computation rule (i.e.,
the next subgoal may be chosen don’t-care nondeterministically), and, most
important for problem solving applications, the computation of answers to
queries for programs. It should be noted that answer completeness includes
the notion of refutational completeness traditionally used in automated the-
orem proving.

Interface to the Background Reasoner

For search space reasons one very carefully has to address the question of how
to interface the foreground reasoner to the background reasoner. We consider
both the total and partial variants of theory reasoning for this (the overview
in Section 4.1 explains these notions). Both principles are rather different and
deserve investigation.

The variant for ME which was used for the comparison to CC is refined
in Section 4.4 to the final total theory reasoning version, and it is refined in
Sections 4.5 and 4.6 towards the final partial theory reasoning version.

For the total version, the interface to the background reasoner is specified
by a “complete and most general set of theory refuters” (M SRy, Def. 4.4.2),
a concept which includes the usual concept of a most general unifier as a
special case. M SR7s have to be defined very carefully. In particular, it is
necessary to use the concept of “protected variables”, which means that the
substitutions from a M SRy must never introduce a new variable which is
contained in such a set of protected variables.

In sum, for total theory reasoning, the background reasoner can be
thought of as given as a black box, which only has to fulfil some seman-
tic properties. These properties will be defined in such a way that they admit
an answer completeness result for the combined calculus. This is the main
result of Section 4.4.

The purely semantic approach to total theory reasoning is justified by
the existence of numerous domain-dependent reasoning systems which can
be used immediately for total theory reasoning. On the other hand, partial
theory reasoning is an attractive principle as well, in particular for model
elimination (Section 4.1.1 gives reasons). However, partial theory reasoning
is much more tricky than total theory reasoning, as it requires a tighter and
symmetric coupling of the two reasoners. It is unclear how to use, say a given
AC-unification algorithm in a meaningful way for partial theory reasoning.

12 1. Introduction

Therefore, it seems advantageous to give up the semantic view and pro-
pose in Section 4.5.1 a syntactical framework instead. It is called “theory
inference rules”, and can be seen as a specification language for permissible
partial theory inferences. A general completeness criterion for background
reasoners following this scheme is defined, and the resulting calculus is proven
as answer-complete. This is the main result of Section 4.5.

In Section 4.6 a variant of model elimination — restart model elimination
— is presented which supports the “usual” procedural reading of clauses.
As was argued for in [Baumgartner and Furbach, 1994a), this variant is in-
teresting in at least two respects: it makes model elimination available as a
calculus for non-Horn logic programming and it enables model elimination
to perform proofs in a natural style by case analysis. Of course, the concern
here is “lifting” restart model elimination towards theory reasoning. Since the
primary interest is in partial theory reasoning, it is thus the partial restart
theory model elimination which is discussed and proven answer-complete.

Background Reasoner

The background reasoner carries out deductions in the domain-dependent
part of the specification. These can be rather course-grained deductions, as
in the case of total theory reasoning, or be rather simple ones, as is the idea
of partial theory reasoning.

In automated theorem proving the problem specifications typically con-
tain axioms which can naturally be separated off as a theory (e.g. equality,
orderings, set theory, group theory etc.). Since such theories are typically
“reusable” for many problems, it is worth spending some effort in developing
efficient theory reasoners for them.

But how can this be achieved? One way is to analyse the theory in question
and hand-craft a respective theory reasoner. Another, more general way is to
design a “compiler” which can automatically transform theory axioms into
background reasoners. It is the latter way which is pursued here.

From the viewpoint of theory reasoning, the well-known Knuth-Bendix
completion method can be seen as such a compiler. However, Knuth-Bendix
completion works for equational theories only, and it is unclear how to build-
in “rewriting” into a linear calculus such as model elimination.

Therefore, I propose a more general compilation technique which is com-
patible with model elimination. It is called “linearizing completion” and is
treated in depth in Chapter 5. It is general, as it can deal with any Horn
theory, and it leads to efficient partial theory reasoners.

Implementation

In order to assess its practical usability, the framework “partial theory model
elimination plus linearizing completion” was implemented by students in our

1.4 Overview and Contributions of this Book 13

research group. Chapter 6 reports on this implementation and on practical
experiments. The results show that the suggested methodology significantly
improves the power of model elimination-based theorem proving.

14 1. Introduction

2. Logical Background

I have tried to make the text self-contained. To this end I will recapitulate
in this chapter the necessary background from first order logic to a certain
degree. However, I cannot go much into the details here, and also I had to
omit certain topics. In general, the text is biased towards our theorem proving
needs, and in particular towards clause logic.

For a more elaborate discussion of the logical background I refer the reader
to [Enderton, 1972] and [Gallier, 1987]. An introduction to logics with an
emphasis on theorem proving can be found in [Chang and Lee, 1973] and
in [Loveland, 1978]. An introduction to first order logics under a broader
viewpoint of computation is [Lalement, 1993].

The plan of this chapter is as follows: After having defined some prelim-
inary notions, we will turn towards the syntaz and semantics of first order
logic (Sections 2.2 and 2.3, respectively).

After that, predicate logic will be specialized towards clause logic. Clause
logic is the dominant logic used in automated theorem proving and also in
this text. The concluding section then turns towards theories. There, usual
definitions (such as “logical consequence-ship”) are generalized towards the-
ories. Also, a generalized Herbrand-theorem will be proven.

2.1 Preliminaries

Multisets

Multisets are like sets, but allow for multiple occurrences of identical el-
ements. Formally, a multiset N over a set X is a function N : X —~ IN.
N(z) is intended as the “element count” of z. We often say that = “oc-
curs N(z) times in N”. The multiset union N U M of two multisets is
described by the equation (N U M)(z) = N(z) + M(z), the multiset dif-
ference by (N — M)(z) = N(z) — M(z), and the intersection is given by
(NNM)(xz) = min(N(z), M(z)). Finally, two multisets are equal, N = M iff
N(z) = M(z) for every z € X.

We will use set-like notation with braces ‘{’ and ‘}’ for multisets. For
example the set for which N(a) = 3 and N(b) =1 and N(z) = 0 for all other

16 2. Logical Background

values can be written as {a,a,a,b}. If a set is used below where a multiset
were required, then the type conversion is done in the obvious way.

As usual, we write z € N iff N(z) > 0. As a non-standard notion, we
say that multiset M is an amplification of multiset N, written M O N, iff
M(z) > N(z) > 0 for every © € M. That is, an amplification M of N is
obtained by repeating some of N’s elements. Finally, we say that Multiset N
contains no duplicates iff N(z) =1 for every x € N.

Orderings

We recall some definitions and facts about orderings. In [Dershowitz, 1987] a
detailed survey can be found.

A partial strict ordering! > on a set X (of terms, for our purpose) is called
well-founded if there is no infinite (endless) sequence 1 = $3 > ... 8, = ...
of elements from X. An ordering on terms? is said to be monotonic iff s; > s
implies f(...s1...) > f(...82...).

As usual we define s < tiff t = s, s <tiff s <tors==tand s > tiff
t < s. Below we will order terms and integers, in which case = means the
respective identity relation (although any equivalence relation can be used
in principle), however with one exception: finite multisets can be thought of
as terms constructed from the variadic constructor symbol “{.}”. Henceforth
equality of such terms is understood as multiset equality.

Partial orderings can be extended to partial orderings on tuples by com-
paring their components — as usual — as follows: Assume n sets X; equipped
with n respective partial strict orderings »; as given. Then an n-tuple
s =(s1,...,8n) is lexicographically greater than an n-tuple t = (t1,... ,t,),
written as § >rez,>1,...,», t iff 8; >=; t; for some ¢ (1 < i < n) while s; = ¢;
for all j < 1.

Similarly, for a given set X of terms with well-founded strict ordering >
we will with ». denote the extension of > to (finite) multisets over X. ».
is defined redursively as follows:

3

X:ﬂmla'-'amm]} > {]y17ayn]}:Y

if $i>yj17"' s Y andX—{[x,]} »__>-Y_{lyj17'-' 5y]k]}
for some i, 1 <4 <m and
for some j1,... .0k, 1<j1 <...<jr<n(k>0) .

Informally, X ». Y if Y can be obtained from X by successively replacing an
element by zero or more (finite) elements strictly smaller in the base relation
>. Notice that the termination condition for this recursive definition is the
case where X — {z;} =Y — {y;,,... .y}

1 a strict ordering is a transitive and irreflexive binary relation.

2 Terms are defined in Def. 2.2.2 below.

2.2 Syntax of First-Order Logic 17

Quite often, we will write » instead of », if > is clear from the context
(and similar for »r.;).

It is well-known that the orderings >, and » are well-founded provided
that the orderings are which they are based upon (see [Dershowitz, 1987] for
an overview of orderings). Orderings on multisets can be generalized towards
on nested multisets [Dershowitz and Manna, 1979], i.e. multisets on nested
multisets in a well-founded way.

For termination proofs the simplification orderings are of particular inter-
est; a simplification ordering on a set X of terms is defined as a monotonic
partial strict ordering > on X which possesses the subterm property, i.e.
f(...s...) = s, and the deletion property, i.e. f(...s...) = f(......). The
latter property is required only if f is a variadic function symbol (such as
the multiset constructor). Various simplification orderings are known, among
them the recursive path ordering (with and without status), the semantic
path ordering and lexicographic path ordering (see again [Dershowitz, 1987]
for an overview of orderings). Simplification orderings are interesting for the
following reason:

Theorem 2.1.1. [Dershowitz, 1982; Dershowitz, 1987 Any simplification
ordering on a set X of terms is a monotonic well-founded ordering on X .

It is decidable whether two terms are related in a given simplification order-
ing. This problem is NP-complete (see e.g. [Nieuwenhuis, 1993]).

2.2 Syntax of First-Order Logic

We will start with a common defintion.

Definition 2.2.1 (First-Order Signature). A (first-order)? signature X
consists of a set of objects, called symbols which can be written as the disjoint
union of the following sets:

a denumerable set F of function symbols,

a denumerable set P of predicate symbols,

a denumerable set X of (first-order) variables,
the set {—,V, A\, -, —, <>} of connectives,

the set {V¥,3} of quantifiers, and

the set {(,,,)} of punctuation symbols.

S T oo

The sets 1-3 may differ from signature to signature, while the remaining sets
4—6 are the same in every signature. The former ones are therefore called
the parameters of the signature, and it is sufficient to refer to a signature
uniquely as a triple X = (F,P,X).

3 In definitions parenthesis indicate a long form of the definiens. Usually the short
form is used.

18 2. Logical Background

We assume a fized arity associated to every predicate and function symbol.
Formally, an arity is a function mapping PUF into the non-negative integers.
Function symbols of arity 0 are also called constant (symbols).

The symbols are the building blocks for various kinds of structured objects.
In particular we will define terms, atoms and formulas. The collection of
these all together is referred to as the language of first-order predicate logic.

Definition 2.2.2 (Term). The terms of a given signature X = (F,P,X)
are inductively defined as follows:

1. every variable x € X is a X-term.

2. if f € F is a function symbol of arity n, and t1, ... ,t, are n X-terms
then f(t1,... ,tn) is a X-term.

3. nothing else is a X-term*.

The set of X -terms is also denoted by Term(F,X). The set of X-terms which
do not contain variables of X, i.e. the set of terms which can be obtained due
to case 2 alone is denoted by Term(F). The elements of Term(F) are also
called ground terms (of X).

Convention 2.2.1 (Syntax 1). If in case 2 the function symbol f is a con-
stant symbol we will always write f instead of f(). Also, common function
symbols of arity 2 will often be written infix. For instance we will write s + ¢
instead of +(s,t). But then, parenthesis will occasionally be necessary for
disambiguation. There is no need here to go further into the details of syn-
tax, instead it is taken for granted that the notation will always be in such a
way that the structure according to the definition of terms can uniquely be
recovered. See [Hopcroft and Ullman, 1979] for details.

Building on terms we can arrange atoms and formulas:

Definition 2.2.3 (Atom, Formula). Let ¥ = (F,P,X) be a signature.
If t1,...,t, are X-terms and P € P is an n-ary predicate symbol then
P(t1,...,t,) is an atomic formula (short: atom). If all t1,... ,t, are ground
terms then P(ty,...,t,) is also called a ground atom. (Well-formed) X-
Formulas are inductively defined as follows:

1. every atom A is a X-formula.

2. if F is a X-formula then —F is o X-formula, called negated formula.

3. if Fy and Fy are X-formulas then (Fy A Fy), (F1 V F»), (F1 — F3) (con-
sidered identical to (Fa < F1)) and (Fy < F3) are X-formulas. These
are called conjunction, disjunction, implication and equivalence (in this
order).

4. if F is a X-formula and x € X is a variable then 3z F' and YV F are
X -formulas. These are called existentially quantified formula and uni-
versally quantified formula, respectively.

4 In subsequent inductive definitions such a phrase will be omitted, but shall be
considered as implicitly given.

2.2 Syntax of First-Order Logic 19

In the sequel we will often omit the prefiz “X-” if not relevant or clear from
the context. By PF(X) we denote the set of all X-formulas. If F is a formula
and F occurs as part of a formula G then F is called a subformula of G5.
For instance, A is a subformula of A, and A is also a subformula of BA—A.
A formula is called o ground formula iff all atoms occuring in it are ground
atoms.

Note that atoms are not defined inductively. Instead we have simply said
explicitly which expressions are atoms.

At the moment formulas (and terms) are not assigned any meaning. Thus
it is more appropriate to read the connective “A” as “hat” or something
similar rather than “and”. It is subject to interpretations defined below to
assign the intended meaning to formulas.

Convention 2.2.2 (Syntax 2). Extending Convention 2.2.1 above we will
make use of some notational conventions. Note first that according to their
use in the definition the connectives A, V, — and < can be thought of as
binary operator symbols. Thus it is possible to assert associativity to them
and leave parenthesis out in many cases. We have decided to declare each of
them as left-associative (although right-associative would work as well). Now,
if parenthesis may be left away binding power for the connectives has to be
used in order to disambiguate expressions like Vz P(z) AQ(x). As a convention
we declare that the binding power of the connectives =,V,3, A, V, ¢+, = shall
decrease in that order. Thus, for instance the expression

AANBACVYV-DAP(y) = Vz P(x) AQ(x)
is translated into the formula
((AAB)AC)V (=D A P(y))) = ((Vz P(z)) AQ(z)) -

As a further convenience we allow the abbreviation Vzi Vzs ... Vo, F to
Vi, To,..., x, F. The same convention is used for “3”.

As with function symbols, binary predicate symbols will also be written
infix occasionally. Typical examples are “=" and “<”. Putting things together
we may for example write

Vee >0 — Ing Vn (n >ng — abs(f(n) —a) <e)
as a better readable form of the formula

Ve (> (g,0) = Ino¥n (= (n,no) = <(abs(—(f(n),a)),e))) -

5 Here we have taken the notions “occurence” and “part of” for granted. A formal
treatment can be carried out as is done for the respective notions in “derivations”
in Chapter 5.

20 2. Logical Background

Next we turn to bound and free occurrences of variables in formulas. This dis-
tinction is important since formulas without free variables are “self-contained”
in the sense that they are meaningful by referring only to the symbols occur-
ring in them.

Definition 2.2.4 (Bound and Free Variable Occurrences, Sentence).
Let 3 be a signature. An occurrence of a variable x in a formula F is called
bound in F if x occurs in some subformula of F of the form Yz G or of
the form Jx G. Otherwise, this occurrence is called free. A formula without
occurrences of free variables is called closed. A closed formula is also called
sentence. By CPF(X) we denote the set of all closed X -formulas.

It is possible that a variable x occurs at different positions in one single
formula both bound and free. For example, in

F = P(z) A3z Q(z,y)

the variable z occurs bound and free in F', y occurs free in F' and z does not
occur in F'.

Definition 2.2.5 (Universal and Existential Closure). If F' is a for-
mula we denote by YF its universal closure, i.e. the sentence Vx1,... 2, F,
where x1,- .. ,Zy are all variables occurring free in F. The exitential closure
3F is defined analogously.

We conclude this section with one more common definition.

Definition 2.2.6 (Complement). Let F' be a formula The complement of
F, written as F, is defined as follows:

= G if F = -G, for some formula G
F =
—F else
It is easily verified that F = F.
For a finite set X of formulas we define®

F if X is the singleton {F}, for some formula F

+= { Viex F' else

2.3 Semantics of First-Order Logic

In order to assign meaning to predicate logic formulas the function and pred-
icate symbols have to be interpreted with certain functions and relations,
respectively, over some domain (which is also called universe). This collec-
tion — functions, relations and the universe — is called a structure. As an

6 Note that X has to be finite, because otherwise X were no formula.

2.3 Semantics of First-Order Logic 21

example think of the domain of natural numbers equipped with the functions
and relations of Peano Arithmetic.

An interpretation then maps the parameters of a language into their se-
mantic counterpart of a structure. Together with an assignment function for
the free variables in a formula we have means to evaluate the truth value of
this formula. All this is introduced next.

Definition 2.3.1 (Structure, Interpretation, Assignment). A structure
S is a triple (U, F, R) where

1. U is a non-empty set, called the universe (also called domain or carrier
sometimes),

2. F is a set of total functions of given arity on U", and

3. R is a set of total relations of given arity on US.

The universe of the structure S is also denoted by |S]|.
Let ¥ = (F,P,X) be a signature. A Y-interpretation is a triple T =
(S8,Zx,Tp) where

1. S is a structure, and

2. Ix is a total function mapping each n-ary function symbol from F to an
n-ary function from F, and

3. Ip is a total function mapping each n-ary predicate symbol from P to an
n-ary relation from R.

An assignment vy (or v for short) into U is a partial function mapping X
into U. An assignment vy is said to be suitable for a given formula (or
set of formulas) iff it is defined for every free variable occurring in it. By an
extended X-interpretation we mean a X-interpretation T plus (not necessarily
suitable) assignment into |S|, written as a tuple (Z,vx).

For brevity we will write the “universe of the interpretation” instead of
the “universe component of the structure component of the interpretation”
and denote it by |Z|.

Ezample 2.3.1. As an example consider a signature
N = {{zero, succ, plus, times} , {equal It} , {x1,T2,73,...})

and the structure Nat = (N, {0, s,+, *},{=,<}). In Nat let s denote the
successor function, let 0, + and * denote the functions as expected, and let =
and < be interpreted as the usual “equality” and “less than” relations. If we
assume that the arities are defined suitably, then we might naturally define
the following A/-interpretation NAT and assignment

S = Nat Ir(zero)= 0 Ip(equal) = = v(z1) =0
Ir(succ) = s Ip(lt) = < v(z2) =8
Zr(plus) = + v(z3) =15
Tr(times) =

" An n-ary operation on U is a function mapping U™ into U
8 An n-ary relation on U is a subset of Y™

22 2. Logical Background

By definition, functions are nothing but relations with special properties.
Thus, in a strict sense it is not necessary to introduce functions explicitly in
structures. However this approach would be far less natural.

In the literature one can find several definitions of structure and inter-
pretation. Our definition is much like in [van Dalen, 1980], however do we
not restrict to finite R and F. In [Enderton, 1972] a structure is our “struc-
ture plus interpretation”; “interpretation” has a very different meaning there.
Also by some authors the terms “structure” and “interpretation” are used
synonymously.

Interpretations assign meaning to the predicate and function symbols.
Together with suitable assignments they can be used to evaluate a formula F'
by first recursively evaluating the parts of the formula, and then computing
the value of F' as a function of these. The recursion stops at variables or
constants whose values can immediately be computed. The next definition
expresses this in a precise way:

Definition 2.3.2 (Evaluation). Let X = (F,P,X) be a signature and T =
(8,Z7,Ip) be a X-interpretation. We define the value of a term ¢ wrt. an
extended interpretation (Z,vx), Ly, (t), (or Z,(t) for short) where vy is an
assignment into |Z| as a function from the X-terms into |Z| recursively as
follows:

1. If t = z for some variable x € X then T,(t) = vx(z).
2. If t = f(t1,... ,tn) for some n-ary function symbol f € F. Define

Zy(t) = Zr(NZo(tr), - - - s Lo(tn)) -

Note that this definition includes the case where t is a constant c. Here we
find immediately T, (c) = Zx(c). But note also that T, is a partial function,
since in case 1, T,(x) is undefined if v(x) is undefined.

Following the non-recursive definition of atoms we can extend the defini-
tion. The value of an Atom A = P(t1,... ,tn) wrt. (Z,vx), Ty, (A) (or Z,(A)
for short), where v is supposed to be suitable for A, is defined as

— t f(Iv(tl)a--- 7Iv(tn)) S (P)
L,(4) = { fZZ‘ee ilse . ”

Now let F' be a X-formula and let v be a suitable assignment for F' into |Z|.
Further extending the definition, we define the value of F' wrt. (Z,v), I, (F),
(or Z, (F) for short) as follows:

1. If F = =G for some formula G then

| true if T,(G) = false
Lo(F) _{ false else .

2. If F = G1 0 G» for some formulas G1 and G and o € {A,V,—, <} then
T,(F) is determined according to the following truth table:

2.3 Semantics of First-Order Logic 23

G1 Go |G1/\G2|G1VG2|G1(—G2|G1(—)G2

|
false false false false true true
false true false true false false
true false false true true false
true true true true true true

3. If F =Vx G for some formula G then

I,(F) = true if Ty[ze o)(G) = true for every a € |Z|
v false else .

Here v[z < a] is defined to be exactly the same assignment as v (possibly)
except that v[x < a] assigns a to x. In other words, we have to “update”
the assignment expressed by v at the point x. This can formally expressed
by defining

vz + al,(y) = { Zx(y) ngi:_ v

4. If F =3z G for some formula G then

I,(F) = true if Ty[pea)(G) = true for some a € |Z|
v | false else .

It is important to note that evaluation under suitable assignments is a to-
tal function. This is a consequence from the definitions of interpretation,
sustability and of structure. In particular, as a property of the definition of
interpretation, all function symbols and predicate symbols from X can be
mapped into their semantic counterparts Z and Zp. Furthermore, the struc-
ture definition guarantees that Zx and Zp are total. Finally, by the suitability
of assignments every free variable in a formula gets a value. As an example
for an evaluation consider the formula

PredExist =Vx (z > 21 - Jyy+1=2x) .

PredExist (quite freely “every number greater than z; has a predecessor”)
evaluates to true in the interpretation and assignment given in Example 2.3.1
above.

Convention 2.3.1 (Implicit Signature). In the sequel if we speak of an
“interpretation for a formula” or set of formulas we often let the underlying
signature X' implicitly defined by the symbols occurring in it, and interpre-
tations are understood as such X-interpretations.

Next we turn to the important notions of satisfiability and validity.

Definition 2.3.3 (Satisfiability, Validity, Model, etc.). Let(Z,v) be an
extended interpretation suitable for o formula F. We say that (Z,v) satisfies
F iff Z,(F) = true and we write

24 2. Logical Background

Z,0)=F .

If T,(F) = false we say that (Z,v) falsifies F.

Now let M be a set of formulas. Generalizing the previous definition we
say that (Z,v) satisfies M iff (Z,v) = F for every F € M. This is written as
(Z,v) E M (thus, a (finite!) set of formulas can be thought as a conjunctions
of its members). Accordingly, (Z,v) falsifies M iff Z,(F) = false for some
F € M. F is said to be a logical consequence of M, M |= F iff whenever
(Z,v) E M then also (Z,v) = F, where v is suitable for M U{F}. For brevity
we will write G |= F instead of {G} = F. We say that F and G are logically
equivalent, F =G, iff FEG and G = F.

In the following X denotes a X-formula or a set of X-formulas, and T
denotes a X'-interpretation. X is called satisfiable iff X is satisfied by some
extended interpretation (I,v) with suitable v. If X is not satisfiable, i.e. if
X is falsified by every suitable (Z,v) then X is also called unsatisfiable. 7
is called a model for X iff for all suitable assignments v it holds (Z,v) =
X. This is written as T |= X. If for some suitable assignment v, we have
Zy(X) = false we say that T is a countermodel for X. X is called valid iff
every X -interpretation is a model for X. This is noted as = X. If X is a
formula it is also called a tautology.

Recall from the definition of structure above that the universe component
is required to be non-empty. Here we can indicate the motivation for this.
By the non-emptiness unexpected and contraintuitive consequences can be
prevented. For instance, the formula (Vz P(z)) — Jy P(y) is false in an inter-
pretation whose structure is empty. However we would expect this formula
to be valid.

Next we turn towards important standard results about free variables in
formulas. The first result says that the truth-value of a formula depends on
the assignment to free variables only.

Theorem 2.3.1. Suppose (Z,v1) and (Z,v3) are extended interpretations
with suitable assignments for a formula F. Suppose vy and vy agree on the
free variables of F'. Then

<I,’U1> IZ F Zﬁ <I, '112) IZ F .

This theorem simplifies the task of computing the truth value of a formula
considerably, since only a finite subset of the — in general infinite — as-
signment has to be considered. The straightforward proof requires structural
induction and can be found for a slightly different formulation in [Enderton,
1972]. Since sentences do not contain occurrences of free variables we obtain:

Corollary 2.3.1. For a sentence S and interpretation I, either

1. {Z,v) = S for every assignment v, or
2. (Z,v) £ S for every assignment v.

2.3 Semantics of First-Order Logic 25

Thus for sentences the truth value depends alone from an interpretation 7.
This gives some nice properties. For instance, from Z [~ S we may infer
T = —S (cf. also Lemma 2.3.1 below). Using this, the definitions of “model”
and of negation we can rewrite the previous corollary to

Corollary 2.3.2. For a sentence S and interpretation I, either T = S or
TE-S.

Also we have:

Corollary 2.3.3. Let M be a set of sentences and X be a sentence or finite
set of sentences. Then the following are equivalent:

1. M UX is unsatisfiable.
2 MEX.
3. for every interpretation I: T |= M implies T = X .

The proof of Corollary 2.3.3 is easy and is done by applying the definitions
and Theorem 2.3.1.

The equivalence 1.-2. is the basis for refutational theorem proving; it al-
lows the reduction of the task of determing whether a given set X of sentences
is a logical consequences of another set M of assumptions to a question of
unsatisfiability.

The equivalence 2.-3. states that for logical consequenceship wrt. sen-
tences does not depend on assignments. This does not hold if we do not
restrict to sentences; since it can rarely be found in the literature we will give
a counterexample here. It shows that we can find a set M and a formula F'
such that F is a logical consequence of M although not every model of M is
also a model of F.

Ezample 2.3.2. Consider a signature X = ({a,b},{=},{z,y,2,u}), where a
and b are constants and = is a two-place predicate symbol (written infix).
Let £Q be the following set of formulas (“equivalence relation”):

£Q: Vr z=ux,
VeVy z=y >y =1z,
VeVyVz z=yAy=z—-ox =12 .
Suppose, to the contrary that Corollary 2.3.3 also holds for arbitrary formu-
las. Then £Q U {u =a} = u = b iff every model for £Q U {u = a} is also
a model for v = b. We show that the “if” direction leads to a contradiction

(the “only-if” direction does indeed hold). After slightly rewriting the “if”
direction and using the appropriate definitions we have

for all Z: (if for all v: Z,(EQ U {u = a}) = true
then for all v: Z,(u = b) = true)

implies

for all Z, for all v: (if Z,(EQ U {u = a}) = true then Z,(u = b) = true).

26 2. Logical Background

By contraposition we obtain the equivalent form
for some Z, for some v: (Z,(EQU {u = a}) = true and Z,(u = b) = false)
implies

for some Z: (for all v: Z,(EQ U {u = a}) = true
and for some v: Z,(u = b) = false)

The premise of this implication can easily be satisfied: take the universe
{d',b'}, interpret the constants a and b with &' and b', respectively, and
let the interpretation of “=" be {(a,a), (b, b}}. Finally, with the assignment
v(u) = a it is easily verified that the premise holds. It is essential that a and
b are interpreted with different values. At the conclusion we do not have this
freedom (the left side of the conjunction) and a and b have to be interpreted
to the same value. But then we have a contradiction to the right side of the
conjunction. More precisely we conclude as follows:

Suppose the conclusion is true. Let Z be the interpretation as claimed,
U = {a',b'} with a' #b' be the universe, and let Z_ be the interpretation of
the =-symbol. Suppose a is mapped to a’, and b is mapped to b'. Since for
all assignments v we are given that Z,(£Q U {u = a}) = true we conclude
in particular that (X,a') € Z— (by taking v(u) = X for all X € U) and
(V',a'y € I_ (by taking v(u) = b'). However, by symmetry and transitivity
of = we find that (X,b') € Z— for every X € U. Thus Z,(u = b) = true for
every v. Thus a v such that Z,(u = b) = false does not exist. Contradiction.

Convention 2.3.2 (Assignments). For sentences we can slightly simplify
matters concerning semantics: recall from Definition 2.2.4 that a sentence is
closed, i.e. it contains no free variables. As a special case of Theorem 2.3.1
we obtain easily that

Toox) =X iff (Te)=X

for any extended interpretations (Z,vx) and (Z,e) for a sentence or set of
sentences X, where € denotes the “empty” assignment, i.e. the assignment
which is undefined everywhere. Thus, with the assignment playing no role in
evaluating X, we are motivated to define Z(X) as a shorthand notation for
T.(X). Similarly, we will write Z[,, o) instead of Z.[5 -

The following trivial lemma collects some useful facts for later use. The easy
proof makes use of the totality of the evaluation functions, as well as the
theorem and corollaries of this section.

Lemma 2.3.1. Let F be a formula, X be a formula or a set of formulas,
and let' Y be a sentence or a set of sentences.

1. (Z,v) = F iff T,(F) = false
2. T X iff for some assignment v it holds Z,(X) = false
3. = X iff for some extended interpretation {Z,v) it holds Z,(X) = false

2.4 Clause Logic 27

4. TEY iff Z(Y) = false

5. Y iff for some interpretation T it holds Z(Y') = false

6. Let M be a set of sentences. Then M £ 'Y iff for some interpretation T
it holds (M) = true and Z(Y') = false

Lemma 2.3.2. Let X be a sentence or a set of sentences. Then T = X iff
for all sentences S such that X =S we have T = S.

Proof. “=": trivial.

“<”: We prove the contraposition: whenever 7 [~ X then for some sentence
S we have (1) X = S and (2) Z [~ S. Hence suppose Z [~ X. Then by
Lemma, 2.3.1.4 Z(X) = false. Thus, for some sentence S € X it holds Z(S) =
false, and by Lemma 2.3.1.4 again Z [~ S which proves (2). Since S € X it
trivially holds X |= S which proves (1).

2.4 Clause Logic

In automated theorem proving most research is done in a particular simple
syntactic setting of formulas, namely clause logic. The formulas of clause
logic are conjunctions of disjunctions of — possibly negated — atoms, and
all variables are understood as universally quantified. It is an advantage of
clause logic that it enables the design of simple proof procedures. In partic-
ular, due to the universal quantification, unification can be used. This was
demonstrated for resolution in the seminal paper [Robinson, 1965b].

Fortunately, every sentence can be transformed in satisfiability preserving
way into clause logic. We will summarize the transformation steps here. A
detailed treatment can be found in standard textbooks on automated theorem
proving (e.g. [Chang and Lee, 1973]).

2.4.1 Transformation into clause logic

Suppose some first-order signature is given. A sentence F' is said to be
in prener normal form if it is of the form F = Q121 --- Qmxn G, where
Q; € {V,3} (for i =1...m) and G is a formula which does not contain any
quantifiers. Q1x1 ---Q1x is also called the prefix of F and G is called the
matriz of F.

Fortunately, it holds that for every sentence F' a sentence F’ exists such
that F” is in prenex normal form and F' = F'. The proof is constructive
and makes use of replacement rules which allow the movement of quantifiers
“outside”. For instance, if F' contains a sentence Vz (P(z) V Yy Q(y)) this
occurrence may be replaced by the sentence VzVy (P(z) V Q(y)). Note for
this particular case that the variables z and y have to be distinct (this can
always be achieved by renaming).

28 2. Logical Background

The next step in converting a sentence F' to clause form consists of trans-
forming the matrix of its prenex normal form F' into conjunctive normal
form. A formula F is said to be in conjunctive normal form iff it is of the
form

Gi=GiN---NG, ,
where every G; (for ¢ = 1...n) is of the form
F=L;jyV---VLy ,

where every L; ; (for j =1...n;) is a literal (a literal is either an atom or a
negated atom).

Here we note that the conversion of a matrix to conjunctive normal form
can effectively be carried out in an logical equivalence preserving way. Es-
sentially one has to apply various equivalences such as deMorgan’s laws and
distributivity of “A” over “V” etc. The case of the “<” is a bit problematic
in that its elimination may cause exponential growth of the formula. This is
the case for the naive transformation which replaces a subformula F & G
by, say, (F — G) A (G — F). As an alternative to this, better, polynomial
transformations exists (see e.g. [Eder, 1992] for such a transformation).

Hence let F" be the prenex normal form of F whose matrix is in con-
junctive normal form. Next we want to get rid of the existential quantifiers
in the prefix of F". This is done by introducing Skolem functions for the
existentially quantified variables. More precisely, if F'' is written as

F'" =Yz - Vo130 Quazipr - Qmam G
where [€ {1...m}, then F" is converted to

!
Vo ---Vor o1 Quei®ivr - - QmTm G

where G’ is obtained from G by replacing every occurrence of the variable
z; by the term f(z1,...,2z;—1). Here f is a | — l-ary function symbol —
called Skolem function — from the given signature, which is “new” to G.
That is f must be different from all other function symbols occurring in G.
Intuitively, f(z1,...,x;—1) represents the value for z; which might depend
from z1,...2_1.

It is clear that repeated application of this transformation terminates and
finally results in a formula where all existential quantifiers are removed. Such
sentences, i.e. sentences whose prefix contains only universal quantifiers, will
be referred to as sentences in Skolem normal form. Since this can be done in a
unique way we will denote “the” Skolem form of a sentence F' in prenex form
by Sk(F'). Similarly, for a set X of sentences we define Sk(X) = {Sk(F) |
F € X}. In order to avoid collisions among Skolem functions across sentences,
Sk(X) is built with the understanding that the used Skolem functions to
obtain Sk(F) and Sk(G) for F,G € X, F # G are different.

2.4 Clause Logic 29

In general the resulting sentence (or set of sentences) in Skolem normal
form is not logically equivalent to the given one. This can be seen by consid-
ering e.g. F" = 3z P(x) and a skolemized form F'" = P(a). It is easy to find
an interpretation Z such that Z(F") = true and Z(F"') = false. Hence F"
and F"" are not logically equivalent. Instead there holds a weaker result:

Theorem 2.4.1 (Skolem Normal Form). Let X be sentence in prenex
normal or set of sentences in prenexr normal form. Then X is satisfiable
if and only if Sk(X) is satisfiable.

The proof can again be found in standard textbooks on logic. We note here
only that the existence of the Skolem functions is guaranteed by the axiom
of choice.

In automated theorem proving we are mainly interested in establishing
the wvalidity of a given formula, but not its satisfiability. Fortunately, the
preceeding theorem poses no real obstacles for doing so: suppose we want
to prove a given conjecture F' to be valid. For this consider its negation,
—F. As a special case of Corollary 2.3.3 it holds that F is valid iff —=F is
unsatisfiable provided that F' is a sentence (i.e. F is a closed formula). Hence
the question of validity can be reduced to a question of (un)satisfiability, and
in this context the theorem is applicable.

As the only restriction, one has to make a decision of how to treat free
variables in the given formula prior to converting it to Skolem normal form.
It should be noted that if F' is a closed formula then every Skolem normal
form is also closed.

In automated theorem proving one usually starts with the conversion
of =F to Skolem normal form, with the matrix being put into conjunctive
normal form. In other words we deal with what is known as clause logic.

Definition 2.4.1 (Syntax of Clause Logic). A closed formula in Skolem
normal form whose matrix is in conjunctive normal form is said to be in
clausal form.

A clause is a finite multiset {L1,... ,L,} of literals® which is identified
with any of the n possible permutations of the disjunction LyV---V L, (n > 0).
Some notational conventions: if C and D are clauses, then C'V D is the clause
CUD, and if L is a literal and C is a clause, then LV C' is the clause {L}UC.
In such a context, C is called the rest clause of LV C.

Furthermore, if F' is a formula in clausal form with matriz Fy A--- N Fpy,
F will be identified with the set {Fy,... ,Fpy}.

Clauses are usually categorized in the following mon-disjoint way: the
empty clause contains no literals, i.e. it is the set {}; it is also written as “O7.
For clauses different to the empty clause we define: a Horn clause contains at

9 For Resolution calculi clauses often are defined as sets rather than as multisets.
For connection methods the latter definition seems to be standard (e.g. [Bibel,
1987]). Using multisets also simplifies the lifting proof (Section A.1.1) a bit and
allows for a simpler implementation

30 2. Logical Background

most one positive literal. A definite clause contains exactly one positive literal.
A negative clause contains only negative literals. A positive clause contains
only positive literals. A disjunctive clause contains at least two positive liter-
als. A clause is o unit clause iff it contains exactly one literal, otherwise it is
a non-unit clause.

Note that it is always possible to restore from a clause set a corresponding
formula in clausal form by building a conjunction from its clauses and adding
back the universal quantifiers. Furthermore, all formulas obtainable in this
way are logically equivalent. This is due to the associativity and commutativ-
ity of “A” and “V”. Furthermore, in the prefix the ordering of the V-quantifiers
plays no role. We can even allow common variables across clauses (although
the conversion to clausal form will not produce that) because “V” distributes
over “A”. This will relieve us from inventing ever new variable names in
clauses.

Ezample 2.4.1 (Clausal Form). Consider the signature ({a, f},{P,Q},{z,y})
and the clause set {p(f(z)), p(z) V q(z), —q(f(a))}. The corresponding clausal
form is

vz (p(f(2)) A (=p(2) V q(2)) A —~q(f(a)) -

This clausal form might have been derived from the formula

FyVz (p(f(2)) A (p(z) — q(z)) A —~q(f(y)) -

All definitions and properties obtained so far in general first order logic
carry over to clause logic. For instance, a ground clause set is a clause set
whose members are all ground clauses, which in turn are multisets of possibly
negated ground atoms.

2.4.2 Herbrand Interpretations

As mentioned in the previous section, the validity problem for a given formula
is transformed into the unsatisfiability problem for its conversion to a clause
set. That is, the problem is to prove that the resulting clause set, say M, is
false in all interpretations over all domains. Since it is impossible to consider
all of them it would be most advantageous if there were a canonical structure
such that M is unsatisfiable if and only if M is false in all interpretations over
this structure. Indeed, there are such canonical interpretations — Herbrand
interpretations.

Definition 2.4.2 (Herbrand Interpretation 1). Let ¥ = (F,P, X) be a
signature. Without loss of generality F can be assumed to contain at least
one constant symbol. The Herbrand universe Us, of X is defined to be the set
Term(F), i.e. the set of all ground terms of X¥. A Herbrand structure for X
is a structure Sy = (Us, Ident, R), where'®

10 We use usual A-notation for functions.

2.4 Clause Logic 31

Ident = {Ident; | f € F}, and
Ident; = Ax1.--- Aen. f(z1,... ,2n)
(i.e. Identy maps any f-term to “itself”)

A Herbrand interpretation is an interpretation
My =Sz, Lident; Ip)
where Ligent(f) = Identy for every f € F.

The constituents of a Herbrand structure and Herbrand interpretation are
determined completely by the underlying signature X, except for the inter-
pretations of the predicate symbols Zp. For instance in Example 2.3.1 we find
for the Herbrand universe

Us; = {zero, succ(zero), succ(succ(zero)), ... , plus(zero, zero),

plus(succ(zero), zero), . . . times(zero, zero), ...} .

Concerning the interpretation of function symbols we have, for instance,
Tident (plus) = Azy, Axa.plus(z1,22). Concerning the interpretation of predi-
cate symbols, Zp, it has become usual to identify for a given predicate symbol
P € P its meaning Zp(P) with the set of just those ground atoms which are
in the relation given by R. More formally this is achieved as follows:

Definition 2.4.3 (Herbrand Base, Herbrand Interpretation 2).
The Herbrand base HB(X) (for a given signature X = (F, P, X)) is the set

HB(X)={P(t1,... ,tn) | P E€P,t1,... ,tn € Term(F)}

From now on a Herbrand interpretation may be represented by some sub-
set Hyx C HB(X). The intended Herbrand interpretation in the sense of
Def. 2.4.2 then is defined as follows (it suffices to define R and Ip):

R={{<t1,... 7tn> | P(tla"' atn)GHE}P | PEP}
I»(P) = Rp, where Rp € R

In words, a Herbrand interpretation just lists the true atomic ground for-
mulas, and all other ground literals are interpreted by false. Their falsehood
can be concluded since R is assumed to be a collection of total relations. The
reader should convince him- or herself that this definition meets the formal
requirements. In particular, the set R is indeed a collection of relations over
the given Herbrand universe.

In order to carry on Example 2.3.1 we can define a Herbrand interpreta-
tion containing

{zero = zero, succ(zero) = succ(zero), zero < succ(zero),
zero < succ(succ(zero)),...} .

Our interest in Herbrand interpretation is justified by the following central
theorem:

32 2. Logical Background

Theorem 2.4.2. A set M of clauses is unsatisfiable if and only if M is false
under all Herbrand X -interpretations, where X is determined by the function
and predicate symbols and variables occurring in M.

Thus, for purposes of automated reasoning (at least if one is interested in
establishing unsatisfiability) it suffices to restrict to Herbrand interpretations.

A proof of Theorem 2.4.2 can be sketched as follows: the “only-if” di-
rection is trivial, since if M is falsified by every interpretation, M is also
falsified by every Herbrand interpretation. For the “if” direction one proves
the contrapositive direction, i.e. if M is satisfiable, say by interpretation I,
then there is also a satisfying Herbrand interpretation Z*. This 7* is con-
structed in such a way that 7*(A) = true for every atom A if and only if
Z(A) = true.

Theorem 2.4.2 does not hold for arbitrary formulas, not even for sentences.
For the validity Theorem 2.4.2 we need at least formulas in Skolem normal
form. Consider e.g. the formula F' = P(a) A 3z—P(x), where a is a constant.
It is easy to see that F' is satisfiable (take an interpretation whose universe
consists of exactly two elements, say 0 and 1, and let P(0) be true and P(1)
be false). However, no Herbrand model exists for F'.

Recall that the universe of a Herbrand interpretations is committed to
the set of (ground) terms of the given signature. Since we will mainly deal
with Herbrand interpretations in the sequel such assignments will be central.
The next definition introduces this at a more general level (most items are
taken from [Lloyd, 1987]):

Definition 2.4.4 (Substitution, Instance, Ground Instance). Let ¥ =
(F,P,X) be a signature. A substitution (for the variables X) is a mapping
ox : X = Term(F,X) which is the identity at all but finitely many points.
Usually ox is represented by the finite set of pairs

{zt]ox(z)=t, ox(z) # 2} ,

the members of which are called assignments.
A substitution ox is homomorphically extended to terms as follows:

o(t) = { ox(t) ifte X
T flo(tr),...a(tn)) ift is of the form f(t1,... ,tn).

In the following, by an expression we mean either a term, a literal, a mul-
tiset (recall that clauses are multisets), a sequence of terms or literals or a
quantifier-free formula (i.e. a formula built without quantifier). Substitutions
are extended to expressions in the obvious way:

2.4 Clause Logic 33

a(P(t1,... ,tn)) =P(c(t1),... ,0(tn)) for an atom P(t,...,t,)

o(—A) =-0(A) for an atom or formula A
o{Er,... ,Ep } ={o(E1),... ,0(En)} for multisets of expressions
o(Ey---Ep) =0(Ey)---0(Ey) for sequences of expressions
o(Fo@G) =0d(F)ocd(G) for formulas F and G, where

o e {/\7\/7 H7 (_7 _)}

It is usual and convenient to write Ec instead of o(E), where E is an
expression. An expression F is an instance of E iff a substitution o exists such
that Eo = F. A ground substitution (for an expression E) is a substitution
o such that Eo is a ground expression. F' is called a ground instance of E iff
F is an instance of E and F is ground (or, equivalently, F is an instance of
E by some ground substitution).

Ezample 2.4.2. Let X = {z,y,z} and =P(z,g(y)) be a literal. Applying the
substitution ox = {z « f(2)} yields =P(f(z), g(y)). The literal =P(a, g(z))
is an instance of ~P(z, g(y)) by means of 7x = {z + a, y + z}. However it
is not a ground instance.

The following lemma lists some trivial consequences of Definition 2.3.3, The-
orem 2.4.2 and of the preceding definition. For the easy proofs one only has
to recall that clauses are universally quantified disjunctions of literals. As
these facts are used quite often we will give them here explicitly:

Lemma 2.4.1 ([Chang and Lee, 1973]). 1. A ground instance C' of a
clause C' is satisfied by o Herbrand interpretation T iff there is a ground
literal L' € C" such that L' € T, that is C' NI # {}.

2. A clause C is satisfied by a Herbrand interpretation I iff every ground
instance of C' is satisfied by T.

3. A clause C is falsified by a Herbrand interpretation T iff there is at least
one ground instance C' of C' such that C' is not satisfied by T.

4. A set S of clauses is unsatisfiable iff for every Herbrand interpretation
Z, there is at least one ground instance C' of some clause C € S such
that C' is not satisfied by T.

The next theorem is an extremely important “tool” for completeness proofs
of first-order calculi. It allows the reduction of the problem of finding a proof
of a clause set to the problem of finding a proof of a finite set of ground
instances of that clause set.

It is according to Skolem, Herbrand and Lowenheim®!

11 In the literature one can often find this theorem cited as “Herbrand’s theorem?”.
This is not quite accurate since Herbrand has developed a similar theorem which
is formulated in a proof-theoretic version, and not in a model-theoretic version
as this one.

34 2. Logical Background

Theorem 2.4.3 (Skolem, Herbrand, Lowenheim Theorem). A clause
set M is unsatisfiable if and only if some finite set M' of ground instances
of clauses from M is unsatisfiable.

For a proof see e.g. [Gallier, 1987] or [Chang and Lee, 1973).

On the one hand, this theorem enables a “ground-proof and lifting tech-
nique” for completeness proofs of first-order calculi. This technique will be
employed several times throughout this paper and will be described in more
detail below.

On the other hand, it can be the base for an implementation according to
the following scheme: in order to prove a given clause set M as unsatisfiable
one has to systematically enumerate all (finite) sets of all ground instances
of all clauses in M, whereby deciding the validity of each enumerated set!2.
If M is indeed unsatisfiable, by Theorem 2.4.3 such an unsatisfiable set M’
of ground instances will be enumerated eventually. Then deciding M’ as un-
satisfiable will render M itself as unsatisfiable.

There is a whole class of proof procedures following this line, e.g. the
Dawis-Putnam procedure [Davis and Putnam, 1960]. These procedures, how-
ever, were abandoned more or less once the resolution principle was invented
[Robinson, 1965b], because it allows us to carry out the proof search directly
on clauses with variables by the device of unification. Only recently, interest
in Herbrand proof procedures came up again. D. Plaisted and his cowork-
ers have developed several variants of the Hyper-linking calculus [Lee and
Plaisted, 1992; Chu and Plaisted, 1994]. The new idea wrt. Davis and Put-
nam’s procedure is in the way the ground instances are generated. A clever
enumeration scheme, joined with an optimized variant of the Davis-Putnam
decision procedure for propositional logic allows for the proof of many theo-
rems which are difficult in the field of automated theorem proving.

2.4.3 Unlification

As with resolution, most calculi used in automated theorem proving operate
on the variable-level and employ unification as the basic operation. Our cal-
culi described in subsequent chapters will also do so, although, traditional
unification will be replaced by a more general concept (“theory unifiers”). As
a base for that, and for the sake of completeness, we will briefly recall some
standard definitions. For their place within first-order calculi the reader is
referred to Chapter 4 below.

Definition 2.4.5 (Operations on Substitutions, Variant, Unifier). In
the following we mean by an expression either a term or a literal. The com-
position of two substitutions o and T is written by juztaposition or. It is

!2 this can be done effectively since a finite set of (finite) ground clauses essentially
is a propositional formula which can be decided e.g. by using truth tables.

2.4 Clause Logic 35

defined via the equivalence x(o7) = (xzo)T. That is, for every expression E,
Eor = (Eo)T.
The empty substitution € is to be defined the identity function everywhere.
Let X and V' sets of variables with V. C X, and let o be a substitution.
The restriction of o X wrt. V, written as o|V is defined as follows:

[o(z) ifxzeV
(U|V)(m)_{ z ifxgV .

That is, the restriction of a substitution forgets about the assignments outside
V.

Occasionally we need the sets

Dom(o)={z | z € X, o(z) # z} (domain of o)

Cod(c) = {t | x € Dom(0o), o(z) =t} (codomain of o)

VCod(o) = U Var(t) (variable codomain of o)
te Cod(o)

The function Var(E) denotes the set of all variables occuring in an expres-
sion E. It is extended to sets or multisets S of expressions by Var(S) =
Uges Var(E). For substitutions, we define Var(o) = Dom(o) U VCod (o).

We say that a substitution o is away from (a set of variables) V iff
VCod(c)NV =0.

Quite often we are interested in substitutions which coincide with others
on a certain set of variables. Hence we define o = v [V] iff o|V =4|V. A
substitution o is said to be more general on the variables V' than the substi-
tution 0, written as o < § [V, if for some substitution ~y it holds oy = 4 [V].
By o <6 we mean o < 6 [X].

We say that expressions E and F' are variants if substitutions o and § exist
such that E = Fo and F = E6. A renaming substitution is a substitution p
such that Cod(p) C X, i.e. p replaces variables by variables, and p(z) = p(y)
implies x = y for all x,y € Dom(p). As a consequence, because p is a bijection
in X, p can be inverted, which is defined to be the substitution p—', with
pp~" = e [Dom(p)].

It holds that E and F are variants iff renaming substitutions p for E and
T for F ezists such that F = Ep and E = Ft [Lloyd, 1987].

Two expressions E and F' are said to be unifiable if a substitution o exists
such that Eo = Fo. In this case o is called a unifier for E and F'; o is called
a most general unifier (MGU) iff o < o' for every other unifier ' of E and
F.

Unification is extended to multisets of literals as follows: a substitution o
is a unifier for literal multisets N and M iff No = Mo. Multiset unification
is of type “finitary” (i.e. results in a finite complete set of multiset-MGUs).
See [Biittner, 1986] for an unification algorithm.

36 2. Logical Background

Note 2.4.1 (Unification and Variable Restrictions). It can be verified that
“<” is indeed a partial ordering. The variable restriction V in ¢ < § [V]
is indeed necessary sometimes, as o < § might not hold although we would
expect so. For instance, if 0 = { + y} and § = {z < a} then a substitution
~ does not exist such that oy = § (on all variables !). The “solution” y < a
does not work because then

oy={zx+a,y<—al#{r<a}=9 .

However, o < § [{z}] holds. Notably, such a restriction to certain variables is
not necessary in the context of MGUs. That is, if § is a unifier for expressions
E and F, then a MGU ¢ and a substitution 7 always exists such that oy = 4.
This is known as the unification theorem. A respective algorithm was given
first in [Robinson, 1965b]. See [Knight, 1989; J.-P. Jouannaud, 1991] for
overviews about unifications.

Obviously, multiset unification can be reduced to syntactic unification,
because § is a multiset-MGU for {Ly,...,L,} and {Ki,... ,K,} iff § is
a (syntactic) unifier for ¢(Li,...,Ly,) and ¢(Kr(1),--- , La(n)), Where 7 is
some permutation of 1,...,n. From this reduction to syntactic unification
we thus conclude that for any multiset unifier § a multiset-MGU o exists and
a substitution v such that oy = & (without variable restriction). However,
introducing variable restrictions becomes necessary again in the context of
“theory-MGU”s (see Section 4.2.1).

Ezample 2.4.8 (Unification). The terms #(z) and t(y) are unifiable by MGU
o0 = {z + y}. The unifier § = {z < a, y + a} is not an MGU because for
v = {y + a} we find 67y = 4. The terms t(a) and #(b) are not unifiable.

2.5 Theories

Next we will formalize one of our central concepts, namely the concept of
a theory. The material presented here is a condensed form of the respective
chapters of the textbooks [Enderton, 1972; Heinemann and Weihrauch, 1991;
Lalement, 1993).

We will start with a brief motivation. Then we will formally define the
notion of a “theory” and will give methods how theories can be defined. Then
we turn towards properties theories can have.

In Section 2.3 we have introduced the semantical notion of vaelidity, which
means that a formula is true in all interpretations. However, for a mathemati-
cian the question of whether some given formula is valid in this sense is often
not so relevant. Instead he asks whether his conjecture is true in some ded-
icated interpretation. For instance, he will be interested in assertions about
the natural numbers or real numbers. Or he asks whether a certain assertion
is a logical consequence of some given axioms, e.g. the axioms of group the-
ory. Now, the notion of a theory allows the expression of these applications
in a convenient way.

2.5 Theories 37

Definition 2.5.1 (Contradictory Sets of Sentences, Theory).
Let M C CPF(X) be a subset of the sentences of a given signature. M is
called contradictory iff for some S € CPF(X) both M = S and M | —S.
If M is not contradictory it is called consistent'® (iff for every S € CPF(X)
not both M |= S and M |= =S).

M is called a X-theory iff (1) M is consistent and (2) for every S €
CPF(X) it holds that M |= S implies S € M

That is, a theory is a consistent set of sentences which is closed under logical
consequence.

Note 2.5.1. The notion of consistency is also used in the literature as a “syn-
tactic” property: then, a formula is consistent if no contradiction is derivable
(using some calculus) from it. However, in usual calculi by soundness and
Godel-completeness the “syntactic” and our model-theoretic “semantic” no-
tions coincide.

The “syntactic” approach is taken for instance in [Lalement, 1993]. Oc-
casionally one finds that property (1) is omitted, e.g. in [Gallier, 1987;
Enderton, 1972]. The difference is not that crucial, since in this case (for
a given language X) only one single contradictory theory exists, namely
CPF(X). Reason: If a theory 7T is contradictory, it is unsatisfiable (by
Lemma 2.5.1.1 below). Hence, by definition of logical consequence 7 = S
for every S € CPF(X). Thus by closure property (2) T = CPF(X).

It should be noted that concerning property (2) there seems to be an
agreement in the literature that it is always part of the definition.

In order to state a positive example for a theory consider the set T =
{S | S} of all tautologies. T is a theory (it is even the smallest the-
ory). In order to see this let M = {} in Lemma 2.5.1.2 below.

Lemma 2.5.1 (Definition of Theories). 1. Let M C CPF(X) be a set
of sentences. M is consistent iff M is satisfiable.
2. Let Az C CPF(X) be a non-contradictory set of sentences. Then

Cons(Az) ={S € CPF(X) | Az = S}

is a theory (this is the axiomatic method of defining a theory. Ax is called
a set of axioms or axiomatization).
3. Let T be a X-interpretation. Then

Th(I) = {S € CPF(Z) | T = S}

is a theory (also called the theory of Z. This is the model theoretic method
of defining a theory).

Before we will prove this we need a lemma:

13 In German: “widerspruchsfrei”

38 2. Logical Background

Lemma 2.5.2. Let T be a X-interpretation and M C CPF(X). Then T =
M iff T = Cons(M).

Proof. IEM
iff 7 =S for every sentence S with M |= S (by Lemma 2.3.2)
if ZTE{S| MES}
it 7 E Cons(M)

Proof. (Lemma 2.5.1) 1. “<=”: We prove the contraposition: if M is contra-
dictory then for some S € CPF(X) it holds both M |= S and M | —S. Now,
if M were satisfiable then for some model Z of M we would have both Z = S
and Z |= -5 which is impossible. Hence M is unsatisfiable.

“=": We prove the contraposition: if M is unsatisfiable then it holds trivially
M = S for every S € CPF(X). So in particular M |= —S. Hence M is
contradictory.

2. In order to see that Cons(Az) is a theory we have to show that (1)
Cons(Ax) is consistent and that (2) obeys the closure property.

Ad (1): Az is consistent (as given) iff Az is satisfiable (by this lemma item
1. iff Cons(Ax) is satisfiable (by Lemma, 2.5.2) iff Cons(Ax) is consistent (by
this lemma item 1. again).

Ad (2): Cons(Az) E S iff Az = S (consequence of Lemma 2.5.2) iff
S € Cons(Azx) (by definition).

3. Clearly T'h(Z) is consistent since no interpretation can satisfy both F' and
—F'. For the closure property suppose, to the contrary, that for some sentence
S we have Th(Z) = S (*) but S € Th(Z). From S ¢ Th(Z) it follows by
definition Z = S (**). On the other side, Th(Z) consists precisely of those
sentences being true in Z, i.e. Z = Th(Z) holds trivially. But then using (*)
we conclude Z = S which contradicts to (**).

Property 1 gives an alternative characterisation of noncontradictoriness. Sat-
isfiability of a given set of formulas may be much easier to establish than non-
contradictoriness. For example, every clause set consisting of definite clauses
is satisfiable (and hence consistent). This can be seen by taking the interpre-
tation that assigns true to every positive literal and false to every negative
literal.

The properties 2 and 3 give methods how theories can be defined. For this
we will supply examples.

2.5.1 Sample theories

Let us motivate by some examples the methods of Lemma 2.5.1 of defining
theories. We will concentrate on theories which are of real interest for the
working mathematician. For some of these we will show in Chapter 5 how to
automatically derive an efficient background calculus from their axiomatiza-
tion.

2.5 Theories 39

These examples are centered around “equality”, that is, the underlying
signature contains a special 2-ary predicate symbol — usually “="— which
is to be interpreted as an equality relation. One way to achieve this is to add
the equality axioms to a given set of formulas. These shall be defined next:

Definition 2.5.2 (Equality Axioms). Let ¥ = (F,P,X) be a signature.
1. The set FSUB(X) C PF(X) of functional substitution axioms for X' is
the following set'*:
FSUB(X): VX1, . s, Ylye-e sYn: L1 =Y1 AN A2y = Yp
= f@,.20) = Y1, yn)

for every n-ary function symbol f € X

2. The set PSUB(X) C PF(X) of predicate substitution axioms for X is
the following set:

PSUB(E) vxl;"' YTy YLy Yn P T =YL A ATy =Yn
AP(z1,...,2n) = P(y1,--- ,Yn)
for every n-ary predicate symbol P € X

3. The equality axioms for X', EAX (X)) is the set
EAX(X)=EQUFSUB(X)UPSUB(X)
Concerning the set £Q (equivalence relation) see Example 2.3.2 above.

Now we will define some theories.

The Theory of Equality. Let X be a signature. Since EAX (X)) is satisfiable
(take an interpretation which assigns true to every Atom) and hence consis-
tent, the set

Cons(EAX (X)) ={S € CPF(Y) | EAX(X) E S}
is by Lemma 2.5.1.2 a theory, called the theory of equality (for X'). By over-
loading of notation, we denote it by £(X) or simply &.
Equational Theories. Let X be a signature. The bare theory of equality can
be extended to an equational theory. Equational theories are usually identi-

fied with an axiom set E of equations'® which are implicitly considered as
universally quantified. To be precise, the equational theory of E is the set

Cons(EUEAX(X))={SeCPF(¥Y) | EUEAX(XY)E S} .
An important instance are AC-theories, that is,

E= {f(ar,f(y,Z)) = f(f(xvy)az)a f(mvy) = f(va)}

for a given 2-ary function symbol f. See [Siekmann, 1989] for an overview
over this area, which is also called unification theory.

4 In order to be completely accurate the variables occuring in these formulas must
be contained in X. This will be presupposed here and in similar situations below.
15 A (X-)equation is a X-Atom whose predicate symbol is “=".

40 2. Logical Background

Group theory. Let G = ({=},{e,o},{z,y,2,...}) be an signature. Let GA C
PF(G) be the following set:

GA: VaVyVz (zoy)oz = =xzo(yoz)
Vz eox = =z
Vz3y yor = e.

The elements of GA are called group axioms. Then, building on 1., group
theory is the theory

GrTh = Cons(GAU EAX(G)) .

Note that GA is not an equational theory because of the existential quantifier
in the third line. However, it can be converted into an equational theory by
means of a Skolem function.

Orderings. The following are relevant axioms for orderings:

O: VaVy z<yANy<z > zx<z (Transitivity)
Ve -z <x) (Trreflexivity)
VaVy z<yVa=yVy<cz (Trichotomy)
VaVz (z <z = ylz <y A y < 2) (Density)
Vedy y<z (No left endpoint)
Vzdy z <y (No right endpoint) .

Transitivity and Irreflexivity alone axiomatize strict (partial) orderings, be-
low referred to by SO. If we add trichotomy (and equality) to SO we obtain
strict total (or linear) orderings. All axioms together constitute dense linear
orderings.

Arithmetic. Let N and NAT as in Example 2.3.1. Then, according to Lemma
2.5.1.3 the set

Th(NAT) = {S € CPF(N) | NAT |= S}

is the theory of NAT, also called arithmetic.
Peano Arithmetic. In close relationship to the preceding example let A/’ be
the signature ({0, s, +,*},{=,<},{z,v,2,... }). Peano Arithmetic is the fol-
lowing theory Cons(PA):
PA: vz —(s(z) =0)

VaVy s(z) =s(y) - z=y

Vr z+0=z

VaVy x4 s(y) = s(z + y)
Ve zx0=0

VaVy zxs(y)=zxy+zx
Vz —(z <0)

VaVy z<s(y) o (x<yVz=y)
(2(0) A Vz (P(x) = J(s(x)))) — Vz &(x)

2.5 Theories 41

The last line is not a formula but an aziom scheme (the induction axiom
scheme). The expression ¢(z) stands for any formula containing a free vari-
able z. Given a signature with countably many variables, there are countably
many instances of the scheme. Thus, PA is an infinite set of formulas.

A weaker theory with fewer axioms can be obtained by replacing the in-
duction scheme with the trichotomy axiom (cf. the previous example). This
formula cannot be proved from the other ones. The resulting system is called
“elementary arithmetic”. An even simpler theory called “Presburger Arith-
metic” is obtained from elementary arithmetic by removing the axioms for
multiplication.

2.5.2 Properties of Theories

For our interest — theorem proving modulo a built-in theory — it is most
important to know about the decidability properties of the theory in ques-
tion to be used as a background theory. For instance, (and in preview to
subsequent sections) in order to get a complete calculus for the combined
theory the background theory must at least be semi-decidable!®. Further, if
one wants to check a given proof in such a calculus for correctness the theory
must even be decidable.

Definition 2.5.3 (Complete Theory). A theory T is called complete iff
for every sentence S € CPF(X) it holds S€ T or-SeT.

Note that a theory cannot contain both, S and =S for some sentence S.
Hence a complete theory contains exactly one of S, =S for every sentence S.

The model theoretic way to define a theory is always complete: let 7
be an interpretation (over some signature). Then the theory of Z, Th(Z) is
complete, since by totality of the evaluation function either a sentence S is
true in 7 or it is false in Z (and hence S is true in 7). In the former case
we have S € Z, while in the latter case we have =S € Z. Thus, for instance,
the theory of arithmetic (Th(NAT)) is complete.

The aziomatic way to define a theory is not necessarily complete. For
instance, for the atom A neither = A nor = —A. Hence the theory Cons({})
of all tautologies is not complete.

18 The notion of a recursive relation or set will not be formally defined in this book.
The same holds for the informal counterpart of a decidable relation or set. We
adopt the standard viewpoint (see [Enderton, 1972]) of a set to be decidable
iff there is a (terminating and correct) algorithm for its characteristic function
(i-e. the set-membership predicate). In our context, a theory 7 is decidable iff
an algorithm to determine whether F' € T or F' ¢ T exists, for arbitrary given
sentence F. A set which is not decidable is also called undecidable, and it is semi-
decidable iff there is a (correct) effective procedure for its characteristic function
and which terminates for any member of the set. The formal counterpart to
semi-decidability is recursive enumerability.

42 2. Logical Background

In this book we are mainly concerned with the axiomatic method of defin-
ing theories. Interesting properties evolve for theories whose axioms are de-
cidable. Then we arrive at aziomatizable theories:

Definition 2.5.4. A theory T is axiomatizable iff there is a decidable set
Az of sentences such that T = Cons(Azx). T is finitely axiomatizable iff
T = Cons(Azx) for some finite set Az of sentences.

Note that a theory being axiomatizable (i.e. it admits a decidable set of
axioms) does not necessarily imply that the theory itself is decidable. For
instance, Peano Arithmetic, elementary arithmetic, group theory (all defined
in the previous Section 2.5.1) and predicate calculus (the theory Cons({})) all
are axiomatizable yet not decidable. Elementary arithmetic is even essentially
undecidable (proved by Church) which means that it remains undecidable for
every (consistent) extension of its axiomatisation.

On the other hand, Presburger Arithmetic, dense linear orderings and
commutative group theory (i.e. for the group operator it also holds Vz, yzoy =
yox) is decidable (thus group theory is not essentially undecidable). See [Ra-
bin, 1977] for methods of how to obtain decision procedures. For instance, the
quantifier elimination method means to show that for any formula F' there
exists a quantifier-free formula G such that 7 |= (F < G). For this it suffices
to consider only sentences of the form 3(L; A --- A L) with the L;s being
literals. If this holds, we can then in many model theoretically given theories
T simply evaluate G in order to decide if F' is a member of T'.

For decision procedures based on theorem proving techniques, sometimes
resolution can be used (see [Joyner, 1976; Tammet, 1992]). Other exam-
ples for decidable theories are some equational theories, e.g. associative the-
ories, associative-commutative theories and many others (see again [Siek-
mann, 1989] for an overview). These theories are of particular interest within
automated theorem proving as quite efficient decision procedures, or even
unification algorithms are known. The same holds for interesting classes of
tazonomical theories (see again [Tammet, 1992]).

The following theorem lists computability results for axiomatizable theo-
ries:

Theorem 2.5.1 (Computability Results for Theories).

1. A theory is axiomatizable iff it is semi-decidable.
2. An aziomatizable and complete theory is decidable.

Proof. 1. “=” Let T be the given theory. Since 7T is axiomatizable a decid-
able set Az of sentences such that 7 = Cons(Az) exists.

We give a procedure for enumerating the members of the theory, which
clearly constitutes a semi-decision procedure: take any deduction complete
calculus for first order logic (e.g. Natural Deduction) and enumerate all tau-
tologies. This is possible due to Godels completeness theorem. Whenever a

2.5 Theories 43

sentence of the form (Fy A --- A F,) — F is enumerated, decide whether
{F1,...,F,} C Az. If so, F' is a member of the theory, and this procedure
will produce every member. Notice that for this direction it suffices even that
Az is semi-decidable.

“<” Let Fi,Fs,...,F,, ... be an enumeration of 7. Such an enumeration
exsist because 7T is semi-decidable. Then Az can be constructed as follows:

A."L'={ F1
Fy N\ Fy
F3 N F5 A\ F3

F,N---NF,
—_———
n times

}

Obviously, Az is logical equivalent to 7. Furthermore, for every F; there is
by construction only a finite number of formulas in Az which are smaller (in
a suitable complexity measure, e.g. by counting the formulas’ symbols) than
F;. Hence, for a given formula F' we have to enumerate Az only so far until
all formulas which are less than or equal (in this complexity measure) are
generated. We can decide whether F' is contained in this finite set. Hence Ax
is an axiomatization for T .

2. Let T be the given axiomatizable and complete theory. In order to decide
whether S € T for some sentence S the following algorithm can be used: by
completeness either S € T or =S € 7. Hence by the procedure given in 1.,
either S or =S will be generated after a finite number of steps. In the former
case we have S € T, while in the latter case we have S & T

The above mentioned decidability results can be rephrased in the termi-
nology of theories by using Theorem 2.5.1. For instance, the axiom system
for elementary arithmetic is finite and hence decidable. Thus elementary
arithmetic is axiomatizable. But it must be incomplete, since otherwise, by
Theorem 2.5.1.2, elementary arithmetic would be decidable. Since elemen-
tary arithmetic is even essentially undecidable, every axiomatizable extension
must be incomplete (this result is also known as Gddels first incompleteness
theorem). As a consequence, Peano arithmetic is also incomplete (because
it is an extension of elementary arithmetic). This means that there are sen-
tences S which are true or false in Nat (Example 2.3.1) but neither S nor
—S are contained in Peano arithmetic.

For a positive example we can mention the theory of dense linear orderings
without endpoints: it can be shown that this theory is complete, and with
being axiomatizable it is by Theorem 2.5.1.2 also decidable. The same line of
reasoning holds for the theory of natural numbers with successor and equality.
The abovementioned quantifier elimination method is applicable in this case.

44 2. Logical Background

The relationships among the discussed concepts as well as some trivial
ones are summarized in Figure 2.1.

Decidable Finitely
axiomatizable
if complete l
Semi-
Decidable Axiomatizable

Figure 2.1. Relationships among theories.

2.5.3 Universal Theories and Herbrand Theory Interpretations

Next we will introduce a special class of theories, namely universal theories.
Roughly, these are theories which can be axiomatized by a set of sentences
which do not contain any existential quantifiers. This class of universal the-
ories is important for us because a theory-version of the Skolem-Herbrand-
Lowenheim theorem (Theorem 2.4.3) holds for it (thus, also theorem proving
in the context of theories can be based on ground instances). Of course, this
all will be made precise below.
Let us first introduce universal theories.

Definition 2.5.5 (Universal Theories). A X-sentence F' in prenex nor-
mal form (cf. Section 2.4.1) is called a universal (X-)sentence iff it is of
the form F = Yz ---V2,, G, where G is the matriz of F17. A (X-)theory
T is called universal iff T = Cons(Azx) for some axiom set Ax of universal
X-sentences.

Example 2.5.1. Consider again the sample theories of Section 2.5.1. The the-
ory of equality is universal by virtue of the equality axioms, EAX (X).
Group theory is not universal due to the axiom Vx3dy y o x = e. However,
if we replace this axiom by Vz i(z) o x = e where 7 is a new Skolem function,
we arrive at a universal theory which is satisfiable if and only if group theory
is (cf. Section 2.4.1).

Orderings: Strict partial orderings are universal, while dense linear or-
derings are not, etc.

Before we come to the above-mentioned Herbrand theorem we will introduce
some notation which will be very convenient in the following. It is motivated
by the standard situation in theorem proving with built-in theories, where

7 Note that a sentence in Skolem normal form (Section 2.4.1) is a universal sen-
tence.

2.5 Theories 45

one has given a (semi-) decision procedure for a theory T (e.g. group theory),
a clause set M of hypothesis (e.g. stating the commutativity of the group
operation) and a particular theorem () to be proved. The question then is
whether () is a logical consequence of M with respect to 7. Let us define this
more formally.

Definition 2.5.6 (7-Interpretation, -Satisfiability, - Validity, -Model).
Let T be a X-theory. A X-interpretation T is called a T-(X-)interpretation
iff T |=T. A Herbrand T-X-interpretation is a T -X-interpretation which is
also a Herbrand interpretation (Def. 2.4.3).

Now let M be a set of X-sentences. We extend Definition 2.3.83 towards
theories in the following way.

A T -X-interpretation T is called o T-(X-)model for M iff 7 = M.

M is called T-(X-)satisfiable iff Z = M for some T -X-interpretation I.
Otherwise M is called T -(X-)unsatisfiable.

M is called T-(X-)valid iff T = M for every T -X-interpretation . This
is written as E7 M

Let X be a X-sentence or a set of X-sentences. X is called o logical T-
consequence of M, written as M =7 X iff for every T-X-interpretation I:
Z = M implies T = X.

These notions shall also be defined with respect to Herbrand interpreta-
tions by referring to Herbrand T -X-interpretations instead of T -X-interpre-
tations.

The next proposition rephrases some model-theoretic facts in the current
terminology. It demonstrates that everything is defined as one would expect
naturally.

Proposition 2.5.1 (Model-theoretical Facts About Theories). Let T
be a X -theory, M be a set of X'-sentences and X be a X-sentence or a finite
set of X-sentences.

1. Let Taut = Cons(Q) (wrt. the signature X'), i.e. the set of all) -
tautologies. Then M Erqau X iff M E X.
2. 01 X iff =7 X.
3. Suppose T = Cons(Ax) for some Ax C CPF(X). Then the following are
equivalent:
a) M UX is T-unsatisfiable (cf. Definition 2.2.6).
b) M =7 X.
¢) MUT = X.
d MUAz E X.
e) M UAzUX is unsatisfiable.

Item 1 shows that logical consequenceship without theories is a special case of
the theory-version. Item 2 shows that validity is defined as expected. Ttem 3(a)
shows that proving consequenceship can be reduced to proving unsatisfiabil-
ity. Items 3(a)—(e) show how theory-reasoning can be reduced to non-theory
reasoning.

46 2. Logical Background

Proof. 1. M Ereu X
if MUQEX (byitem 3, equivalence (a)-(c))
iff ME X.

2.] |=T X

iff for every T-interpretation Z: 7 |= (§ implies Z = X
iff for every T-interpretation Z: Z | X (Z = 0 is vacuously true)
it ErX.

3. “(a) iff (b)”:
M U X is T-unsatisfiable
iff for every T-interpretation Z: 7
iff for every T-interpretation Z: 7
iff for every T-interpretation Z: 7
iff for every T-interpretation Z: 7
(by definition of “7”).
if MErX.

3. “(b) iff (c)”:
MEr X
iff for every T-interpretation Z: 7 |= M implies 7 = X
iff for every interpretation Z: 7 |= T implies (Z = M implies 7 = X)
(by definition of T-interpretation)
iff ~for every interpretation Z: (Z = 7 and Z |= M) implies 7 = X))
iff for every interpretation Z: Z | 7 U M implies 7 |= X
iff TUM X (by Corollary 2.3.3).

3. “(c) iff (d)”: First we need the following fact: for every interpretation Z:

M U X) = false

M) = false or Z(X) = false

M) = true implies Z(X) = false
M) = true implies Z(X) = true

A~~~ o~

IETUMIfTE Az UM .

Proof of fact: “=": Suppose, to the contrary, that Z = TUM but Z £ AzUM.
Then by Lemma 2.3.1.4 it holds Z(AxzU M) = false which means (1) Z(M) =
false or (2) Z(Axz) = false. Since Z = T U M is given, (1) is impossible.
Hence (2) holds. But then, by Lemma 2.5.2, Z(Cons(Az)) = false. With
Cons(Az) = T given, this is equivalent to Z(7) = false. On the other side,
from Z = T U M as given we conclude Z(7) = true which is a contradiction.
Hence the assumption must have been wrong, and thus the “="-direction
holds. The “«<”-direction is proved analogously.
Now we can prove the equivalence “(c) iff (d)”:
TUMEX

iff for every interpretation Z: 7 |= 7 U M implies 7 |= X

iff for every interpretation Z: Z = Az U M implies Z | X (by the fact)

if AzUM = X (by Corollary 2.3.3).

3. “(d) iff (e)”: immediate from Corollary 2.3.3.

For later use we need the following lemma:

2.5 Theories 47

Lemma 2.5.3 (Instantiation lemma). Let M be a set of X-sentences, F'
be a quantifier free X-formula and v be a substitution. Then M =1 VF
implies M |=7 Y(F'y), where VG denotes the universal closure of formula G.

Proof. Suppose, to the contrary, that M =7 VF but M 7 V(F7). Hence,
by Def. 2.3.1, Def. 2.3.2 and Convention 2.3.2), for some 7-model Z for M
and some ay, ... ,a, € |Z| we find Zjz, 4., 2, a,](F7) = false.

The substitution v can be written as

’y:{yl <_t17-"7ym<_tm} .

Let b; = T[3,«q,,... ,zn+an](ti)- Using induction over n and the structure of F’
and the term structure of ¢;, it can be shown that

I[a:ﬂ—al,...,zn(—an](F’Y) = I[:cu—m,...,zn<—an,y1<—b1,...,ym<—bm](F) .

~ 7

7

That is, we now have a T-interpretation Z', which is still a 7-model for M
such that Z'(F) = false. This, however, contradicts the given assumption
that M =7 VF.

Next we turn to a theory-version of Herbrand’s theorem (Theorem 2.4.3).

Theorem 2.5.2 (Skolem-Herbrand-Lowenheim Theorem). Let T be
a universal X-theory. A clause set M over the signature X is T -X -unsatisfiable
if and only if some finite set M' of ground instances of clauses from M is
T -X-unsatisfiable.

Proof. Proof idea: due to Proposition 2.5.1 and the condition that 7 be a
universal theory the theorem can be reduced to its non-theory version.

For the proof we recall first that 7 being universal means that a set
Az C CPF(X) of universal sentences existssuch that Cons(Az) = 7. By the
algorithm sketched in Section 2.4.1 every member of Az can be converted
into clause form. Let Azc be the set resulting from this transformation.
It is most important to note that Az is universal, which implies that this
transformation does not introduce new Skolem functions. Thus Az is still a
set of Y-sentences, and furthermore, as a property of this transformation it
holds that Az and Azc are logically equivalent wrt. X-interpretations (the
transformation only has to express all connectives in terms of A and V).

Using the set-notation for clauses, Az is a set of set of clauses. In order
to convert Az into a logical equivalent clause set C' we define

C= U c .
c€Azc

It is easy to see that C' and Az are logically equivalent. This comes from
the fact that both, the members of Az¢ and the clauses in every clause set
¢ € Az are connected by “and”.

48 2. Logical Background

Thus, in sum, we conclude that Az is logical equivalent to C' wrt. X-in-
terpretations and turn to the proof of the theorem:
M is T-X-unsatisfiable
iff M U Az is Y-unsatisfiable
(by Proposition 2.5.1.3, equivalence (a)—(e), setting X = @) there)
iff M UC is Y-unsatisfiable (by the above)
iff M'UC'is Y-unsatisfiable
where M' and C" are finite sets of ground instances
(wrt. X) of clauses from M and C, respectively (by Theorem 2.4.3)
iff M'UC is X-unsatisfiable (by Theorem 2.4.3 again)
iff M'U Az is Y-unsatisfiable (by the above)
iff M'is T-X-unsatisfiable
(by Proposition 2.5.1.3, equivalence (a)—(e), setting X = @) there)

In order to see the demand that 7 is a universal theory, consider e.g. the non-
universal theory 7 which is axiomatized by X = {3z P(z)}. Assume that X
contains a single constant symbol a. Then the clause set M = {Vy -P(y)}
clearly is X-unsatisfiable (because for every T -X-interpretation we must have
Zp(t) = true for some t € |Z|, and this serves as a counterexample for
{Vy =P(y)}). On the other hand, there is only one possibility to get a set
M’ of ground instances of clauses from M, namely M' = {-~P(a)}. However,
M' is not T-X-unsatisfiable because one can easily think of a T -interpretation
which satisfies M’ (take e.g. |Z| = {0,1}, Zp = (Az.z = 0), Zp(a) = 1).

The problem here is, informally, that in building ground instances we do
not have the skolem function symbols at our disposal, which would allow to
access the term whose existence is claimed in the theory.

In order to generalize the theorem to non-universal theories one would
have to take ground instances wrt. a signature X' which is obtained from
Y by adding the Skolem functions coming in by Skolemizing the theories’
axioms Azx.

3. Tableau Model Elimination

Model elimination [Loveland, 1968] is a calculus, which is the base of numer-
ous proof procedures for first order deduction. There are high speed theorem
provers, like METEOR [Astrachan and Stickel, 1992] or SETHEO [Letz et
al., 1992]. The implementation of model elimination provers can take advan-
tage of techniques developed for Prolog. For instance, SETHEO compiles the
input clause set into a generalized WAM architecture. Stickel’s Prolog tech-
nology theorem proving system (PTTP, [Stickel, 1988]) uses Horn clauses
as an intermediate language, which can even be processed by conventional
Prolog systems [Stickel, 1989)].

Such implementational aspects are dealt with in Chapter 6. The purpose
of the present chapter is to introduce the data structures and operations of
model elimination more abstractly, and to describe some of the basic prop-
erties of model elimination calculi. This will serve us as a basis for the sub-
sequent theory-extensions in Chapter 4.

As a starting point we use a model elimination calculus that differs from
the original one presented in [Loveland, 1968; Loveland, 1978]; it is described
in [Letz et al., 1992] as the base for the prover SETHEO. In [Baumgartner
and Furbach, 1993] this calculus is discussed in detail by presenting it in
a consolution style [Eder, 1991] and comparing it to various other calculi.
In [Baumgartner and Furbach, 1994a] a variant (“restart model elimination”)
exhibiting a totally different search space was defined.

3.1 Clausal Tableaux

The most intuitive way to introduce model elimination is to think of it as a
procedure for manipulating trees in the style of semantic tableaux [Smullyan,
1968].

Definition 3.1.1 (Literal Tree, Branch, etc.). A literal tree (for a given
signature) is a pair (t,\) consisting of a finite, ordered tree t and a labeling
function X, which assigns a literal to every non-root node of t.

A branch (of length n, of a given tableau T') is a sequence Ny - Ny --- Ny,
(n > 0) of nodes in T (written, as indicated, by separating its elements by
“”) such that Ng is the root of T, N; is the immediate predecessor of Ni1

50 3. Tableau Model Elimination

for 0<i<n, and N, is a leaf of T. The function Leaf (b) gives the label of
the leaf of a branch with length n > 0, i.e. Leaf(Ng--- Ny) = MNy)

The branch literal sequence of branch b = Ny - - - N, is the literal sequence
Litseq(b) = A(N1) -+ - M(Ny,), and the branch literals of b is the set Lit(b) =

We want the fact that a branch contains a contradiction to be immediately
reckognizable. For this purpose we allow a branch to be labeled as either open
or closed. A literal tree is closed if each of its branches is closed, otherwise
1t 1s open.

If 6 is a substitution, then T'6 denotes the literal tree which is obtained
from literal tree T' by application of § to the labels of all nodes of T'. That is,
if T = (t,\) then Td = (t,\'), where N'(N) = (A(N))d for every node N in
T.

Equality on literal trees is defined as follows: First define Ty C Ty iff
for every branch by in Ty a branch by in T> exists such that Litseq(by) =
Litseq(by) and by is closed iff ba is closed. Then define Ty = To iff Th C Tn
and T2 g T1 .

Model elimination can be thought of as a calculus which constructs tableaux
which “contain” clauses in the following sense:

Definition 3.1.2 (Clausal Tableaux, ME Tableaux). [Letzet al., 1992/
The successor sequence of a node N in an ordered tree t is the sequence of
nodes with immediate predecessor N, in the order given by t.

A (clausal) tableau T for a set of clauses M is a literal tree (t, \) in which,
for every maximal successor sequence Ni,...,N, in t labeled with literals
Ky,..., K,, respectively, there is a substitution o and a clause L1V ---V L, €
M with K; = Lo for every 1 < i <mn. Ky V---V K, is called a tableau
clause and the elements of a tableau clause are called tableau literals.

A tableau is called a model elimination tableau (ME tableau) iff each
inner node N, except the root node, has a leaf node N' among its immediate
successor nodes such that A\(N) = M(N'). This condition is called the link
condition.

It is widely used jargon to call a pair of literals which can be made com-
plementary by some substitution a connection.

By the previous definition ME tableaux are introduced as static objects. We
wish to construct such tableaux in a systematic way. This is accomplished by,
for instance, the model elimination calculus. In order to preview the calculus
with a simple example consider the clause set

{p. ek {-P.Q} {-Q, P}, {-P,-Q}},

Since this clause set is unsatisfiable, model elimination should be able to find
a proof (also called a refutation). Such a refutation is depicted in Figure 3.1.
It is obtained by successive fanning with clauses from the input set, until
every branch of the resulting tableau is closed.

3.1 Clausal Tableaux 51

T T

_|P R _|Q R

P -Q \ Q -P N

* /\ * /\ |
Q P P Q

\

|
I
1
1
I

1
1
1

* * * *

1
1

Figure 3.1. A closed model elimination tableau.

In an initialization step some input clause is taken and fanned below the
root node. Subsequent fanning with a new clause below the leaf of a so far
constructed tableau is called an extension step. In an extension step one has
to obey the condition that the (former) leaf is complementary to one of the
newly fanned literals, and the branch ending in this literal is marked with a
“x” as closed. By this restriction, the link condition stated in Definition 3.1.2
is realized.

In the non-ground case employing a (most general) unifier in order to
establish the complementary pair is allowed; the unifier then is applied to
the whole resulting tableau.

Besides the “extension step” it might be necessary to use another inference
rule, called the “reduction step”: a reduction step allows to close a branch
(i.e. to mark it as “closed”) due to an inner literal that is complementary to
the leaf literal (again, possibly by application of some substitution).

The reader familiar with the tableau literature will notice that Definition
3.1.1 differs with respect to the notion of a “closed branch” from the standard
definition. The standard definition says that a branch b is closed iff it contains
a complementary pair of literals, i.e. For instance, iff L € b and L € b, for
some literal L.

However, this condition is not suitable to lift to theory reasoning, be-
cause then we would have to say that a branch is closed iff its literals are
T-complementary (cf. Definition 4.2.2). However, as opposed to syntactical
complementarity, 7-complementarity is a semantical property and in general
is undecidable (see Note 4.2.2). As a consequence, it could not be decided if
a given tableau is closed or open, which clearly is highly undesirable. There-
fore, we decided to deviate from the standard definition, and to distinguish
between the mere presence of a T-complementary branch and the detection
of its T-complementarity by marking it as closed.

52 3. Tableau Model Elimination

Note 8.1.1 (Link Condition and Proof Confluence.). It must be emphasized
that the presence of the link condition is a central property for model
elimination: if the link condition is not present, then any literal along the
branch (or even none) can be used to establish the connection. This free-
dom guarantees the property of proof confluence [Bibel, 1987; Letz, 1993],
which has the important consequence that every tableau derived so far
can be continued to a refutation, if one exists at all. The resulting cal-
culus is best called a connection calculus (cf. Def. 3.2.3 below) due to
the striking similarities with the connection calculi defined in [Bibel, 1987;
Eder, 1992]. Proof confluent calculi are attractive because of the possibility
to design proof procedures without backtracking over the generated tableaux.

On the other hand, when the link condition is present, proof confluence is
lost, but the local search space is smaller. With regard to a proof procedure,
the link condition allows us to guide the search for an extending clause around
the leaf literal (for instance, by term indexing the inference rules); in this
case, efficient implementations can be built on top of PROLOG by means
of the PTTP-technique (Prolog Technology Theorem Proving, [Stickel, 1989;
Stickel, 1990a], see also Chapter 6).

This note should not imply that one approach is necessarily superior to
the other. Instead, the purpose is to point out that a small change in the
calculus definition may have dramatic impacts on its properties. A more
detailed comparison between these calculi variants, also taking resolution
into account is contained in [Baumgartner and Furbach, 1993].

3.2 Inference Rules and Derivations

We are going to formally define the inference rules of model elimination next.
Due to the variety of calculi treated in this text, we find it advantageous to
use an economical notation for literal trees, namely branch sets, and define
calculi inference rules as transformations of these.

Definition 3.2.1 (Representation of Tableaux). Let T = (t,\) be a
tableau. The branch representation of T' is the triple (B, \,0), where B =
{p | p is a branch of t} is the branch set of T' and o is an ordering function,
mapping any mazimal subset S, = {q-N1,...,q-N,} C B to a sequence of
nodes, such that o(Sq) = Ni,...,Np iff N1,..., Ny is a mazimal successor
sequence of T. In other words, o reflects the order of the nodes in T .

Let T be a tableau with branch representation (B,)\, 0). In the sequel we
will most often identify T with (B, A\, o), or even with B alone, and let A and o
be implicitly given. Branch sets are typically denoted by the letters P, Q,. ...

We find it convenient to write T = (P, Q) and mean that B = P U Q
(disjoint union is intended here). Similarly, (p, Q) means ({p}, Q), where
p is a branch. Going further, we allow a branch Ng - Ny---N, € B to be
represented by the literal sequence Li---L,, with the understanding that

3.2 Inference Rules and Derivations 53

A(Ny)---AX(N,) = Ly---Ly. Also mized forms are acceptable, as in Ny -
Ny---Np_y-Ly.

For better readability we will supply brackets around branches, as in
[Ly---Ly], [p-q] (the branch to be obtained by appending node sequences
p and q) or [p- L]. We adopt the convention that “[p]” means a branch in a
tableau, whereas “p” means the literal multiset of its labels.

In order to indicate that a branch is closed, we will append a “x7” to it,
as in [Ly -+ Ly)x. If no “x” is present, the branch is open.

In order to define extension steps in a convenient way, we define the
extension of branch p with clause C, [p]o C as an abbreviation for the branch
set {[p-L) | L € C}. That is, (P, poC) is the branch set PU{[p-L] | L € C}
and if C is the empty clause O, then (P, po C) =P.

Note that the lengthening of branch p in tableau T by |C| new successor nodes
and labeling them with the literals from C, respectively, can be rephrased in
branch set notation by saying that tableau (p o C), Q is obtained from T =
(p, Q)- It is obvious that the new tableau (poC, Q) exists (more precisely: that
a tableau corresponding to the suggested branch set representation exists),
provided that a tableau corresponding to T exists and that new nodes (wrt.
T) for the extension are used, which further are pairwise disjoint and the
ordering function o is defined to reflect the required ordering. We will take it
for granted that the tableau described below by branch sets always exists.

Definition 3.2.2 (Tableau Inference Rule). 4 (tableau) inference rule
1S an exrpression
P Ci -+ Cy
’PI

N

where N is the name of the inference rule, P,P' are schematic expressions
standing for branch sets (for some tableaw), and Ci,...,C, (n > 0) are
schematic expressions standing for clauses; Inference rules are possibly con-
strained by some further informally stated conditions. We say that branch set
P! is obtained from branch set P and a multiset of clauses {C4,... ,Cn} by
an N-step, written as an N-inference

P Fycy,... .Cab 24

iff P, C1,...,Cn and P' are instances of the respective components P,
Ci,...,Cpn and P' of the inference rule N and the given constraints hold.
Below we will further decorate the ‘+”-relation suitably in order to make
more relevant constraint parameters explicit.

A calculus N consists of a set of inference rules.

As an example consider model elimination:

Definition 3.2.3 (Model Elimination, Connection Calculus). The in-
ference rules extension step and reduction step (ME-Ext, Red) are defined as
follows:

54 3. Tableau Model Elimination

Extension Step:
[p- K], Q LVR

(p-K-Lx, [p-K]oR, Qo

ME-Ext

where o is a unifier for K and L, i.e. Ko = Lo

(Characterizing property for ME-Ext, “link condition”)

Reduction Step:

[pK],Q
([p- K]x, Q)o

where o is a substitution such that Ko = Lo for some L € p.

The calculus model elimination (ME) consists of the inference rules ME-Ext
and Red.

The inference rule CC-Ext (“CC” standing for “Connection Calculus”) is
defined as ME-Ext, except that instead of the branch expression [p - K| the
branch expression [p- K - p'] is used. That is, the link condition is weakened
to allow a connection to any ancestor literal of K. The connection calculus
(CC)! consists of the inference rules CC-Ext and Red.

Thus, ME-Ext derives from a branch set and a given clause a new branch set
by unifying the leaf of the selected branch p with some literal L from the
given clause. For instance, from (singleton) branch set [Q(z,y) - P(z)] and
clause =P(f(z)) V R(z) derive (using o = {z < f(z)}) the branch set

[Q(f(2),y) - P(£(2)) - ~P(f(2))]%, [Q(f(2),y) - P(f(2)) - R(2)] -

Notice that the substitution ¢ is applied to the whole branch set; this must be
done for soundness reasons. The link condition for ME tableaux is achieved
by a respective condition in the ME-Ext inference rule. Deviating from that,
CC allows a connection from the extending clause into any branch literal.

It is easily verified that the CC and ME inference rules transform clausal
tableaux into clausal tableaux (and not just literal trees). Further note that
closed branches are neither extended nor reduced.

In both ME-Ext and Red the substitution ¢ is a unifier for the involved lit-
erals (cf. Definition 2.4.5). As for the resolution calculus, it suffices to restrict
to most general unifiers. This (well-known) result will also be obtained as an
instance of a more general result of the theory version of model elimination.

1 As it is used in this text; our formulation is close to the one in [Eder, 1992].

3.2 Inference Rules and Derivations 55

It remains to define derivations; as with inference rules, we prefer to give
a “reusable” definition which also applies for the theory reasoning variants.
Fortunately, all model elimination inference rules follow a certain schema,
which can also be fixed now:

Definition 3.2.4 (Derivation, Refutation). Let N be a calculus. Sup-
pose that all inference rules of N are of the form
[P]:Q LIVRI"'LnVRn
(Q, Q)

In order to make p and o explicit, we will write N -inferences (cf. Defini-
tion 3.2.2) as

([p]a Q) l_[p],tr,E (Qla Q)O’ .

The branch p is called the selected branch, the clauses E = {L1VR;,... ,L,V
R} are called extending clauses and each literal L; (i € {1,...,n}) is called
extending literal; the R;s are called rest clauses and their literals are referred
to as rest literals. In branch [p - L], the literals of p are also referred to by
the term ancestor literals (or ancestor nodes, or ancestor context). As a
convenience we allow to omit o in the index of F if o = €.

A N derivation of a branch set P, from a clause set M (called input
clause set) with length n is a sequence (n > 1)

Pr I_[171]7<71,E'1 Py - 'Pn—l }_[pn—l]ya-n—lqEn—l Pn

such that the following holds:

1. Py =[L1),...,[Lwm], where L1V---VL,, € M, i.e. P1 is a clausal tableau
(in branch set notation) with tableaw clause Ly V ---V L,,. The clause
Ly V---V Ly, is also called the start clause in this context, and Py is also
called the initial branch set of the derivation.

2. Fori = 2...n, Pi1 Fpi_i)oio1,Bi: Pi for some inference rule from
N. Eurther, the extending clauses E; each are new and pairwise variable
disjoint variants of clauses from M.

The combined substitution oy ---opn_1 s referred to as the substitution com-
puted by the N derivation. If n = 1 then the computed substitution is defined
to be the “empty” substitution €.
A N refutation of M is a derivation of the form just defined where P, is
a closed tableau, i.e. a branch set where every branch is marked as closed.
Calculus N is refutationally complete iff for every minimal T -unsatisfiable
clause set M there exists a N refutation.

The need to take new variants along a derivation is obvious, because otherwise
extension steps might not be applicable due to coincidence of variable names,
preventing unification succeeding.

56 3. Tableau Model Elimination

In order to get familiar with this definition we give in Figure 3.2 a refu-
tation corresponding to the ME tableaux in Figure 3.1; the start clause is
PV -Q:

Open branches Closed branches
[ﬁp]a [_'Q]
| eztension of [~P] with clause PV —Q
[-P-Q], [-Q] [~PP]x
1 extension of ["P-Q] with clause Q V P
[-P-QP], [-Q] [-PP]x, [-P-QQ]x
| reduction of ["P-QP]
(-@Q] [~PP]x, [-P-QQ]x, [-P-QP]x
1 extension of [~Q] with clause Q V ~P
[_‘Q_'P] [_'PP]X, [—|P—|QQ]><, [—|P—|QP]><, [_'QQ]X
| estension of [-Q—P] with clause PV Q
[-Q-PQ] [-PP]x, [2P=QQ]x, [P-QP]X, [-QQ]x,
[—|Q—|PP]X

1 reduction of [-Q-PQ)]

[~PP]x, [P-QQ]X, [-P-QP]x, [-QQ]x,
[—|Q—|PP] X [ﬁQ—!PQ]X

Figure 3.2. A ME refutation corresponding to the tableau in Figure 3.1.

ME and Resolution

There is a close relationship between ME and resolution. More precisely, each
ME derivation can be mapped stepwise into a linear resolution [Loveland,
1970] derivation. In this mapping, extension steps correspond to resolution
steps of the current clause and an input clause, and reduction steps corre-
spond to ancestor resolution steps. This was observed already in [Loveland,
1978], and a rigorous proof was given in [Baumgartner and Furbach, 1993):

Theorem 3.2.1 (Resolution Simulates ME). [Baumgartner and Fur-
bach, 1993] Let M be a clause set and let Py &= - -- - P, be a ME refutation of
M such that in every branch set P; (i = 1...n—1) a longest branch is selected.
Then a resolution® derivation (Cy, ... ,Cy), for some k < n, from M and a
substitution vy exists such that Cy C O(Pr), where O(P) ={K | [p-K] € Q}
is the set of “open leaves” in branch set P.

% see [Chang and Lee, 1973] for a definition of “resolution”.

3.2 Inference Rules and Derivations 57

3.2.1 Answers

In the introduction, theory reasoning was motivated by a problem solving ap-
plication, the eight queens problem. Of course, when formulated in predicate
logic and fed into a theorem prover the bare fact that a refutation is found
is rather useless. Instead, one would prefer an answer to the problem, i.e.
a description of the solution. Further, the answer should be meaningful and
exclude trivial cases (“queen i is on field 1 or on field 2 or ... or on field 64”).

We will thus extend the framework defined so far by the possibility to
compute answer substitutions.

Definition 3.2.5 (Program, Query, Answers, Answer Completeness).
A program P is a T -satisfiable set of clauses. A query (over given signature
XY') is an expression < Q, where Q is a conjunction of literals; a query < Q
is identified with the clause Ly V ---V Ly, where Q = Ly A--- A L,.

If &y,. .., P, are substitutions for Var(< Q) then the set {Q®P1,... ,QPn}
is called an answer (for < Q); in case m = 1 it is called a definite answer.
An answer is called a correct answer for program P and query + @ iff

PErV(Q®, V-V QPy).

Now let P be a program, <+ Q be a query and let D be a N refutation of
P U {«+ Q} with start clause < Q. Let D be written as

D = (P1 Fipylior,r P2 Pt Fipu_ilion_1,Ba1 Pn)-
Define
n—1
Answer(D) = {Qo1-+-0pn—1} U U Queries(E;)o; - - - 01, where
i=1

Queries(E) = {Q" | « Q' € E and + Q' is a variant of + Q}

The set Answer(D) collects the instances of (the variants of) the literals of
the query < @ used along D. The first element stems from the usage as start
clause, while the other elements stem from the usage as extending clauses.

D will also be called an N refutation of P and < @ with computed answer
Answer (D).

Calculus N is answer complete iff for every correct answer {Q®1, ... , QP }
for program P and query + Q an N refutation of P and < Q exists with
computed answer {Q1, ... ,Qi} such that the latter subsumes the former, i.e.

{Q1,.-.,Qi}d C{QP1,...,QP,}, for some substitution .

Unfortunately we cannot demand that [< m. For instance, it might be
that {P(a), P(b)} is a correct answer, but the shortest computed answer is

{P(z), P(y), P(b)}.

58 3. Tableau Model Elimination

Computing answers is more difficult than refutational theorem proving.
This was demonstrated in [Baumgartner et al., 1995] using puzzle examples.
The additional complexity comes in by refusing to accept non most-general
answers. For instance, in the mentioned puzzle domain, there is a case where
only a definite answer is meaningful, but hard to find, whereas a trivial
answer, showing that the problem has a solution, is discovered very early in
the proof search.

Answer completeness implies refutational completeness (but not neces-
sarily vice versa), because a successful answer computation for P and + @
serves as a proof of the T-unsatisfiability of P U {+ Q}. Hence we will give
answer completeness results for our calculi below.

3.2.2 Clausal Tableaux vs. Branch Sets

This section discusses the usage of various data structures available for model
elimination.

Note 3.2.1 (Loveland’s Model Elimination). The original model elimination
calculus [Loveland, 1968; Loveland, 1978] uses chains as the primary data
structure. A chain is a finite sequence of literals a1 b; - - - apb, where each q;
stands for a sequence of literals written in brackets, i.e. a; = [a; 1] - - [@i.k;],
and each b; stands for a sequence of literals b; = [bs1]- - - [bi;;]- The chains
used in Loveland’s ME can be simulated by certain literal trees where every
inner node lies on one single branch of the tableau, and the closed branches
are omitted. Figure 3.3 gives an idea of the transformation (see [Baumgartner
and Furbach, 1993] for a more detailed treatment).

In our terminology, Loveland’s model elimination is fixed to a computa-
tion rule where always some longest branch in the current tableau is selected
for an extension or reduction step. In fact, the possibility to use any longest
branch is mirrored by using ordering rules for extension clauses. Since we
want to allow maximal flexibility in the construction of a refutation (cf. the
independence of the computation rule in Section 3.3 below) and for ease of
presentation we will dispense with the chain notation and formulate our cal-
culi within a tableau setting.

In [Baumgartner and Furbach, 1993] we related several calculi (resolu-
tion, connection calculi, variants of model elimination) using the framework
of consolution [Eder, 1992]. The primary data structure of the consolution
calculus are multisets of branches, where a branch is a sequence of literals. As
done in [Baumgartner and Furbach, 1993], it is straightforward to rephrase
tableau model elimination within such a branch-set setting3. In order to do

8 More precisely, the branch sets in [Baumgartner and Furbach, 1993] encode the
open branches of a corresponding ME tableau; the closing of a branch in the
tableau framework corresponds to branch deletion in the branch setting. In order
to get a more restricted calculus (cf. Section 3.3) and for our purposes of theory

3.2 Inference Rules and Derivations 59

@@/4

a1

2

¥V

d oo,

Chain a1 b; - - - a,b,, transforms to:

<293
,

A

<--b, =

Figure 3.3. Mapping of chains to literal trees.

so, and as carried out in Definition 3.2.1, we think of a tableau as given
as the set {b1,... ,bn} of all of its branches. Obviously, with respect to la-
bels, {b1,...,bn} is isomorphic to the multiset {Litseq(b1),... , Litseq(b,)}
of literal sequences. Then, the inference rules of model elimination are to be
defined as transformations on such branch multisets, in such a way that the
resulting branch sets are isomorphic to the tableau resulting in the tableau-
setting. Such a presentation for the case of theory model elimination was
given in [Baumgartner, 1994].

Note the subtle difference to the approach as introduced above, where due
to notational conventions we can write {[L{---L}],... ,[L7--- L™]} and
mean a tableau T, represented as a branch set {[N{ --- N}],... | [Nj*--- N7]}
with attached labeling function A(N}) = L%. In contrast to that, the branch
multiset approach dispenses with trees and labeling functions. That is, T
would be represented as {[Li --- Ly,],... ,[L{*--- L7 1}.

Since both approaches are easily shown to be equivalent, the question
arises which one to prefer. On the one hand, the tableau view is clearly the
more “natural” one, due to its graphical presentation and long tradition of
tableau calculi. On the other hand, in my opinion, the branch set notation is
more suited for formal proofs.

Fortunately, as the discussion should have revealed, there is no need to
stick to one view and to dispense with the other one. Instead, the inference
rules can always be given either interpretation. For matters of presentation,

reasoning, however, it turned out to be most advantageous to keep the closed
branches explicitly.

60 3. Tableau Model Elimination

we will most times use the tableau view, and for the formal proofs (in Ap-
pendiz A) we will use the branch set view.

3.3 Improvements

When experimenting with practical implementations, such as the PROTEIN
system (Chapter 6), it soon becomes obvious that certain improvements are
absolutely essential. We will briefly introduce the three most important ones
(“Independence of the computation rule”, “Regularity”, “Factorization”). All
of them are widely used in model elimination based theorem proving (cf. [As-
trachan and Stickel, 1992; Letz et al., 1994]). Other useful improvements not
covered here are caching/lemmaizing [Astrachan and Stickel, 1992] and fold-
ing up/folding down [Letz et al., 1994]. The latter generalizes factorization.
In [Baumgartner and Briining, 1997] it is shown how “subsumption” (see e.g.
[Chang and Lee, 1973]) can be used for model elimination tableaux, thereby
generalizing the regularity restriction.

3.3.1 Independence of the Computation Rule

So far, the ME-Ext- and Red-inference rules operate on some selected branch.
This would mean for implementations that choosing the selected branch is
subject to backtracking. Clearly we would like to avoid this if possible. Indeed
we have a free choice regarding the selected branch. As a further advantage
of such a result, the selected branch can be chosen heuristically. Occasionally,
factoring can be applied more successfully (see [Letz et al., 1994]) if such a
“subgoal reordering” is allowed.

For the case of non-theory model elimination this was shown in [Letz,
1993], and the generalization to theory reasoning will be shown below. In
order to formalize this, we borrow the notion of “computation rule” from
logic programming ([Lloyd, 1987)):

Definition 3.3.1 (Computation Rule). A computation rule is a function
¢ which maps a tableau to one of its open branches. Thus a computation
rule can be used in derivations to determine the selected branch for the next
inference step; we say that o derivation is o derivation via c iff the selected
branch in every of its inference steps is determined by c.

For example, if a Prolog-like computation rule is desired, then always the
leftmost (open) branch is to be selected.

As noted above, we would like to allow any computation rule for deriva-
tions. In other words, we are interested in a “strong” completeness result
which says that any computation rule yields a complete calculus. The formal
statement of this independence of the computation rule requires concepts not
yet introduced; it is to be found in the appendix (Proposition A.1.3).

3.3 Improvements 61

3.3.2 Regularity

The regularity check for tableau ME says that it is never necessary to con-
struct a tableau where a literal occurs twice (or even more often) along a
branch. Expressed operationally, it says that it is never necessary to repeat
in a derivation a previously derived subgoal (viewing open leaves as sub-
goals). For a semantic interpretation take the view that a branch constitutes
a partial model, and any clause containing a literal from the branch would
be satisfied by this interpretation. Hence this clause need not be considered
for “eliminating” the interpretation given by the branch.

A nice property of regularity is that it constitutes the base for a decision
procedure for propositional logic. Regularity is easy to implement (at least
approximative) and it is one of the more effective restrictions for model elim-
ination procedures. Our practical experiments (Section 6) strongly support
this claim for the case of theory reasoning.

Hence we define:

Definition 3.3.2 (Regularity). A branch is called regular iff all the liter-
als occurring in it are pairwise distinct (i.e. the branch contains no duplicate
literals). A branch set is regular iff each of its branches is reqular. A deriva-
tion (in any version defined so far and below, except partial theory restart
model elimination in Section 4.6) is called regular iff every branch set of the
derivation is regqular.

Recall from the definition, that ME keeps the closed branches (i.e. they are
not removed). This is a difference to the branch set oriented calculi of e.g.
[Eder, 1992] and [Baumgartner and Furbach, 1993] where closed branches
are deleted. Also in [Loveland, 1978], in our terminology, closed branches are
no longer considered. However, if closed branches are kept, they are subject
to the regularity check. In sum, the definition of regularity implies that in
a regular derivation every closed branch remains regular even after further
instantiation.

Regularity is a further restriction of the “equal ancestor check” found
occasionally, which means regularity only with respect to open branches.
Unfortunately, regularity is sometimes too restrictive and is not compatible
with some other refinements. For instance, [Letz et al., 1994] report on an
incompatibility between their enforced folding up rule (a kind of generalized
factorization) with “strong” regularity and arbitrary computation rules.

For later use we state the following:

Proposition 3.3.1. Let [p] be a branch and 01, ... ,0, be substitutions, and
suppose that [poy - -- oy is regular. Then also any prefix [poy---om] (0 <
m < n) is reqular.

Proof. Suppose, to the contrary, [poy - - - o] is not regular for some m. This
means that p contains literals L; and Ly such that Lioy - - -0y, = Looy -+ - 0.
Since substitutions are functions, then also

62 3. Tableau Model Elimination

Lioy - 0mOmt1 - - 0n = Lao1 - OmOmy1 - -0 -

Hence [po; - - - 0] is not regular either, which plainly contradicts the assump-
tion.

3.3.3 Factorization

The well-known factorization inference rule in resolution calculi can be
adapted to model elimination. In the tableau setting of model elimination,
factorization allows us to close a branch, say with leaf literal L, if some
brother node of an ancestor node of L, say K, is unifiable with L. The unifier
is applied to the resulting tableau. In our notation this reads as follows:

l¢-p-L],[q-K],Q
(lg-p- L]x,[g- K], Q)o

Fact

where ¢ is a unifier for L and K.

It is important to note that [¢ - K] is an open branch. This is a sufficient
criterion in order to avoid mutually dependent closing of branches using fac-
torization, which would destroy soundness (see [Letz et al., 1994] for a detailed
discussion).

Adding Fact to the set of inference rules of ME trivially preserves com-
pleteness, because Fact need not be used in a refutation. Being thus an op-
tional* inference rule, Fact increases the local search space. Nethertheless, it
can be advantageous to employ Fact because it may shorten refutations con-
siderably. To see this, notice that there is no need to search for a refutation
of the branch closed by the Fact rule.

An interesting special case is ¢ = €. Thus, L and K are identical. Let us
call such steps weak factorization steps. It can be required that in derivations
weak factorization steps are applied whenever possible. Completeness is pre-
served, because this strategy can be expressed as a special computation rule,
namely one which always selects [¢- K] (in terms of the inference rule above)
in favor of [¢-p- K].

In implementations it is essential to employ this rule, as it neither in-
creases the local search space nor requires longer refutations.

Factorization for model elimination is due to Loveland (see [Loveland,
1978]). In fact, Loveland’s weak model elimination calculus includes the weak
factorization rule and its mandatory application in derivations; his non-weak
version also contains the factorization rule.

* Recall that in resolution calculi factorization is a mandatory inference rule.

3.3 Improvements 63

3.3.4 Reduction Steps

Since reduction steps introduce additional non-determinism in proof proce-
dures, it would be useful to have a criterion to avoid unnecessary reduction
steps. A trivial result is that reduction steps are unnecessary, because not
even possible, if the input set is a Horn clauses set and the start clause in the
tableau is negative (in any case, if an input set admits a refutation, it also
admits a refutation with purely negative clause).

The justifying observation is that along derivations only open branches
consisting entirely of negative literals are possible. Hence no complementary
literals can arise in an open branch, and so no reduction steps can be carried
out at all. In this case, model elimination behaves much like SLD-Resolution
(see [Lloyd, 1987]).

A non-trivial result obtained in [Antoniou and Langetepe, 1994] says that
reduction steps are unnecessary for Horn-input sets even if the start clause
is not a completely negative clause.

Some results are known for the non-Horn case: Plaisted [Plaisted, 1990]
introduced the positive refinement which states that only reduction steps back
to positive literals are needed. This result was refined later in [Baumgartner
and Briining, 1997] in that only reduction steps to positive literals stemming
from disjunctive clauses® are needed; notice that this result generalizes the
just-mentioned result in [Antoniou and Langetepe, 1994].

Another (well-known) improvement is obtained in analogy to weak fac-
torization steps as described below. The weak version of Red requires that
o be the empty substitution. As for weak factorization, it can be required
that weak Red steps are applied whenever possible. For the completeness, the
same argumentation is used.

This concludes our description of basic improvements. Due to their prac-
tical importance, we are interested in respective improvements for the theory
version of ME. Considerable effort will be necessary to achieve this, because
only the weak versions of factorization and reduction steps trivially lift to the
theory case (once the “independence of the computation rule” is established
for the theory version).

5 By a disjunctive clause we mean a clause which contains at least two positive
literals.

64 3. Tableau Model Elimination

4. Theory Reasoning in Connection Calculi

In this chapter general theory reasoning versions of a connection calculus
(CC) and model elimination (ME) will be introduced and gradually refined.
Here, the term “general” means that no special properties of a particular
theory is made use of. Instead, rather high-level principles for the interaction
between the foreground and the background calculi are employed.

The structure of this chapter is the following: we start with an overview
on basics of theory reasoning (Section 4.1). As a calculus we use here a simple
theory-version of a connection calculus. This calculus is then formalized in
Section 4.2. Tt will be discussed critically and refined to a first version of
theory model elimination (Section 4.3). Sections 4.4 and 4.5 then present
the most refined versions of a total and a partial variant of theory model
elimination, respectively. Finally, Section 4.6 deals with a variant of partial
theory model elimination which does not need contrapositives, i.e. which uses
only the positive literals of input clauses for extension steps. Figure 4.1 might
be helpful for orientation.

4.1 Basics of Theory Reasoning

The purpose of this section is to introduce a conceptually simple, preliminary
version of theory model elimination — a theory connection calculus — and
to discuss some basic properties of theory reasoning. It will be the basis for
more refined theory model elimination calculi.

As mentioned previously, theory reasoning is motivated by the possibility
of taking advantages of dedicated, efficient mechanisms for reasoning within
the given theory. We initiate a running example for this chapter which also
illustrates the advantages for theory reasoning.

Example 4.1.1 (Strict Orderings). Consider the following theory! SO of strict
orderings:

SO: Ve,y,zz<yAhy<z—ozx<z (Trans)
Yz -(r <z) . (Irref)

! We will often identify a theory with an aziom set for it.

66 4. Theory Reasoning in Connection Calculi

Total Theory Connection (Non-theory)
Method L —| Connection Method
TTCC, Def. 4.2.8 CC, Def. 3.2.3
Total Theory Connection (Non-theory)
Method w. Link Condition | | Model Elimination
TTCC-Link, Def. 4.2.4 ME, Def. 3.2.8

total version

Theory Model Elimination,
Semantical Version

TME-Sem, Def. 4.3.2

Partial Theory Model Elimination,
Inference Rules based Version

PTME-I, Def. }.5.4

Total Theory Model Elimination,
Most General Set of Refuters
based Version

TTME-MSR, Def. 4.4.3

Horn case with
definite Theories

Partial Restart Theory Model
Elimination,
Inference Rules based Version

PRTME-I, Def. 4.6.3

Figure 4.1. “Weaker-than” relation between the calculi of Chapter 4. Calculus A
is weaker than calculus B (A — B) iff each inference step of calculus A is also an
inference step in calculus B. Dashed arrows indicate that the connected calculi are
the same in case of the empty theory. It is therefore the weakest variants which
will be proven complete, because their completeness implies the completeness of

the stronger variants.

4.1 Basics of Theory Reasoning 67

Now suppose the set of (ground) unit clauses M,
=(a; < ay), ay < ag,..., Gp 1< ay

to be given. It is easy to find a ME refutation of SO U M,,, starting with,
for instance, the goal clause —(a; < a,). Notice, however, that there are
infinitely many derivations, starting from —(a; < a,), even when using the
(Trans) clause alone: for any m > 1 there is a derivation of a tableau with
open branches ending in the leaves

—(ar <z1), —(z1 <z2), -+, “(Bmo1 <zm), —(zm <an) .

The situation is even worse if no refutation exists. For instance, if M’ =
My, \{a1 < a2} then an ME proof procedure will not terminate, although this
particular problem class is decidable. Clearly, such cases should be avoided;
theory reasoning offers a solution for it.

The idea of coupling a foreground calculus to a background calculus was for-
mulated in the context of connection calculi in [Bibel, 1982a]. The motivation
for doing so was to achieve a better structuring of knowledge. This was exem-
plified with a coupling of the connection calculus to database systems. The
explicit term theory reasoning seems to be introduced by Mark Stickel within
the general, non-linear resolution calculus [Stickel, 1985]. This paper also
contains a classification of theory reasoning, as well as completeness criteria.
Since then, theory reasoning was ported to many calculi. In [Baumgartner,
1992b] I showed that total theory resolution is compatible with ordering re-
strictions. Theory reasoning was defined for matrix methods in [Murray and
Rosenthal, 1987], for the connection graph calculus in [Ohlbach, 1987] and for
connection calculi in [Petermann, 1992). An improved version for semantic
tableaux is presented in [Beckert and Pape, 1996].

All these calculi are not goal-oriented and hence are essentially different
from model elimination, thus requiring new efforts for the model elimination
case. For model elimination a first theory-reasoning version is defined and
proven complete in [Baumgartner, 1992a]. Later I further refined it [Baum-
gartner, 1993; Baumgartner, 1994]. It is essentially this refinement which will
be discussed in detail in Sections 4.4, 4.5 and 4.6 below. Closely related to
our theory model elimination calculus is the theory connection calculus with
link condition in [Petermann, 1993a). We will discuss the differences as the
text proceeds and summarise the differences in Section 4.4.4.

68 4. Theory Reasoning in Connection Calculi

4.1.1 Total and Partial Theory Reasoning

According to [Stickel, 1985], theory reasoning comes in two variants: total
and partial theory reasoning?. Total theory reasoning lifts the idea of finding
syntactical complementary literals in inferences to a semantic level.

Total Theory Reasoning. Let us illustrate this general mechanism in the case
of the theory connection calculus. In essence, this requires only slight changes
in the definition “extension step”. Consider the left tableau in Figure 4.2
and the branch with leaf b < ¢. In order to carry out a theory extension
step additional literals have to be gathered to constitute a contradictory
set with respect to the theory. In the example, we select a < b from the
ancestor context and additional literals ¢ < d, d < e, e < a from input
clauses (given schematically in the middle of Figure 4.2). Then the whole set
{a<b b<c,c<d, d<e,e<al, called key set K in this context, is passed
to the background reasoner. The background reasoner in turn should discover
that the key set is contradictory in the given theory SO. To be more precise,
the background reasoner is supposed to return a substitution ¢ — called T-
refuter — such that Ko is T-complementary (cf. Def. 4.2.2), meaning that
the existential closure of Ko is T-unsatisfiable.

Finally, the remaining literals of the involved clauses are fanned below
the selected branch as new proof obligations, and the 7T-refuter o is ap-
plied to the resulting tableau (cf. the open branches in the right tableau
in Figure 4.2, o is the empty substitution in this case). Since the key set
{a<b, b<e ec<d, d<e, e<a} is contradictory, the branch containing it
(the leftmost branch in the right tableau in Figure 4.2) can be marked with
a “x” as closed.

Another theory, where this scheme can be used is decidable terminological
theories; in this case, a key set K is to be determined, and the background
reasoner has to find a 7T-refuter o such that the existential closure of Ko is
unsatisfiable wrt. the 7-Box (cf. also Section 4.4.5 below); more problematic
theories are those, whose unifiability problem is undecidable. In this case
one has to interleave two enumeration procedures, which gives rise to the
practical problem how to interleave them. However, it should be noted that
due to the semi-decidability of first-order logic, the background reasoner can
be designed as a semi-decision procedure.

The background reasoner for total theory reasoning can be designed as
a black box, in particular if the underlying theory is decidable. This is a
strength and a weakness at the same time. It is a strength, because both,
the foreground calculi and the background calculi can be designed indepen-
dently from each other. And it is a weakness, because it might be difficult to

% Stickel [Stickel, 1985] further distinguishes between narrow and wide theory rea-
soning. While the former is characterized by key sets (cf. the text below) con-
sisting of single literals, the latter allows disjunction of literals. In this text only
narrow theory reasoning is considered.

4.1 Basics of Theory Reasoning 69

/\ Total Theory Extension /\

a<b
a<b b<e a<b
: e<d | v v ;
/\ d<e | v v /\
e<a \% DV D
b<c

N

b<c
c<%
e<a/%
*

Figure 4.2. A total theory extension step in the theory connection calculus.

70 4. Theory Reasoning in Connection Calculi

control the amount of search in the background reasoner. If in the suggested
scenario the foreground calculi guesses a key set which admits no solution
(substitution), or a solution which cannot lead to the closure of the whole
tableau under construction, a lot of fruitless search will be performed by the
background reasoner. Due to the undecidability of the underlying problem?®
it is unclear when to interrupt the proof attempt of the background rea-
soner. Further, if the background reasoner has no state information, a lot of
potentially useful information derived in that proof search will be lost.

For illustration consider again the theory SO and clause set M, from
Example 4.1.1. Suppose the refutation starts with —(a; < a,), and further
suppose that the key sets are guessed by increasing size, which seems to be a
plausible strategy. Then X7 () = 2 calls to the background reasoner will
result, and only the very last one with M,, as key set is successful. Even worse,
a backtracking oriented proof procedure, which forgets during backtracking
the generated tableau, will possibly repeatedly solve this key set, even if the
final tableau contains only one instance of the problem.

I speculate that calculi with saturating proof procedures, such as reso-
lution, are advantageous if total theory steps are complex, because then at
least the re-computations caused by backtracking are avoided.

This assessment, should not imply that total theory reasoning cannot be
done in an efficient way, in particular for tableau calculi. Instead it should only
be pointed out that there are considerations which let the pure “black box
approach” look problematic. This problem was also recognized in [Beckert
and Pape, 1996]. They offer a solution for the case of equality, using incre-
mental mixed rigid/universal unification and preserving state information of
the unification algorithm when branches are extended.

Partial Theory Reasoning. Another framework to solve these problems is
partial theory reasoning. Instead of having to discover a contradictory set in
one single “big” total step, the contradictory set is tried to be discovered in
a sequence of better manageable, decidable, smaller steps. In order to realize
this, the result of such a step is stored as a new proof obligation, called the
“residue”*. Hopefully, the residue marks an advance in the computation of
the contradictory set. It can also be seen as an “interrupted” total step, whose
current state is stored in the residue. Semantically, the negated residue states
a condition under which the key set becomes contradictory.

In the example, the background reasoner might be passed a key set con-
sisting of the branch literal a < b, the leaf literal b < ¢ together with the
literals ¢ < d and d < e taken from input clauses; then it computes the
residue a < e and returns it to the foreground reasoner (Figure 4.3). The

3 Namely, the existence of a T -refuter for a given literal set, cf. Note 4.2.2.

* In fact, we will later define (Def. 4.3.1) the residue to consist of a clause and
a substitution, where the substitution is to be applied to the resulting tableau.
This generalizes the concept of 7 -refuters from above.

4.1 Basics of Theory Reasoning 71

fact that the residue is a logical consequence of the key set is mirrored by the
fanning of the residue below the branch containing the key set.

RN VAN

Partial Theory Extension

aj<b a<b asb
b<c 3
AN il & AN
d<e | v NJv
b<ec c

b <
o %
c<d
M/%

Residue: a < e

Figure 4.3. A partial theory extension step in the theory connection calculus.

Clearly, this partial version alone does not suffice since it never closes
a branch. Instead the total extension step is allowed as well, however with
the intention that they are applied in a limited way (which depends on the
theory).

Compared to total theory reasoning, partial theory is more flexible; the
foreground reasoner can take more information — namely the residues — into
account when deciding how to assemble the next key set being passed to the
background reasoner. Further, due to the “independence of the computation
rule”, the focus of attention in the proof search can be shifted in a flexible
way, e.g. one could always select a branch whose leaf (which might be a
residue literal) promises a small search space.

The partial variant is of particular interest for us because there is a tech-
nique of automatically constructing background reasoners for partial theory
model elimination. This technique, called linearizing completion, will be pre-
sented in Chapter 5 below. In our example, when applied to the theory of
strict ordering, linearizing completion discovers a reasoner in which both total
and partial inferences are made up of key sets with at most two literals. The
example theory SO and the clause set M,, will have one single deterministic
refutation, whose (single) open leaves correspond to a “chaining” sequence

72 4. Theory Reasoning in Connection Calculi

of transitivity of the form
—|(Cl1 < an)a _'(a2 < an)a-- B —|(Cln71 < an) >

where the last element is an immediate contradiction to a,,_1 < a,, which is
contained in M,,.

4.1.2 Instances of Theory Reasoning

Theory reasoning is a very general scheme and thus has many applications
and instances. The classical paper [Stickel, 1985] contains an early list, and
general overviews on theory reasoning can be found in [Baumgartner and
Petermann, 1998]; an overview with emphasis on equality is given in [Beckert,
1998].

In the last decade, many background reasoners for specialized (classes of)
theories have been developed. It is beyond the scope of this text to give a
comprehensive overview of all of them. Instead we will try to briefly review
some of them, thereby classifying them in terms of “total” and “partial”
theory reasoning, and supplying pointers to the literature. Figure 4.4 shows
a classification.

Theory Reasoning

/\

Total Partial

Terminological C .
+ onstraint
Reasoning Theories Special Completed
Relation Horn
Order-Sorted Rules Theories
Logics Equality Generalized
Model Equalit
/\ Elimination quality
Equational Rigid
Theories E-unification RUE- Para-
Resolution modulation
Relaxed
E-Resolution Paramodulation

Dedicated Universal
Unification Unification

Figure 4.4. A Classification of Theory Reasoning. A connected to B above means
that A is an instance of B.

4.1 Basics of Theory Reasoning 73

Equality. Possibly the most prominent example for theory reasoning is the
theory of equality (cf. Section 2.5.1). It is a research topic of its own. See
[Plaisted, 1993] for an in-depth overview.

In its most general setting equality literals may occur both positive and
negative in input clauses. Equality can be treated as total theory reasoning.
The first approach in this direction was to use E-Resolution [Morris, 1969
within the resolution calculus. There, the idea of the systematic search for
the key set for inferences is to use paramodulation (see below). The major
difference to paramodulation calculi proper is that the paramodulants are
not contained explicitly in the resolvents.

In [Baumgartner, 1991a] semantic trees have been used to prove the com-
pleteness of a resolution calculus with equality with essentially two inference
rules, one being “total” similar to E-resolution, and the other being “partial”
in that lemma equations are derived.

For analytic calculi, such as connection methods , total equality reason-
ing is called “rigid E-unification” [Gallier et al., 1992]; [Plaisted, 1995] con-
tains a very readable exposition of the problem and recent results. Rigid E-
unification is used within a general tableau calculus in [Beckert and Hihnle,
1992], and it is used within a connection calculus in [Petermann, 1994]. Quite
a different approach is suggested in [Degtyarev and Voronkov, 1995a]: In their
equality elimination method, a proof consists of conceptually two parts: in
the first part, they try to solve the equational part of the input clause set.
For this, the basic superposition calculus is used. The resulting clause set
then is to be refuted using another calculus, such as the inverse method or a
connection method.

I refer to Note 4.2.4 below for a more detailed discussion of rigid E-
unification.

Paramodulation [Robinson and Wos, 1969] was invented as an inference
rule within the resolution calculus; it allows the derivation from key set®
{P]s], I = r} one derives the residue (P[r])o, where ¢ is a MGU for s and [.
Thus, paramodulation is an instance of partial theory reasoning. Paramod-
ulation for a connection method is described in [Petermann, 1991b], and
Paramodulation for tableau calculi is described in [Fitting, 1990].

Most work on improving paramodulation has been carried out within
the resolution framework. In [Peterson, 1983] it is shown that the functional
reflexive axioms, i.e. axioms of the form f(z1,...,z,) = f(z1,...,%,) for
every m-ary function symbol f, are not needed. The completeness proof pre-
supposes an ordering on terms which is order-isomorphic to w. A signifi-
cant improvement was obtained by Hsiang and Rusinowitch, who showed
that resolution without functional reflexive axioms is still complete when
using more practical reduction orderings [Hsiang and Rusinowitch, 1986;
Hsiang and Rusinowitch, 1991].

5 Asusual, the notation P[s] means that the term s occurs at some specific position
in the literal P.

74 4. Theory Reasoning in Connection Calculi

Finally, in [Bachmair et al., 1992] compatibility of paramodulation (with-
out functional reflexive axioms) with the “basic” restriction is shown, mean-
ing that paramodulation is needed into only those subterms whose positions
are given in the input clause set.

In [Lynch, 1995] an improved version of paramodulation which runs in
polynomial time for certain classes is described; the simultaneous paramodu-
lation calculus in [Benanav, 1990] avoids many redundant clauses by requiring
that paramodulation inferences are carried out simultaneously to all occur-
rences of the target term of the into-clause. Interestingly, the lifting lemma
holds for this case.

The paramodulation inference rule can be further restricted by using term
orderings for certain purposes: first, term orderings are used to select — usu-
ally only maximal — literals inside clauses for inferences; second, paramodu-
lation is restricted to operating in a non order-increasing way; finally, clauses
can be simplified to smaller ones in the given term ordering. Resolution calculi
of this type (often called “superposition calculi”) are described in [Zhang and
Kapur, 1988; Bachmair and Ganzinger, 1990; Nieuwenhuis and Rubio, 1995;
Bonacina and Hsiang, 1995). [Bonacina and Hsiang, 1994] classifies strategies
with respect to parallelization.

All these refinements of paramodulation were suggested for non goal-
oriented resolution calculi. Similar improvements (although no simplification,
so far) for paramodulation like inferences for non goal-oriented tableaux (or
connection methods) have been suggested in [Plaisted, 1995; Voronkov and
Degtyarev, 1996]. As always in tableaux, the rules have to be defined “rigid”,
i.e. no copies of the literals in branches are allowed.

Paramodulation for model elimination (which is goal-oriented) was de-
scribed by Loveland [Loveland, 1978]. Unfortunately, none of the above re-
finements developed for resolution and tableau calculi — no need for func-
tional reflexive axioms, the basic restriction and ordering refinements — can
be used immediately in a complete way for goal-oriented calculi such as model
elimination ([Furbach et al., 1989al; see also Section 5.7.1 for a discussion).
A typical pathological example which demonstrates the need for functional
reflexive axioms consists of solving the goal —P(x,) in presence of the unit
clauses P(f(a), f(b)) and a = b. Although £-unsatisfiable, there is no refu-
tation in, say, model elimination with paramodulation. However, having the
functional reflexive axiom f(z) = f(z) at our disposal allows us to instantiate
the goal = P(z,z) towards —~P(f(z), f(z)) and find a refutation then. Clearly,
the usage of functional reflexive axioms should be avoided because they allow
for arbitrary instantiation and hence blow up the search space dramatically.

In order to overcome this problem, several modifications of the paramod-
ulation inference rule have been proposed which avoid the functional reflexive
axioms but are still compatible with goal oriented calculi see [Snyder, 1991;
Moser, 1993]). If the given equations form a canonical rewrite system the
calculus of [Plaisted and Greenbaum, 1984] can be used.

4.1 Basics of Theory Reasoning 75

More general approaches are based on the inference rule relazed paramodu-
lation [Snyder, 1991]. Relaxed paramodulation would solve the sample prob-
lem by decomposing (“top-unifying”) the pair ~P(z,z), P(f(a), f(b)) into
the subgoals —~(z = f(a)) and =(x = f(b)) which can be solved without func-
tional reflexive axioms. The general idea is to delay the unification of the
arguments of the paramodulating term as new proof obligations®.

A complete set-of-support resolution calculus based on relaxed paramod-
ulation is described in [Snyder and Lynch, 1991]. The approach of [Moser et
al., 1995] improves on this result by additionally incorporating term-ordering
constraints. Remarkably, this is done as an extension to model elimination,
which is even more goal-oriented than set-of-support resolution. In order to
obtain a complete calculus, however, they have to carry out all superposition
inferences among positive equations as a separate construction.

Finally, RUE-Resolution [Digricoli and Harrison, 1986] is an approach
conceptually “somewhere in the middle” between the fine-grained paramod-
ulation and the coarse-grained E-resolution inference rules. RUE-Resolution
was ported to a connection calculus in [Petermann, 1991b).

RUE-Resolution is conceptually related to relaxed paramodulation (see
above). As in relaxed paramodulation, resolving - P(z,z) and P(f(a), f(b))
by the RUE-Resolution inference rule yields the new proof obligation —f(a) =
z V = f(b) = z. Such derived clauses made up of inequalities are called dis-
agreement sets. RUE-Resolution is defined in such a way that without equal-
ity literals it reduces to resolution. There is a second inference rule, NRF,
which transforms an inequality literal s # t in a clause into a disagreement
set after first applying a substitution ¢ to the whole clause.

There are various versions of RUE-Resolution defined, which differ in the
admissibility of inference steps depending on certain restrictions (“viability”)
of the disagreement sets. The “open” form of RUE-Resolution is complete
[Digricoli and Harrison, 1986], but suffers from the drawback that it is not
specified how the disagreement set and the substitution ¢ in the NRF rule
are computed. Thus, this gives rise to an infinite search space. Unfortunately,
more restricted versions are incomplete, at least if the functional reflexive
axioms (cf. above) are absent [Bonacina and Hsiang, 1992]. On the other
side, adding functional reflexive axioms seems to cast a shadow on the whole
approach.

Another approach is to “transform away” the axioms of equality of the
input clause set. This means that the transformed set does not contain the
equality axioms, and is E-satisfiable iff the original clause set (with equality
axioms) is satisfiable. The transformed clause set is suspected to behave bet-
ter (e.g. less search space) than the original clause set. For instance, Brand’s
modification method [Brand, 1975], when interpreted from the viewpoint of
paramodulation, achieves that paramodulation into variables is needed only

5 The same idea has been proposed for Narrowing procedures (see [Martelli et al.,
1986; Dershowitz and Sivakumar, 1988; Hélldobler, 1989]).

76 4. Theory Reasoning in Connection Calculi

rarely”, and paramodulation below variables is not needed at all. Since the
modification method works as a preprocessor to the theorem prover, proper,
it is a way to at least partially solve the addressed problems arising with
goal-oriented calculi.

A more recent improvement of Brand’s modification method was pre-
sented in [Bachmair and Ganzinger, 1998a). The experiments reported there
were carried out with the PROTEIN prover (Chapter 6) and showed good
results.

A transformational approach for a restricted case, when the input clause
set is Horn and the equations form a canonical rewrite system, has been
described in [Baumgartner, 1990]. Essentially, the transformation yields an
operational treatment for the equations comparable to Narrowing [Hullot,
1980].

Equational Theories. Equational theories are given by a set of universally
quantified equations E (cf. Section 2.5.1). From the viewpoint of theory rea-
soning, equation solving in the theory FE, i.e. E-unification [Siekmann, 1989],
is actually a special case of total equality reasoning, in that no positive equal-
ity literals may occur in input clauses. But then, unlike in the general case,
the theory is the same for every unification problem. In terms of tableaux:
the theory is the same in every branch to be closed. This allows the design
of efficient E-unification algorithms which can replace standard unification.
There are sound and complete E-unification algorithms for single theories
(e.g. associative-commutative unification [Fages, 1984]), and there are uni-
versal unification procedures for classes of equational theories (see [Gallier
and Snyder, 1990; J.-P. Jouannaud, 1991] for surveys).

Reasoning with equational theories was considered already in 1972 [Plotkin,
1972] for the resolution calculus. For a connection calculus see [Petermann,
1991a). The mixed universal and rigid E-unification algorithm in [Beck-
ert, 1994] allows combination of equational theories with equations in input
clauses (variables stemming from the latter be treated as “rigid” (defined in
Note 4.2.4 below) along the branch where the equation comes up).

Terminological Reasoning. While research in equality reasoning is mainly
concerned with the development of efficient inference rules, there is as well
a concern in the field of knowledge engineering of keeping different kinds
of knowledge apart. Such knowledge representation systems originated with
the KL-ONE system [Brachman and Schmolze, 1985]. Nowadays numerous
works on defining concept languages with well-understood semantics exist
(see e.g. [Hollunder, 1990)). In [Paramasivam and Plaisted, 1995] it is shown
how theorem provers can be used for subsumption and classification tasks in
such languages.

A common feature of such terminological reasoning systems [Schmidt-
Schaufl and Smolka, 1991] is the separation of knowledge into a terminological

7 Namely to those variables which appear at the right side of an equation, as z in

f(z,y) ==

4.1 Basics of Theory Reasoning 77

part (called T-Box) and an assertional part (called A-Box). The knowledge
about classes of individuals and relationships between these classes is stored
in the T-Box, and the knowledge concerning particular individuals can be
described in the A-Box.

One of the most prominent examples of those approaches is KRYPTON
[Brachmann et al., 1983], where the semantic net language KL-ONE is used
as a theory defining language, which is combined with a theorem prover for
predicate logic. This system is based on the theory resolution calculus [Stickel,
1985). In [Kerber et al., 1993] a resolution framework for hybrid reasoning is
proposed. Essentially, their theory is given as a set of ground unit literals.
Consequently, their resolution inference can be seen as an instance of total
narrow theory resolution where every key set consists of exactly one literal.

In [Baumgartner and Stolzenburg, 1995] a model elimination calculus with
constraints was instantiated with a constraint solver for a terminological lan-
guage. In [Hanschke and Hinkelmann, 1992] T-Box reasoning was extended by
a rule formalism. In Section 4.4.5 below, a combination of model elimination
with terminological reasoning will be presented.

With respect to classification, all these systems are instances of total
theory reasoning.

(Order-)Sorted Logics. Sorts appear naturally in various problem domains,
such as “mathematics” (“integers”, “reals”, etc.) or when reasoning about
program semantics (e.g. “environments”, “variables”, “values” etc.). Seman-
tically, sorts divide the universe of discourse into possible non-disjoint parts.
Typically, sorts are attached to variables, thus restricting their assignments
to values of the respective universe. On the operational side, sort declara-
tions, i.e. the definition of the sorted signature and sort order relationships,
can often be compiled into efficient unification algorithms (see e.g. [Schmidt-
SchauB, 1989]; the overview [J.-P. Jouannaud, 1991] also covers the sorted
case). Roughly, if x; : t; means that the variable x1 is of type t1, then the
unification of the variables 1 : t; and 2 : t3 succeeds if ¢; and t5 have a
common subsort, which is the sort of the unified variables.

By sorted unification drastic search space pruning can be achieved. This
was observed for the resolution calculus (with equality) by Walther [Walther,
1987]. A sorted tableau calculus is described in [Schmitt and Wernecke, 1989].
A general technique for obtaining completeness results for sorted calculi was
suggested by Frisch [Frisch, 1991]. C. Weidenbach proposes giving up the
“static” view of sorts — all the sort declarations are known in advance of the
proof — and to identify sorts with unary predicates which may also come up
dynamically ([Weidenbach, 1993] during resolution derivations; the approach
was ported to tableaux in [Weidenbach, 1995]).

As with equality, sort information can occasionally be “transformed
away”. For the case of disjoint subsorts, the sort structure can be coded as
terms, and standard unification can be used for sort reasoning [Schmitt and
Wernecke, 1989]; U. Furbach [Furbach, 1991] proposes translating the sort

78 4. Theory Reasoning in Connection Calculi

structure into an equational theory, which can be directed into a canonical
rewrite system.

Equivalences. Reasoning with equivalences, i.e. formulas of the form L = K
where L and K are literals, shares many properties with equational rea-
soning. In [Socher-Ambrosius, 1990] the paramodulation inference rule was
reformulated for this setting. Additionally, it was shown that orientable equiv-
alences can be used as rewrite rules for simplification. In [Socher, 1992] and
[Briining, 1995] (using a connection calculus) it was suggested that one gen-
erate equivalences dynamically; for this, it requires recognition of a cyclic
sequence Ky - K1,... , K1 = K, K, = Ky of two-literal clauses con-
structed during proof search. It is easy to see that K; = K; for 0 <,j < m.
Then, in inferences these equivalences are chained in order to prove connec-
tions as theory-complementary (in the theory given by the equivalences). In
other words, this is an instance of total theory reasoning.

Other inference rules for reasoning with equivalences have been proposed
in [McMichael, 1990] and [Lee and Plaisted, 1989).

Procedural attachments. In [Myers, 1994] replacement of ground terms by
equivalent ones is proposed in order to speed up computations. A similar idea
is developed in [Sikka and Genesereth, 1994]. A prototypical example would
be to replace arithmetic based on successor-arithmetic by built-in arithmetic.
The approach of U. Furbach [Furbach, 1991] includes this possibility as a
special case. He proposes having for functions (1) an axiomatic description,
and (2) a representation of its inverse (if existent) and (3) a simplification
procedure. While (1) and (2) are used for equation solving, the alternative
(3) can be used for replacing ground terms by simpler ones.

Compiled Theories. By this notion, I mean any systematic technique of
transforming a given theory into dedicated inference rules. For instance, Z-
Resolution [Dixon, 1973] allows us to build in a theory consisting of two literal
clauses only. A more recent improvement was given in [Ohlbach, 1990].

A system with dedicated inference rules for reasoning with (total) strict
orderings (cf. the informal introduction to theory reasoning in this section)
was described in [Hines, 1992]. Hines also designed a prover with inference
rules for set inclusion (C) [Hines, 1990]. In [Bachmair and Ganzinger, 1994]
and [Bachmair and Ganzinger, 1998b] it is demonstrated that the “chaining”
inference rule of [Hines, 1992] for orderings can be obtained by instantiating a
more general inference rule for transitive relations (within the superposition
calculus).

As a general method, in [Murray and Rosenthal, 1987] a matrix method
with built-in theories is presented. Unlike in Stickel’s general theory resolution
[Stickel, 1985, the theory is not considered as a black box. Instead the theory,
say T, is supposed to be defined by a set of clauses. They propose closing T
under application of binary resolution, modulo subsumption. The resulting
— in general infinite — system 7T* is used for total theory extension steps

4.1 Basics of Theory Reasoning 79

by simultaneously resolving away all literals from a clause from 7* against
given literals in input clauses.

The (extended) special relation rules [Manna and Waldinger, 1986; Manna,
et al., 1991] are inference rules which are derived from certain axiomatically
given properties of relations. More specifically, monotonicity properties are
declarations of properties of relations “<;” and “<»”, which determine the
conditions (including polarity) under which subterm replacements can be
carried out. Alternatively, these declarations can be described (disregarding
polarities) by axioms of the following form:

if u<i1v if u<1v
then r(...u...)<a7(...v...) then r(...v...)<2r(...u...) .

This scheme covers many interesting relations, such as the axioms (schemes)
“symmetry”, “transitiviy”, “P-substituivity” and “F-substituivity” which
comprise — short of “reflexivity” — the axioms of equality (cf. Def. 2.5.2).
For instance, “symmetry”, i.e. if u = v then v = u, is immediately seen to be
an instance of the right scheme above. “Transitivity” is covered by instanti-
ating in the right scheme “<,” with logical implication, “—”. Examples of
other theories expressible in this language are ordering relations and subset
relations.

It is intended to read these axioms operationally in the way suggested
by the notation. The thus derived “special relation (SR) inference rules” are
embedded into a resolution calculus. Unfortunately, the completeness of this
system is still open [Manna et al., 1991].

Finally, the method of linearizing completion [Baumgartner, 1996] takes
as input a Horn clause theory and derives as output a possibly infinite set
of inference rules (Section 4.5) which can be used as a background reasoner
within partial theory model elimination. This method will be described in
detail in Chapter 5. There, the relation to the other “compiled theory” ap-
proaches will be given.

Constraint Reasoning. Theory reasoning is related to constraint reasoning.
Like theory reasoning, it is a general framework to instantiate with domain
specific problem solvers. In the following we will refer to Biirckert’s ver-
sion of constraint resolution [Biirckert, 1991], which is slightly more general
than Frisch’s version [Frisch, 1991]. Constraint reasoning was investigated for
model elimination in [Baumgartner and Stolzenburg, 1995].

Clauses are separated in two parts, written as R | C, where R is a clause
in the usual sense, and C'is a formula (“constraint”) whose free variables are
quantified in R.

A constraint theory is given by a class of theories in the usual sense. Thus,
if the class is a singleton (i.e. contains only one theory), and the clauses are
relativized in the usual way (i.e. R | C is read as the sentence V(C' — R))
then we have the same setup as in theory reasoning calculi. Semantically, a

80 4. Theory Reasoning in Connection Calculi

clause set is unsatisfiable wrt. a constraint theory iff it is unsatisfiable in each
theory of the class.

The resolution inference rule is adapted to accumulate (conjoin) the con-
straint parts of the parent clauses. A refutation consists of a derivation of
finitely many (if the theory class is countable) empty clauses O | Cy,...0 | C,
such 3(Cy V --- V C},) is valid in the constraint theory. If the theory class is
a singleton, then only one empty clause need be derived.

On the one hand, constraint reasoning is more general than theory reason-
ing, as constraints may be treated lazily. That is, no theory unifiers need to be
computed during proof search. Instead it suffices to establish the satisfiability
of the accumulated theory unification problems, as indicated.

On the other hand, constraint reasoning is more specialized than theory
reasoning, as in constraint reasoning the foreground theory, say M, must be a
conservative extension of the background theory 7 (that is, an interpretation
I'is a model of T UM iff T is a model of T alone). This is achieved in
[Biirckert, 1991] by requiring that the signatures of the clause language and
the constraint language are disjoint. This leads to weird situations sometimes.
Take for instance the theory of equality. Since E-interpretations define the
semantics of every predicate symbol of the signature, every literal must move
into the constraint part. Thus, every input clause L; V --- V L, has to be
transformed into O | 3(—=L; A --- A—Ly,) in a first step. Now, the entire
reasoning is moved to the constraint solving part.

4.2 A Total Theory Connection Calculus

We are going to a more formal treatment of the calculus described in the
previous section. Since in Sections 4.4 and 4.5 below more refined calculi
(theory model elimination) will be defined, the question arises whether the
rather detailed treatment of the thus preliminary total theory connection
calculus is justified. There are the following answers to this question:

— The somewhat complicated theory model elimination calculus is best ex-
plained as a refinement of the theory connection calculus.

— Some concepts can be introduced and discussed using the simpler theory
connection calculus, thus possibly making the presentation more readable.

— The theory connection calculus is established in the literature and thus
deserves attention.

— A critical analysis of the theory connection calculus requires setting up the
stage to some detail (the critique will be stated in Section 4.3.1).

We proceed by first lifting “unifiers” to the theory level, and then turn
towards the calculus proper.

4.2 A Total Theory Connection Calculus 81

4.2.1 Theory Refuting Substitutions

Definition 4.2.1 (7T-Complementarity).

A literal multiset M = {L1,...,Ly,} is called T-complementary iff the ex-
istential closure® I(Ly A ... A L) is T -unsatisfiable. M is called minimal
T-complementary iff M is T -complementary and all proper subsets are not
T -complementary.

The notion of 7-complementarity generalizes the standard notion of “com-
plementarity” (two literals are complementary iff one of them is the negation
of the other) towards theories. Obviously, for the empty theory, minimal 7-
complementary literal sets consist of exactly two complementary literals.

Note 4.2.1 (Alternate characterization). By using the definitions and Propo-
sition 2.5.1 one easily obtains that the literal multiset M = {L1, ..., L} is
T — complementary iff =7 V(L V---V Ly).

Note 4.2.2 (Undecidability of T-Complementarity). In general, the problem
whether a given literal set M is T -complementary is undecidable. It is sur-
prising that this even holds if we restrict to theories which are axiomatized
by a single clause and to ground sets M. This follows easily from the result in
[Schmidt-SchauB, 1988] which says that for two clauses D and C it is unde-
cidable whether VD = VC. In [Marcinkowski and Pacholski, 1992] this result
is strengthened towards Horn-Clauses.

Thus we consider universal theories 7 consisting of one single Horn clause
only. It holds by the results of Chapter 2: T |= VC iff T U {3-C} is un-
satisfiable iff 7 U {-sk(C)} iff unsatisfiable (for any Skolem form sk(C)
of C) iff T U {Ly,...,L,} is unsatisfiable, where sk(C) is the (ground)
clause Ly V---V Ly, iff {L1,... ,L,} is T-unsatisfiable iff {L1,... ,L,}is T-
complementary (because for ground sets these notions are the same). Hence,
with the original problem of logical consequence of Horn clauses being unde-
cidable, T-complementarity is undecidable as well.

The same holds for derived notions below. For instance, the existence of
a substitution o such that M is T-complementary (a “7-refuter”) is unde-
cidable as well, because this problem class includes the T -complementarity
problems.

Building on Definition 4.2.1, the standard notion of a unifier is replaced by the
following concept (called T-unifier in [Baumgartner and Petermann, 1998)):

Definition 4.2.2 (T-Refuter [Baumgartner et al., 1992]). A substitu-
tion o is o called a T-refuter for a literal multiset M iff Mo is T -complementary.
A T-refuter for M is called minimal iff Mo is minimal T -complementary
(i.e. iff Mo is T -complementary, but there is no proper subset of Mo which

is T -complementary).

8 Def. 2.2.5.

82 4. Theory Reasoning in Connection Calculi

Our definition of T-refuter generalizes the concept rigid E-unifier [Gal-
lier et al., 1987] to more general theories than equality (rigid E-unification
is discussed in Note 4.2.4). A dual notion, “unifier with respect to T-
complementary literal sets”, has been used within an affirmative setting [Pe-
termann, 1992].

As for non-theory calculi we are interested in restrictions on the set of
possible T-refuters to be considered for a given literal set. This will be in-
troduced below (“most general sets of T-refuters”, Section 4.4.1) but for the
moment this concept is not needed.

Ezample 4.2.1 (T -Refuters). Consider the theory £ of equality. The set

M ={P(z), y = f(y), ~P(f(2)}

is clearly £-unsatisfiable when read as a set of unit clauses. However it is not
&-complementary, since e.g. the ground instance P(a)A(a = f(a))A=P(f (b))
of

3z,y,z (P(z) A (y = f(y)) A =P(f(2)))

is not £-unsatisfiable. But the substitution o = {z + z,y < 2} is a -refuter
since the formula 3z (P(2) A z = f(z) A =P(f(2))) obtained from Mo is
&-unsatisfiable.

A word of warning might be appropriate:

Note 4.2.8 (Warning). The previous example (Example 4.2.1) might suggest
that 7-complementarity of a set M of X-literals is equivalent to saying that
M~ is T-unsatisfiable for every ground substitution v employing X-terms.
This, however, is not true. Take e.g. M = {p(x), -p(a)} and the “empty”
theory. Clearly, 3z p(x) A—p(a) is not unsatisfiable, although for every ground
substitution v — there is only one, namely v = {z < a} — we have that

{p(z), -p(a)H{z + a} = {p(a), —p(a)}

is T-unsatisfiable.

The problem here is the same as in clause logic (cf. Theorem 2.4.2 and
the discussion following it), namely the presence of an existential quantifier.
In order to treat it correctly, one would have to replace the variables by new
Skolem constants. This operation preserves 7T -unsatisfiability.

More precisely: suppose T is a universal X-theory (cf. Def. 2.5.5). Hence
T = Cons(Azx) for some axiom set Az of universal X-sentences. Let L] A...A
L, be a Skolem form (Section 2.4.1) of 3(L1 A...ALy), where {Ly,... ,L,} =
M. Assuming the set of constant symbols in X' large enough (w.l.o.g. this
can always be achieved), we may assume that the replacement of variables
by Skolem constants is done in such a way that only constants are introduced
which occur neither in M nor in Az. Then it holds

4.2 A Total Theory Connection Calculus 83

M is T-complementary
iff 3(L1 A...ALy)is T-unsatisfiable
iff {3(Ly A...AL,)} is T-unsatisfiable

iff {3(L1 A...ALp)}U Az is unsatisfiable (by Prop. 2.5.1, (a)-(e))
it {(LiA...AL))}U Az is unsatisfiable (by Theorem 2.4.1)
iff (L} A...A L) is T-unsatisfiable (by Prop. 2.5.1, (a)-(e))

iff M'is T-unsatisfiable
where M' = {L},... ,L.}.

Thus, in sum, 7T -satisfiability is preserved by Skolemizing away the ex-
istentially bound variables. An alternate way would be to simply strip the
existential quantifier and consider the variables as new constant symbols.

Note 4.2.4 (Rigid E-unifiers). This latter terminology — treating variables
as new constants — is used in the context of rigid E-unification [Gallier et
al., 1987; Gallier et al., 1992]. A standard definition (e.g. [Beckert and Pape,
1996)) is to define a rigid E-unifier for a given set M = {s1 = t1,... ,8, = t,,}
of Y-equations and goal YX-equation G = (s = t) as any substitution o such
that

Mo gz V(s =t)o) , (4.1)

where X' is like X', except that the X-variables Var(Mo) are new constant
symbols in X’ (£(X") is the theory of equality for X', cf. Section 2.5.1). Note
that (s = t)o still might contain X-variables. Now, since Mo is a set of X'-
ground literals, and the introduced constants are “new”, it is straightforward
to show (use the previous Note 4.2.3) that Equation 4.1 is equivalent to
the condition that o is a £(X)-refuter for M U {—~(s = ¢)}. Thus, rigid E-
unification fits well into our framework.

Interestingly, rigid E-unification is decidable. More precisely, decision pro-
cedures (see [Gallier et al., 1992; de Kogel, 1995; Beckert, 1994]) exist which
compute for any rigid E-unification problem (M,G) a finite and “complete”
set of equivalent rigid E-unifiers. For instance, if M = {f(a) = a} and
G = (z = a) then o = {z + a} is the single rigid E-unifier computed. Finite-
ness is possible by discarding unifiers which are equivalent modulo Mo. In
the example, any substitution o, = {z + f"(a)} is a rigid E-unifier for G
but can be discarded.

When building in equality into connection methods, one usually has to
solve simultaneous Rigid-E-unification problems. This means to find for given
sets {M1,...,M,} and equations {s; = t1,...,8, = t,} a substitution o
such that

Mo '=g(21) V((Sz = ti)J) (for 1=]., . ,TL).

Such a problem arises if a tableau with n branches is constructed, because
then one has to find ¢ such that all branches are closed simultaneously.

84 4. Theory Reasoning in Connection Calculi

Unlike the non-simultaneous rigid FE-unification problem, the simulta-
neous variant is undecidable [Degtyarev and Voronkov, 1995b]. Hence, any
decision procedure must be necessarily incomplete. The problem is in the
combination of n finite complete sets of rigid E-unifiers, because these are
relative to n different equational theories M;o.

There are several approaches to cope with this problem: one approach is
to give up decidability and to enumerate rigid E-unifiers. This is the approach
taken in [Petermann, 1994]. Petermann enumerates rigid E-unifiers modulo
a theory which is the same for every problem, namely the empty theory.
Thus, in the example, the complete set of rigid E-unifiers is the infinite set
{o,01,...,0n,... }.

Another approach is to restrict to decidable cases. In [Plaisted, 1995]
decidability is shown for the case of unit equations, Horn equations, and
“splittable” theories, where a clause set can be partitioned by splitting such
that any positive equation occurs only in unit clauses.

A more general approach is to rely on the incomplete simultaneous rigid
E-unification algorithms, which can still be used to obtain a complete calculi.
This was shown in [Voronkov and Degtyarev, 1996]. Completeness is recovered
by allowing multiple variants (“amplifications”) of clauses along the tableau
branches, i.e. the M;s have to be enriched by sufficiently many variants.
The procedure given there has the attractive property that the o;’s can be
computed branch-local, i.e. without taking other o;’s (j # ¢ into account).

This note is continued in Note 4.2.6 below.

For later use we collect some facts about 7 -refuters now:

Proposition 4.2.1 (Facts about 7-refuters). Let M be a literal set and
v be a substitution.

1. If M is T -complementary then also M~ is T -complementary.
2. Suppose v is a minimal T -refuter for M, and suppose that o < v[Var(M)]
also is a T -refuter for M. Then o is also a minimal T -refuter.

Proof. Concerning 1, by Note 4.2.1, M = {Ly,...,L,} is T-complementary
iff =7 V(L V-V L,). By Lemma 2.5.3 it follows =7 V((L1 V - -- V L,,)7y),
which is the same as =7 V(Liy V --+ V L,7y). By Note 4.2.1 again, then
{L17,... , Ly} = M~ is T-complementary.

Concerning 2, we have to show that for each strict subset N C M, No is
not 7-complementary. Suppose, to the contrary, that for some strict subset
N C M we have that No is T-complementary. Since M+ is given as mini-
mal T-complementary, N+ is not T-complementary. It holds v| Var(M) =
00| Var(M) for some substitution §. With Var(N) C Var(M) it follows
N~ = Ngé. Thus, by (1), No is not T-complementary either, which con-
tradicts the choice of No.

Note 4.2.5 (Minimality). The converse of Proposition 4.2.1.2 does not hold
in general. In order to see this, let “=" denote an equivalence relation (cf.

4.2 A Total Theory Connection Calculus 85

Example 2.3.2). Clearly, {z = y, =(y =)} is minimal unsatisfiable in that
theory, however, because of reflexivity, its instance {a = a, ~(a = a)} is not
minimal unsatisfiable.

For the non-theory case the converse does hold, because obviously any
minimal unsatisfiable set contains exactly two literals.

4.2.2 Definition of a Total Theory Connection Calculus

Now we are in a position to formally define the above introduced calculus.

Definition 4.2.3 (Total Theory Connection Calculus (TTCC)).
Let T be a universal theory. The inference rule total theory connection cal-
culus extension step is defined as follows (cf. Figure 4.5):

TTCC-Ext:
[p], @ LwvRy, --- L,VR,
([plo R1, [p-Li]oRay ... ,[p- L1+ Lp_1] 0o Ry,
[p'Ll"'Ln—l'Ln]xa Q)O'

where o is o T -refuter for pU{L1,..., Ly}
(characterizing property for TTCC-Ext)

. v
RN
.-~ Leaf (p) . -jaf\(p)«
LV Ry TTCC-Ext Ll f
LnV By Lﬂb
*’n n

Figure 4.5. Total theory extension step in the theory connection calculus.

The calculus total theory connection calculus, TTCC, consists of the sin-
gle inference rule TTCC-Ext.

86 4. Theory Reasoning in Connection Calculi

The characterizing property for TTCC-Ext suffices to guarantee the soundness
of the calculus.

Note 4.2.6 (Early vs. late branch closure). An alternative way to define the
theory connection calculus can be sketched as follows: recall that TTCC-
Ext steps use a 7T -refuter o which is to be applied to the resulting tableau.
Alternatively to this “eager” policy, one could defer the computation of the
T-refuters. That is, in the course of a derivation, a tableau is constructed
without applying any substitution. But then, in order to find a refutation,
a “tableau closure rule” has to be applied eventually. By a “tableau closure
rule” we mean the possibility to apply some substitution to a given tableau
such that all branches become 7-complementary (cf. e.g. [Fitting, 1990]).
Thus, the closing substitution is computed “late”, as the very last step of
a refutation. See [Fitting, 1990] for a description of a (non-theory) tableau
calculus; [Beckert and Pape, 1996] contains an empirical comparison between
the late and early strategies and reports advantages of the “early” over the
“late” variant.

We continue on Note 4.2.4 on rigid E-unifiers. As mentioned there, the
problem of the simultaneous rigid E-unification arises naturally as the need to
find a substitution which closes all branches simultaneously. In other words,
branches are closed “late”. In practice it is difficult to “decide” whether to
spend the resources on trying to find a simultaneous rigid E-unifier, or to
further expand the tableau (of course, it is in a strict sense not necessary to
compute the closing substitution at all — it suffices to proof the one exists.
See also the discussion on constraint reasoning above (Section 4.1.2)).

Besides this, another problem for proof procedures is that due to the ab-
sence of branch closing substitutions the search is hardly guided. An approach
lying “somewhere in the middle” is to basically follow the “late” approach,
but also to check in the course of the derivation whether branch closure is
possible and to make use of this information.

It is easy to recognize the inference rules of non-theory model elimination
and the connection calculus (ME and CC, Definition 3.2.3) as instances of
the TTCC-Ext inference rule. This is due to the fact that TTCC-Ext can take
an arbitrary (even zero) number of ancestor literals, as is needed to model
the extension step, and it can take an arbitrary number of extending literals
(even zero), as is needed to model the reduction step. More precisely, recall
that an extension step takes a branch [p] and an input clause LV R such that
for some substitution o, Ko = Lo, where K is the leaf of p. This is equivalent
to having that 3((K A L)o) is unsatisfiable. Clearly, 3((p A K A L)o) then
is unsatisfiable as well. This, however, is just the characterizing property for
TTCC-Ext. The case for the reduction step is obtained analogously. Thus, less
surprising, ME and CC are both instances of the theory connection calculus.

The converse, however, does not hold for ME. This is because in TTCC
the link condition of ME is not enforced (extensions can be done with a
connection to any branch literal). Thus, not every TTCC derivation is also

4.2 A Total Theory Connection Calculus 87

a ME derivation. We would like to establish a link condition for the theory
version, in order to lift ME properly to the theory level. This can be done as
follows:

Definition 4.2.4 (TTCC-Link). Let T be a universal theory. The infer-
ence rule total theory connection calculus extension step with link condition
is the same as TTCC-Ext (Def. 4.2.3), except that the characterizing property
is changed in the following way:

TTCC-Link-Ext:
[p-K],Q LiVRi --- L,VR,
([p'K]ORl,[p-K-Ll]ORQ,...,[p'K-Ll'-'Lnfl]ORn,
[p-K-Ll---Lnfl-Ln]X,Q)O'

where o is a minimal T -refuter for the key set
’C ZBU{]K]}U{]Ll, ;Ln]};

for some subset B C p.
(characterizing property for TTCC-Link-Ext)

The calculus total theory connection calculus with link condition, (TTCC-
Link), consists of the single inference rule TTCC-Link-Ext. The requirement
that the leaf of the extended branch, K, is contained in the key set also referred
to as the link condition. Extending Definition 3.2.4, we will write TTCC-Link-
Ext inferences as ([p], Q) Fip).k,0{L1VRs,... LavR.} (@5 Q).

As an example consider Figure 4.2 again. The inference step depicted there is
a TTCC-Link-Ext step, because the empty substitution is a minimal T -refuter
for the key set {a < b, b<c¢,c<d, d<e, e<al.

The characterizing property of TTCC-Link-Ext is more restrictive than
that of TTCC-Ext in that a minimal T-refuter has to be used. The price
to be paid in order to preserve completeness is that we can no longer insist
that the whole branch literals p - K are part of the key set?. Instead, only
some literals are selected. However, as is done in the definition, it can still be
required that the leaf K is part of the key set K. Again, this is the essential
difference between TTCC and TTCC-Link.

Due to the link condition, it is easily verified for the case of the empty
theory the TTCC-Link-Ext inference rule reduces to both ME-Ext and Red.
In order to see this, notice that for the empty theory each minimal T-
complementary multiset consists of ezxactly two complementary literals. Con-
sequently, each key set used in a TTCC-Link-Ext step consists of exactly two
literals, which are made complementary by the substitution o of the inference

9 It is very easy to find a respective counterexample against the completeness of
such a restriction.

88 4. Theory Reasoning in Connection Calculi

(using a larger key set would contradict the requirement that o is a minimal
T-refuter). Thus, since one literal of the key set is fixed to be the leaf literal,
the other one can either stem from an input clause (n = 1 in TTCC-Link-Ext)
or stem from the branch to be extended (n = 0 in TTCC-Link-Ext). In the
former case a ME-Ext, and in the latter case a Red step results.

We summarize these observations in the following theorem:

Theorem 4.2.1 (TTCC-Link instantiates to ME). Let T be the empty
theory. Then any ME derivation is also a TTCC derivation and o TTCC-
Link derivation. The converse holds for TTCC-Link, but not for TTCC.

Note 4.2.7 (Discussion of “minimality” requirement). The restriction to use
minimal T-refuters in extension steps is a rather strong restriction. There
are several alternatives to relieve the background reasoner from computing
minimal 7 -refuters. We will discuss these alternatives now.

One straightforward idea would be to simply drop the minimality require-
ment. But then, it is easy to see that TTCC-Link is nothing but a notational
variant of TTCC: every TTCC-Ext step is also a TTCC-Link-Ext step, and
vice versa. Hence, in terms of a proof procedure, the local search space of
TTCC-Link-Ext would be as big as that of TTCC-Ext and nothing would be
gained.

A more reasonable alternative would be to take properties of the theory
into account and to relax the minimality requirement only partially. For in-
stance, think of the theory as instantiated by a terminological database (a
T-Box, cf. Section 4.4.5). In an appropriate scenario one would have that e.g.
{—animal(X), dog(X)} is minimal T-complementary. We may assume that
in the 7-Box nothing is said about “ordinary” predicate symbols, such as P.
Then it seems natural to relax the minimality requirement for proper 7-Box
reasoning (because minimal 7 -complementary literal sets might not be easily
identifiable by syntactic means), while keeping the minimality requirement
for ordinary literals (because only complementary literals { P, 7P} have to be
considered).

Now, either we allow ourselves to guess the key sets, or the key sets are
assembled using some different strategy. The first case includes the case of
minimal 7T-complementary sets, thus rendering the whole problem vacuous.
A plausible strategy for the second case would be to assemble the whole
set of (ground) T-Box literals occurring in the input clause set as key sets.
While this strategy can be used for TTCC?, we will show that it leads to
incompleteness for TTCC-Link. To this end suppose the following clause set
as given:

dog(goofy) + (Goofy_is_Dog)
mouse(mini) < P (Dummy)
+ animal(goofy) (Query)

10 Note that the link condition for ordinary literals does not hold then.

4.2 A Total Theory Connection Calculus 89

Under the stated assumptions, this clause set is 7 -unsatisfiable. Suppose
the initial tableau is constructed with clause (Goofy_is_Dog). But, using the
suggested strategy, the key set {—animal(goofy), mouse(mini), dog(goofy)}
will be assembled in the first TTCC-Link-Ext step. Note that there are only
two extension steps, and both leave us with a branch ending in the ordinary
leaf literal P. However, this branch cannot be closed, as a literal =P is not
present. Hence, this strategy is incomplete for TTCC-Link.

This small example demonstrates the difficulties of a mixed minimal/non-
minimal 7-complementary strategy. Hence, we will further stick to the re-
quirements of minimal -refuters. Fortunately, any complete background rea-
soner is necessarily also complete wrt. minimal T -refuters. This will be shown
in Section 4.4 below.

Note 4.2.8 (Relation to Petermann’s “Total Theory Connection Calculus”).

In [Petermann, 1993a] a theory connection calculus with link condition is de-
fined, which is essentially the same as TTCC-Link. One difference is that the
calculus in [Petermann, 1993a] does not insist on minimal T-refuters. In our
terminology, it is allowed to take key sets from a sufficiently large (“com-
plete”) set of T-connections (a T -connection is a set of literals for which a
T-refuter exists), which need not necessarily be a minimal key set. The com-
pleteness is not affected by this relaxation, because these complete sets of
T-connections also include all key sets for which a minimal T -refuter exists.

4.2.3 Soundness of TTCC

Since TTCC is the strongest of the investigated calculi (cf. Figure 4.1) we
prove the soundness of this calculus. The soundness of the other calculi follows
easily then. Dually, the completeness of TTCC is obtained as a consequence
of a more refined model elimination calculus below.

The key to the soundness theorem is to define the semantics of the
tableaux constructed along derivations appropriately. We map a branch set
P =([m],-.-,[pm]) into a formula as follows:

Sem([p1],---, [pm]) = Sem([p1]) V - - - V Sem([pn]), where
Sem([Ll,... ,Ln]) :Ll /\/\Ln .

For convenience, we will write ([p1], ... , [pm]) instead of Sem([p1],... , [Pm]),
and [Ly, ..., L,] instead of Sem([L1,... ,Ly]). Our goal will be to show that
for satisfiable input clause set M the relation M |7 VP; holds for every
derivation Py F --- + P, (i = 1,...,1). For this, the following lemma is
needed.

Lemma 4.2.1. Let M be a clause set and ([p], Q) be a branch set.

1. If M =7 Y([p], Q) then M =7 Y([p] o C, Q) for every variant C of a
clause C' € M.

90 4. Theory Reasoning in Connection Calculi

2. If M =7 V([p], Q) then M =7 V(([p], Q)o), for any substitution .
3. If M =7 V([p]x, Q) then M =1 V(Q), where [p]x is a closed branch.

For a proof see Appendix A.

Theorem 4.2.2 (Soundness of TTCC). If a TTCC refutation of a clause
set M exists then M is T -unsatisfiable.

Proof. We show the contraposition. Hence let M be a T-satisfiable clause set.
Let D= (P F --- F P;) be a TTCC derivation from M with some start clause
from M. By induction on ! we show that M =7 VP;. Once this is shown, it is
clear that D cannot be a refutation (i.e. a derivation where every branch set
in Py is closed), because, if so, we could repeatedly apply Lemma 4.2.1.3 and
delete every branch from P; and thus conclude that M =7 (), where () means
the empty branch set. This, however, can only hold if M is T -unsatisfiable
(but M is given as T -satisfiable).
Hence we turn to the induction proof.

Induction start (I = 1): HenceSem(Py) = Ly V - - - L, for some start clause
LyV---L, € M (or variant thereof). Hence M =7 VP, holds trivially.

Induction step (I —1 — [): Suppose that [> 1 and that M =7 VP
holds. We have to show M =1 VP;.

When obtaining P; from P;_1, the TTCC inference rule (a) just fans say
the, m extending clauses below the branch to be extended, giving P/, and
(b) applies the T-refuter o, giving P, = Pjo (cf. Figure4.5). In order to
see that M |7 VP, we only have to apply Lemma 4.2.1.1 m times, such
that the fanning in step (a) is reflected, which gives us M =7 VP}; finally,
Lemma 4.2.1.2 guarantees M =7 VP;.

4.3 Theory Model Elimination — Semantical Version

4.3.1 Motivation

The calculus to be developed now is motivated by the following critique of
TTCC-Link.

Definite Theories. Recall from Section 3.3.4 that for non-theory model elim-
ination reduction steps can be avoided in some cases. For instance, if the
input clause set is a Horn set, reduction steps are not required as they are
not even applicable for syntactical reasons.

It would be nice to generalize this observation towards theory reason-
ing. An important class of theories are definite theories, i.e. theories that are
axiomatized by a set of definite clauses'!. Definite theories are for example

1 Recall that a definite clause contains exactly one positive literal.

4.3 Theory Model Elimination — Semantical Version 91

equality and partial orderings, but also the empty theory. These examples in-
dicate the importance of definite theories, and so the question arises whether
there are optimizations for this case.

Unfortunately, it is not clear whether results from the non-theory case
carry over to TTCC-Link. For instance, if the (definite) theory is T = {B A
C — A}, and a TTCC-Link derivation (for appropriate input clause set)
starts with the inference

[_'A] |_[—|A],{[—|A,B,C[},{[B, Cv-D} [_'A -B- _'D]a [_'A -B- C]X ’

with key set {—A, B, C}, then the subtree below [-A - B - =D] might well
contain reduction steps to B. Notice that this is even the case for Horn input
clause sets.

Order of Extending Clauses. The problem addressed here has no counter-
part in the non-theory version. It concerns the order in which the extending
clauses are fanned below the extended branch. The example in the previous
paragraph will suffice to illustrate the problem; we will only use input clause
B Vv E instead of B. Then the following two different TTCC-Link-Ext steps
using the same key set, same selected branch and same extending clauses
exist:

[-A] F[-a,{-4,B,c}4BVE, cv-D} [TA - E],[7A-B-=D],[-A- B - C]x
vs. [7A] F-a]4-4,B,c}{cv-D, BVvE} [TA-—~D],[-A-C - E],[-A-C - B]x

Notice that the leaves of the resulting tableau are the same, but the
respective ancestor literals are not. Due to this, it is not obvious whether the
order of extension is important to obtain a complete calculus. Clearly, with
regard to a proof procedure, it is most desirable to have as much as don’t
care nondeterminism (“any ordering is complete”) in favor of don’t know
nondeterminism (“there is an ordering which is complete”). However, on the
other side, there might be a superlinear speedup when using the “right” order
of extending clauses (cf. Theorem 4.3.1 below).

Regularity. Recall from Section 3.3 the regularity restriction, which says that
in a derivation no branch may contain two identical literals. Unfortunately, I
did neither succeed to find a proof showing that regularity can be maintained
for TTCC-Link, nor could I find a counterexample. So this question must
remain open.

In order to address these problems, I suggest a moderate change in the
data structures. These modifications let the “definite theories” problem and
the “order of extending clauses” disappear, and positive answers to these
problems will be trivial consequences of the completeness theorem. Further,
the definition of “regularity” can still be used and is complete (because it
yields a weaker version of regularity).

The literal trees used below are no longer clausal tableau, in the sense
that the input clauses can be identified within the tableau as sibling nodes

92 4. Theory Reasoning in Connection Calculi

(cf. Def. 3.1.2). However, it would be overly pedantic to invent a new name.
Hence, we will still use the term “TME tableau”, or simply “tableau”.

4.3.2 Definition of Theory Model Elimination

The calculi discussed so far used total theory reasoning. Besides the an-
nounced change to the data structures, partial theory reasoning will now be
taken care of.

Recall from Section 4.1 that partial theory reasoning is very similar to
total theory reasoning, except that instead of closing a branch a residue is to
be added. Hence we define:

Definition 4.3.1 (7-Residue [Baumgartner and Petermann, 1998]).
Let T be a universal theory. Let K be a literal multiset over given signature X
(read “K” as “key set”). A (T-)residue for K is a pair (R,o) consisting of a
possibly empty X-clause R and o substitution o such that o is a T -refuter for
KUTR, where R = {Res | Res € R} (that is (KUR)o is T -complementary).

If o is a minimal T -refuter for K UR then (R,o) is called a minimal
residue for K.

Any “empty” residue (O, 0) is identified with the substitution o. Note that
in this case o is a T -refuter for K. Similarly, the residue (R,e) is identified
with R alone.

The definition of residue is essentially Stickel’s definition [Stickel, 1985], ex-
cept that we use multisets instead of sets, and that our residue includes a sub-
stitution component, which Stickel does not need as he considers the ground
case. Also, like Stickel, we insist on the minimality property of residues.
Stickel points out in [Stickel, 1985] that allowing extraneous literals in the
residue would destroy completeness of theory resolution. In Section 4.5 this
condition will be relaxed, but only in such a way that refutational complete-
ness is preserved.

It is easy to show!? that (Ly V---V L,,0) (n > 0) is a residue for
{K1,... ., Kn} it E7 V(K1 A ANKy — Ly V---V Ly)o) . This formula-
tion is possibly more intuitive than the one in the definition, as it explicates
the relation between the key set and residue in an affirmative way as an
implication.

As an example for residues consider the set K = {~(f(z) = f(y)), f(a) = f(b)}
and the theory of equality. Then it holds:

12 Cf. Note 4.2.1

4.3 Theory Model Elimination — Semantical Version 93

(R, o) Residue for K¢
(o, €) No

(o, {z +y}) Yes, not minimal
(g, {z +a, y < b}) Yes, minimal
(=(f(a) = f(a)), €) Yes, not minimal
(=(f(0) = f(y)), {z + a}) Yes, minimal
(=(f(0) =fy) V-(f) = fy), {z<+ a}) Yes, not minimal
(=(f(c) =) vV (f(b) = f(c)), {z<«a}) Yes, minimal

Notice by virtue of the constant ¢ in the last line that the definition of
residue does not exclude the case to introduce extraneous symbols not present
in the key set, even for minimal 7T -residues.

Now we can express the changes to the TTCC-Link-Ext inference rule in
order to obtain theory model elimination (Figure 4.3.2): the idea is to fan both
the residue literals and the rest literals of the extending clause immediately
below the extended branch.

Definition 4.3.2 (Theory Model Elimination, Semantical Version).
The inference rule theory model elimination extension step (semantical ver-
sion) transforms a tableau (in branch set notation) and some clauses into a
tableau as follows (cf. Figure 4.7):

K L .o L,VR,
p-KL,Q Iivh VEn TME Sem-Ext
(P, Qo
where
P [p- K]x fRVRIV---VR, =0,
[p-K]o(RVR1V---VR,) else,

where (R, o) is a minimal T -residue for the key set
’C ZBU{]K]}U{]Ll, ;Ln]};

for some subset B C p.
(characterizing property for TME-Ext)

In case R = 0O, a TME-Sem-Ext step is called total, otherwise partial.
Extending Definition 3.2.4, we will write TME-Sem-Ext inferences as

([p]7 Q) }_[p]ilca(Rva%{]LlVRla"'aLnVRn]} (Ql7 Q)U °

The calculus theory model elimination, semantical version (TME-Sem), con-
sists of the inference rule TME-Sem-Ext; in the calculus total theory model

94 4. Theory Reasoning in Connection Calculi

a(b a{b a:<b

: b<e : : b<c
a<e a<%

b<ec

Partial Theory Extension Total Theory Extension

Z<b a<e

<c

c<d v Uvid Key set: e<a v Uvld
N N -

Key set: d<e v V

Residue: (O, €)
Residue: (a < e,€)

Figure 4.6. Two inference steps of TTCC-Link. The same setup is used as in
Figures 4.2 and 4.3.

AN

TME-Ext

Residue: (R, o) TN

LV R R Ri---R,

L,V R,

Figure 4.7. A partial theory model elimination extension step.

4.3 Theory Model Elimination — Semantical Version 95

elimination (TTME-Sem) only total TME-Sem-Ext steps are allowed. The
term partial theory model elimination (PTME-Sem) is used interchangeably
with TME-Sem in order to emphasize that partial steps are allowed.

In the weak wversion of this calculus, we do not insist on minimality of
T -residues and only require that in TME-Sem-Ext inferences (R,c) is a T -
residue for K.

Notice again that PTME-Sem includes TTME-Sem by the possibility of total
steps. Thus, in order to make the PTME-Sem framework meaningful, some
ways of restricting the total/partial inferences are necessary. To this end, we
will propose the device of “theory inference systems” in Section 4.5.

Notice that unlike in TTCC-Link-Ext inferences in the connection calculus,
the extending literals Ly, ... , L, are absent in the subtree below the selected
branch. This change requires the case analysis in the TME-Sem-Ext inference
rule in order to obtain a proper literal tree.

The partial version “PTCC-Link” of TTCC-Link would be defined in
much the same way as was carried out for TME-Sem. This could be done for
both, the connection calculus with link condition, and without link condition.
We feel, however, that no new insight would be gained from this. Hence it is
omitted.

Note 4.3.1 (Minimality). As for TTCC-Link above, the minimality require-
ment for T-residues is also motivated by lifting the link-condition of ME to
the theory case. Concerning the partial version, we can relax the minimality
requirement in a certain way (Section 4.5) and use the weak version. How-
ever, as the discussion in Note 4.4.3 below shows, this is not possible for the
total version.

4.3.3 Relation to TTCC-Link

We will now return to the issues addressed in the motivation section above
(Section 4.3.1). We start with characterizing the differences to its predecessor
TTCC.

Theorem 4.3.1 (TTCC-Link simulates TTME). For every TTME-Sem
derivation D of a clause set M there is a TTCC-Link refutation D' of M of
the same length which is a stepwise simulation of D. More precisely, if

D=Pi+Psk---+P,
then a TTCC-Link derivation
D'=Pi+Pyt--- P

exists, such that bijective functions exists f; (1 < i < n) from the open
branches of P; onto the open branches of P; (when read as branch sets) such
that for every [b] € P; we have

96 4. Theory Reasoning in Connection Calculi

1. fi([b]) D b, and
2. Leaf ([fi([b])]) = Leaf ([0]) -
The converse does not hold. More precisely, there is a theory T and a clause

set'® M(n) such TTCC-Link admits a refutation of length O(n), and the
shortest TTME-Sem refutation is of length O(2™).

Proof. The TTCC-Link refutation starts with the same start clause, and
every TTME-Sem-Ext inference (with T-residue (O, 0)) can be simulated by
a TTCC-Link-Ext inference using the same set of extending clauses, same
key set and T -refuter o, applied to the open branch corresponding to the
selected branch in the TTME-Sem refutation. By a “corresponding branch”
in the TTCC-Link refutation we mean a branch which contains at inner node
positions the same or more literals than a branch in the correspondingly
derived TTME-Sem tableau.

More formally, suppose that f; is already defined appropriately for P; and
P}, and suppose that

[pi]a Q‘L I_[pi],lci,o',',ﬂleRl,...LnVRnl} (Pﬂ Qz)al ’
—— ——
=P; =Pit+1

where

P [pi]x ifRyV---VR, =10,
" \lpilo(RiV---VR,) else,

The corresponding TTCC-Link-Ext inference then is

/ !
[P:], Qi bt icisoi AT VR LV RAD

:’Pl’_

([pil o B, [pi - Li]o Ra, ... [pi+ L1+~ Lu—1] o R, [pi - L1+ Ln—1 - La]x, Qj)oi

~

:7’1"+1

where [p}] = fi([p:]). Obviously, because of f;([p;]) 2 p; and Leaf ([f; ([pi])]) =
Leaf ([pi]) the key set K of the TTME-Sem-Ext inference can be used in the
TTCC-Link-Ext as well. Hence, this inference exists. Finally define

fi([b]) for [b] € Q;
fz+1([b]) = [p; . L1 . 'Lj—l . X] for [b] = [pi : X] epP s where
X eR; with R; #0 (i <j <n).

Thus, it is only the extending literals which are missing in the TTME-Sem
derivation.

13 By M(n) a function is meant which gives a clause set depending on n.

4.3 Theory Model Elimination — Semantical Version 97

It is due to this observation that the converse of the theorem does not
hold. The presence of an extending literal in a branch can be used in the
subtree below it. We construct a clause set in such a way that the usage of
such a literal, say L, in TTCC-Link has to be replaced by extending with
clause LV R, where R contains at least two literals. This will cause exponential
growth when applied recursively.

The clause set is as follows:

R(a) < (R1)
R(f(a)) + (R2)
R(f(f(x))) + R(f(z)), R(x) (Rs)
Q(f(z)) « P(f(2)), R(f(z)), R(z) Q)
P(f"(a)) (P
+ P(f(a)) (G)

The notation “f™(x)” means the term for n-fold application of f to z. Of

course, the clauses (R1),(Rz) and (R3) encode the recursion scheme of the

Fibonacci function, which is of exponential complexity wrt. its argument.
As theory we choose:

vz (R(f(x)) A Q(f(z)) = P(z)) -

We start the refutations with start clause (G). The TTME-Sem refutation is
completely deterministic, in the sense that for any open branch there exists
exactly one set of extending clauses with exactly one key set such that a
TTME-Sem-Ext step is applicable.

For TTCC-Link the situation is a bit different. The set of extending
clauses and key sets is determined as in the TTME-Sem case. However, there
is a choice concerning the order in which the extending clauses are fanned
below the extended branch. Figure 4.8 contains a snapshot.

Consider the tableau . In one optimal policy, which we chose to prove
the theorem, extension of branches with leaf =P(f%(a)) is carried out with
clauses (R3) and (Q) in that order. This results in a tree shaped as indicated
by . Notice that all underlined R-literals can be closed by reduction steps,
or at the top of the tree by extension with the unit clauses (R;) and (Rz).
To summarize, in this policy there is no fanning below the R-literals, which
gives us constant breadth (namely 3 or 4) in every level. Since the depth is of
order O(n) we conclude that in sum there are O(n) extension steps necessary
to find a refutation.

The situation becomes entirely different if a different policy for extension
steps is used. This is depicted in tree , where extension of branches with leaf
—P(fi(a)) is carried out with clauses (Q) and (R3) in that order. Notice that

98 4. Theory Reasoning in Connection Calculi

S
~
S
=
51
r
= =
= -
- L
1 =
= =
nm r
= = S
a ~~ ~ ,(
~ S = S
7 = t =
R = = r
z Sy 5
H T r r
\
\ =
! = S
\ a N—r
\ ~— —
Vo~ H x
VU =
5=
=
5
S
—_
=
- 58 —
= 2 =
= —_
& 2B = =
=] r d &) =
S S
5 AN
o)
*x & r r
&5 —
S - =
S S
) >
3 by
=
&= =
r 5
:
—_
— \m/
= = S
o S S ~
S = n Y
8 = S~ hy S~
3= = -5 g
L£0O
sg ! & r R/ r
8 ge \
& mm o~
g g =
’ / (a\
3
e \ by *
AN
/ p—
.

Figure 4.8. A snapshot from the refutation constructed in the proof of Theo-

rem 4.3.1. Starting from tableau H two different tableau can be obtained, depend-
ing from the order of fanning the extended clauses.

4.3 Theory Model Elimination — Semantical Version 99

this policy leaves us with negative R literals'* which cannot be closed using
ancestor literals, because no positive R literals are present. Hence, every such
negative R literal has to be “solved” by the clauses (R1), (R2) and (R3) which
is well-known to be of exponential complexity. In particular, the subproof of
the upcoming leaf =R(f™(a)) alone requires O(2") extension steps.

Since, furthermore, in this policy no extension steps using the @ literals
are possible, the refutation behaves as if these () literals were not present at
all. In other words, TTME-Sem will construct precisely the same refutation,
except for the absence of these irrelevant @ literals. Thus, a TTME-Sem
refutation will also require O(2™) extension steps.

It is obvious that the proof of this theorem does not depend on whether total
or partial extension steps are considered. The crucial point is the differing
ancestor context of TTCC-Link and TTME-Sem. Hence we take it for granted
that a respective theorem for the partial variants of the theory connection
calculus could be established after proper definition.

Note 4.8.2 (Combining TTCC-Link and TME-Sem). As the previous theo-
rem reveals, there is a tradeoff between TTCC-Link and TME-Sem: TME-
Sem needs fewer ancestor literals (recall that wrt. TTCC-Link the extending
literals in inference steps are absent) and hence has less local search space
than TTCC-Link. On the other side, proofs may become shorter with addi-
tional branch literals. This can overweigh the additional local search space.
As a drastic example of this, recall the example contrived in the proof of
counter direction of Theorem 4.3.1.

As a conclusion I propose a “best of both worlds” approach and to base
a proof procedure on a combination of both calculi: from TME-Sem one
learns that in inferences the order of extending clauses plays no role, giving
us a don’t-care non-determinism instead of the don’t-know nondeterminism
of TTCC-Link.

Also from TME-Sem we learn that the extending literals need not be
included in extended tableau. On the other hand, from TTCC-Link we learn
that they sometimes result in shorter refutations. An approach somewhere in
the middle would be to include them, but to restrict the use as substitutes for
otherwise equal extending literals in subsequent extension steps. By this, the
local search space is not even increased yet saving some extending clauses.

On the other side, however, in experiments with our PROTEIN prover it
was my impression that in practice no significant difference arises for most
examples.

We are now in a good position to judge whether TME-Sem marks any
progress in solving the issues addressed in the beginning of this section.

4 Here, by an “X literal” we mean a literal of the form X (f’(a)) (or its negation),
for some j.

100 4. Theory Reasoning in Connection Calculi

Order of Extending Clauses. Using Theorem 4.3.1 the sample TTCC-Link-Ext
inferences on page 91 correspond to the following two TTME-Sem-Ext steps:

[-A] F-4],4-4,B,c},{BVE, cv-D} [7A - E],[~A - =D]
vs. [7A] F-4],{-4,B,c},{cv-D, BvE} [TA - D], [-A - E]

Notice that the resulting TME tableau are the same, because the resulting
branch sets, when appropriately ordered (cf. Def. 3.2.1) are the same. It is
obvious from the definition of TME-Sem-Ext that this property holds on the
general level.

The practical relevance of this observation is that a proof procedure need
never backtrack on the ordering of the extending clauses. Again, this is not
obvious for TTCC-Link, as switching the order of extending clauses results
in branch sets with different ancestor contexts. However, in combination with
the simulation result of Theorem 4.3.1, we now learn that also for TTCC-Link
the ordering of extending clauses plays no role.

Definite Theories. Consider again the example on Page 90 concerning definite
theories. The total step given there corresponds to a TTME-Sem-Ext step

[-A] F-a),4B,c}.{B, cv-D} [FA-—D] .

Notice that now the extending literals are no longer contained as labels of
nodes in the resulting TME tableau. We will show that this is not by coin-
cidence. For this, recall that TME-Sem-Ext inferences are based on minimal
T-complementary key sets; their structure is characterized by the next propo-
sition:

Proposition 4.3.1. Let T be definite theory. Then any minimal T -comple-
mentary literal set (or multiset) contains exactly one negative literal.

Proof: See Appendix A, page 212. The practical relevance of this Proposition
is that the search for key sets in TTME-Sem-Ext inferences can be syntacti-
cally guided to some degree, even if the input clause set is non-Horn. For the
Horn case we can further restrict syntactically:

Proposition 4.3.2. Let T be a definite theory, and D be a PTME-Sem
derivation from a Horn clause set M with some negative clause from M
as start clause. Then the key set K in every TME-Sem-Ext inference step in
D satisfies the following properties (in terms of Def. 4.3.2):

1. The leaf K of the extended branch [p - K| is a negative literal (as well as
all other literals in p), and

2. B={}, i.e. no ancestor literals from [p] are used, and

3. Ly,...,L, are positive literals, and

4. R =0 or R consists of negative literals only.

4.4 Total Theory Model Elimination — MSR-Version 101

Thus the search for appropriate key sets is limited to positive literals and one
single negative literal, which is given as the leaf; further, as B = {}}, these
positive literals are entirely taken from the extending clauses, but not from
the selected branch. Notice that this is indeed the result which was desired
above.

As a further consequence, “reduction steps” are not possible in case of
the empty theory (which is trivially a definite theory). Thus we have a gen-
eralization of the corresponding well-known property of non-theory ME.

Proof. Any TME-Sem-Ext step for definite theories applied to a branch with
negative leaf must have properties 2, 3 and 4, because otherwise Proposi-
tion 4.3.1 would be violated. For the same reason all branch literals B must
be positive. Thus, in order to show that B = {}} it suffices to show that along
D for every branch set P; the following invariant holds: every branch in P;
is purely negative, i.e. it is of the form [-A4; - -- —A,]. Further, this invariant
also gives us that Leaf ([P]) is negative, as desired.

The invariant is certainly true for the first branch set P; corresponding
to the the start clause.

Now suppose a TME-Sem-Ext step is applied to some branch [-A4; - - - —A4,,].
By Proposition 4.3.1 the key set of a theory extension step contains exactly
one negative literal, which must be the extended literal —A4,,. The remaining
literals Ly, are positive and must hence be drawn from input clauses L V Ry.
With every literal Ly being the sole positive literal in the clause (we are given
that M is Horn) it follows that [-A; --- = A4,,] is extended only with negative
literals. Hence the invariant follows, and thus also the proposition follows.

Regularity. In Section 4.3.1 we motivated the transition from TTCC-Link
to TTME-Sem also by the possibility of obtaining a complete calculus with
regularity restriction (more precisely, the completeness of TTCC-Link with
regularity is still open). Indeed, complete versions of TTME and PTME with
regularity exist. For TTME, we will give a direct completeness proof below,
which will be used as a base for the completeness proof of a specific version
of PTME.
These versions shall be introduced in the next two sections.

4.4 Total Theory Model Elimination — MSR-Version

Following standard results for non-theory model elimination, we would like
to carry out derivations employing most general substitutions. This is not yet
achieved with TME-Sem and thus will be subject of this section. We will con-
sider the total version of TME-Sem for this, and the resulting calculus will be
called TTME-MSR (standing for Total Theory Model Elimination — Most
general Set of Refuters). The necessary changes can essentially be restricted
to filtering out non-most general elements from the set of T-refuters for a

102 4. Theory Reasoning in Connection Calculi

given key set. The underlying concept is called a complete set of T -refuters
and will be treated next. After that, the definition of TTME-MSR will be
stated and its answer completeness will be proven. Finally, the approach
is illustrated by instantiating the background reasoner with “terminological
reasoning”.

4.4.1 Complete and Most General Sets of T-Refuters

In non-theory calculi, complementarity of literals is usually established by
means of a MGU (most general unifier, cf. Def. 2.4.5). For the sake of effi-
ciency, computing at the most general level is also a desirable goal within
theory reasoning. However, in the theory case unifiers need no longer be
unique; the concept of an MGU has to be replaced by a more general con-
cept. In the case of purely equational theories the concept of “complete set
of unifiers” is well-known [Siekmann, 1989; Snyder, 1991].

Since we deal with arbitrary universal theories and not just equational the-
ories we still have to be a bit more general. This concept, which is formulated
in a dual way, builds on the concept of T-refuters (Def. 4.2.2) and is called a
complete set of T -refuters. Further, care must be taken for 7T -refuters in that
they shall not introduce variables which are bound in the context where they
are applied. The next definition accounts for this by means of “protected”
variables.

Definition 4.4.1 (Complete Set of T-refuters). A setU of substitutions
is a complete set of T-refuters for M away from a set of variables V with
Var(M)NV =0 iff

1. for alloc € U, Mo is T-complementary, i.e., o is a T -refuter for M
(Correctness), and

2. for all o € U, Dom(c) C Var(M) and VCod(c) N (V U Dom(a)) = {}
(Purity), and

3. for all T-refuters o' for M there is a 0 € U such that ¢ < o' [Var(M)]
(Completeness).

The set U is denoted by CSR(M)[V]; V is referred to as the set of protected
variables.

By a complete T -unification procedure mean an effective procedure which
enumerates a set CSR(M)[V] for any finite M and V with Var(M)NV = 0.

The necessity for the correctness item is obvious. The first conjunct of purity
restricts the domain of ¢ to the variables occurring in the problem. This is
obviously no real restriction for any 7T -unification procedure, as assignments
of o outside the scope of the problem M can always be discarded without
modifying its effect on M. The second conjunct of purity means that o will
neither introduce variables which are protected by V nor variables which are
from the domain of o. The latter property just characterizes idempotency (see
e.g. [Lloyd, 1987]). Thus, we have for any = € VCod(o) either z € Var(M)

4.4 Total Theory Model Elimination — MSR-Version 103

or otherwise z ¢ V. In the latter case we will say that z is an extra variable
introduced by o .

Concerning the completeness item, it should be noted that the restriction
to Var(M)'® is crucial for the theory-case (again, it is not needed in the
non-theory case). For instance, let the theory be given by the clause set
{=p(f(z))}. Consider M = {p(z)}. Clearly, o = {z « f(a)} is a T-refuter
for M. A most general T-refuter is o/ = {z « f(y)}. However, it does not
hold that ¢' < o, because we would have to have 6 = {y + a} in order to
have p(z)o'd = p(z)o. But then, clearly, yo'd # yo which gives us ¢'d # o
and, more generally, o' £ o. However it holds o’ < o [Var(M)] as expected.

Note 4.4.1 (Need for Protected Variables.). We will argue here for the need
to protect variables and prove a calculus not using it as incomplete.

Protected variables are not needed in the case of syntactical unification.
The reason is, that the usual unification algorithm will not introduce extra
variables. In order to see the importance of protected variables in the theory
case consider M = {p(x)}, and suppose that p(z) occurs in a derivation which
has also ¢(z, z) in its context. Further suppose that a T-refuter o' = {z
f(a)} is applied in this derivation. This yields p(f(a)) and ¢(f(a),z) wrt.
context. For lifting purposes suppose now that o = {z < f(z)} is a more
general T-refuter. However, then we have to find § = {z + a} in order to
obtain ¢’ = od [{z}]. Although p(z)od = p(f(a)) = p(z)o’, we have, with
regard to the context,

q(w,z)05 = ‘I(f(a)aa) # q(f(a),z) = q(.’L’,Z)O'I . (42)

Thus, we would have had to set the protected variables V' = {z} and to find
a T-refuter from CSRr({p(z)})[{z}].

Note our demand that the variables from Var(M) must — by definition
— never be protected. Such a restriction is not present e.g. in [Snyder, 1991]).
The advantage of our approach is that the 7 -refuters are allowed to introduce
variables already contained in the problem statement; it relieves the unifica-
tion algorithm of always unnecessarily inventing new variables. Sometimes
this would result in very “unnatural” and unexpected results. For instance,
if p(z) and —p(f(y)) are to be unified syntactically, we would like to have
o ={z + f(y)} as a T-refuter. However, this would not be possible if y is
protected. In this case, a suitable T-refuter would be o' = {z + f(2),y + z}
(provided that z is not protected). Note that the usual unification algorithm
(see e.g. [Lloyd, 1987]) is not capable of computing such a substitution and
thus cannot be used in applications which need to protect variables in the
problem statement,.

Substantial problems arise when protection of variables is not used. More
specifically, the lifting proof below needs at its very heart equivalences of the
form stated in (4.2) and will thus not work with the proposed substitution o.

15 Alternatively, the restriction to Var(o') should do as well.

104 4. Theory Reasoning in Connection Calculi

As a consequence an incomplete calculus would result. In order to see this, we
use the terminology of [Petermann, 1993a). Finding a refutation then amounts
to find a simultaneous T-refuter ¢ for a set {K1,...,Kp} of T-connections.
We assume that a more general substitution o < ¢ [Dom(¢)] can be computed
incrementally from their m respective sets of most general T -refuters. Now
consider the following clause set M and theory T (also presented as a clause
set):

M = {P(z) V P(w), R(y) V Q(2)} ,
T ={-P(f(2)) V-~R(f(2)), ~P(f(y)) V-Q(f(9))} .

It is easy to find a (for instance) resolution refutation of M U T . Hence M is
T-unsatisfiable.

We will now use our notation and attempt to find a TTCC-Link refu-
tation, with the 7T -refuters determined individually without protection. Let
P(z)V P(w) be the start clause. We have two alternatives for TTCC-Ext-Link
inferences:

(a) [P(z)], [P(w)] FiP(2)],{P(2), Rp)}oadRpVQ()} Pa OF
(b) [P(2)], [P(w)] Fip(@)4P(), @) how {R)VQ)E Po -

For the key set {P(z), R(y)} in alternative (a) the substitution o, = {z +
f(2), y « f(2)} is a most general and minimal 7T-refuter, and for alternative
(b) the substitution o, = {z < f(y), 2z + f(y)} is a most general and
minimal 7 -refuter.

Since both cases are totally symmetric, we will consider only alternative
(a) now. The resulting branch set then is

Pa = ([P(f(2)) - R(f(2))]x; [P(f(2)) - Q(2)], [P(w)])

The problem with o, is that VCod(o,) contains the variable z which also
occurs in the context outside of the key set. The branch [P(f(2))-Q(z)] now
cannot be closed by using the theory clause =P (f(y)) V =-Q(f(y)), as would
be possible if, say, o), = {z < f(2"), y + f(2')} were used instead of o,'.
This shows us that a respective refutation of ground instances can not be
lifted to a structural identical refutation at the first order level. But, even
worse, if the computation of 7-refuters is unlucky enough, no refutation will
be found at all. For this, let us assume that the branch [P(f(2)) - Q(z)] is
selected next (if the other branch [P(w)] were selected, the same problematic

6 In this example, since 7 is given by a clause set, we could use Resolution to
compute the 7 -refuters. Notice that if new variants are taken appropriately,
as Resolution would do, then o, would automatically result and the problems
would not arise. However, taking such a special setup for computing 7 -refuters
would be unnecessarily restrictive and would not supply a solution if the theory
reasoner is given as a “black box”.

4.4 Total Theory Model Elimination — MSR-Version 105

situation could come up). As extending clause only a variant of P(z) V P(w)
can be used, say P(z') V P(w'). If the T-refuter for the respective key set
{Q(z), P(z")} is selected unluckily enough, namely {z « f(w'), z’' « f(w')},
this leads to the open branch [P(f(f(w"))) - Q(f(w")) - P(w")]. Notice that
this branch cannot be closed either and represents a cycle wrt. [P(z)] in the
initial branch set, and hence can be repeated infinitely often.

Thus, in sum, no TTCC-Link refutation exists.

In the literature on unification theory one encounters a condition of minimal
sets of T-refuters (“complete sets of unifiers”, as they are called there, see
[Siekmann, 1989]). Minimality means to keep only those substitutions which
are more general modulo the given (equational) theory. However, it may be
advisable to leave minimality away, as cases exist where a complete set of
minimal refuters may not exist (see [Fages and Huet, 1986)).

However, the following weaker property based on “syntactic” most gen-
erality safely can be achieved:

Definition 4.4.2 (Most General Set of 7-Refuters). Consider the fol-
lowing property of complete sets of T -refuters:

Vo,0 € CSRT(M)[V]: if o <8 [Var(M)] theno =46
(Most Generality).

Any set CSRr(M)[V] satisfying this property is also called a most general
set of T-refuters for M away from V, MSR(M)[V]; its elements are also
called most general T-refuters (for M away from V, or short T-MGRs (for
M away from V).

Ezample 4.4.1. In example 4.2.1 above, the substitution § = {z + a, y +
a, z + a} is also a E-refuter, although, unlike o, it is not most general.

Note 4.4.2 (Minimality Modulo Equivalence.). The above-mentioned notion
of minimality modulo theory-equivalence found in “complete sets of unifiers”
is stronger than our syntactical notion. However, unlike in that case, most
generality is compatible with the properties of a complete set of T-refuters
in the sense that for any CSRy(M)[V] a MSRy(M)[V] exists such that the
following holds: for every § € CSRr(M)[V] a 0 € MSR+(M)[V] exists such
that o < 0 [var(M)]; MSRy(M)[V] can be obtained from CSR+(M)[V] by
deleting those substitutions § which violate the most generality principle. It
is easy to show that the resulting set is still a complete set of 7T -refuters.

Convention 4.4.1 (MSRs and Protected Variables). In practice, the
computation of M SRy (M)[V] can be simplified wrt. extra variables. Recall
from the definition, that for any ¢ € MSR7(M)[V] and its extra variables
X, = VCod(o) \ Var(M) we insist on X, NV = @. This can be achieved
by allowing only “new” variables as extra variables!”; by “new” variables we

7 E.g. LISP implementations might rely on the gensym operation.

106 4. Theory Reasoning in Connection Calculi

mean variables which were not used so far in a derivation, or whatever other
context applies. Background reasoners based on Resolution are safe in this
respect if allways new variants of the theory clauses are used.

Thus, any algorithm (or enumeration procedure) respecting this principle
need not know about a concrete set of protected variables V. This allows us to
write M SR (M) instead of M SRy (M)[V] and it will still hold X, NV = 0.
We will make heavy use of this convention below.

Usually, a T-refuter ¢’ is applied within a certain variable context W. For
lifting purposes it is essential that a corresponding more general T-MGR o
behaves exactly the same on the context W. i.e. that 0§ = ¢' [W] for some
0. The next proposition guarantees the existence of such T-MGRs:

Proposition 4.4.1 (Context Extension of T-MGRs). Let o' be a T-
refuter for M, and let W be a set of variables. Then substitutions o €
MSRr (M) with o < o' [Var(M)] and § with o' = 6 [W] exist.

Proof: see Appendix A, page 212.

4.4.2 Definition of TTME-MSR

Now we can rewrite the definition of total theory model elimination to take
into account the present notation. An earlier version of this formulation was
first suggested in [Baumgartner, 1992a).

Definition 4.4.3 (TTME-MSR). The inference rule total theory model
elimination M SRy-extension step TTME-MSR-Ext is the same as TTME-
Sem-Ext (Definition 4.3.2), except that the characterizing property is changed
in the following way:

K L o L
b KO Ihvh n VA T TME MSR Ext
(P, Qo
where
p_)l K]x if R V---VR, =0,
[p-K]o(RyV---VR,) else,

where for some subset B C p, the key set
K :BU{]K]}U{]Ll,... ,Ln]},

satisfies the following properties:

1. MSRy(K) is non-empty, 0 € MSR+(K), and (o is a solution)
2. Ko is minimal T -complementary. (Key set minimality)

(characterizing property for TTME-MSR-Ext)

4.4 Total Theory Model Elimination — MSR-Version 107

We will refer to the thus changed inference rule total theory extension step,
TTME-MSR-Ext. Eztending Definition 3.2.4, we will write TTME-MSR-Ext
inferences as ([p]a Q) |_[p],lC,(T,«{[LlVRl,...,LnVRn]} (Ql7 Q)U

A substitution 0 € MSR7(K)[V] such that Ko is minimal T -complemen-
tary is also called a minimal most general T -refuter for K away from V, or
shorter, a minimal 7-MGRs for K away from V.

The calculus of total theory model elimination, MSR-version (TTME-
MSR) is obtained from TTME-Sem (Definition 4.8.2) by replacing its infer-
ence rule TTME-Sem-Ext by TTME-MSR-Ext.

This formulation is stronger than the corresponding one of TTME-Sem, as
o is no longer an arbitrary substitution but must be taken from a most
general set of refuters. Notice that the conditions 1 and 2 in the characterizing
property are compatible with the condition in TTME-Sem-Ext that o is to be
a minimal residue for K (recall from Def. 4.3.1 that we identify the residue
(O, o) with the substitution o). Hence, TTME-MSR-Ext is a proper restriction
of TTME-Sem-Ext.

Note that there are several notions of minimality involved now: the first
refers to the “most generality” of M SRs, and the second refers to the size of
the key set K. Take, for instance, the key set K = {P(z), a = f(y), ~P(f(2))}-
Then both 07 = {z < a, y <« 2} and 0o = {z « f(2)} are con-
tained in M SR¢(K) and hence are most general. However, attempting to
choose oy violates the key set minimality, because deleting a = f(y) from
{P(f(2)), a= f(y), ~P(f(2))} still yields a T-complementary set. Hence,
no TTME-MSR-Ext extension step based on K and o2 exists.

Note 4.4.8 (Computing minimal T-MGRs). Of course, with 7T-complemen-
tarity being undecidable, minimal T-complementarity is undecidable as well.
Reason: suppose we had a decision procedure for minimal 7-complementarity.
Then we could decide the 7T-complementarity of a given literal set M by
deciding the minimal 7-complementarity of its (finitely) many subsets, and
using the fact that M is T-complementary iff some subset is minimal 7T -
complementary.

Nevertheless, for practical purposes any complete T -unification procedure
can be used, because by the completeness property the minimal 7-MGRs for
a literal set M are included in MSR7(M). More specifically, it suffices to
have an enumeration procedure for (candidates for) key sets, which enumer-
ates at least all key sets admitting a minimal 7-MGR, and to interleave it
with a complete T-unification procedure. For instance, the linearizing com-
pletion technique of Chapter 5 can be used to obtain complete T -unification
procedure (See Theorem 5.6.4).

For certain theories one can take advantage of structural information to re-
strict the candidates for key sets. For instance, for definite theories (such as
the empty theory, or equality) any minimal key set consists of precisely one

108 4. Theory Reasoning in Connection Calculi

negative literal (Proposition 4.3.1). A further specialization leads to the case
of equational theories:

Ezample 4.4.2 (Equational Theories). Let ¥ be a signature, and let £ be
an equational theory over X (cf. Section 2.5.1), i.e. a set of equations built
from the function symbols and variables of X. Since &£ is a definite theory,
by Proposition 4.3.1 any minimal 7-complementary literal multiset contains
exactly one negative literal. Further, if we assume that the input clause sets
under consideration do not extend &, i.e. there are no positive equations in
the input clause set, then obviously any minimal £-complementary literal set
is either the singleton {—(s; = #1)]} or consists of two X'-literals

{P(s1,.-. ,8n), "P(t1,... ,tn)]} such that & &= s; = ¢; (for i = 1,...,n).
Consequently, the key sets K for TTME-MSR (Def. 4.4.3) can be restricted
to take one of these two forms.

We are interested in certain improvements of this calculus. One is regular-
ity (“no duplicate literals along branches”) and was introduced above in
Section 3.3. Recall from there that regularity is even demanded for closed
branches, and since closed branches are never deleted, in a regular deriva-
tions every branch remains regular, even after further instantiation.

We are going to define an analogous property with respect to the key set
minimality:

Definition 4.4.4 (Stability wrt. Minimality for TTME-MSR). Let

D= (Pl |_[p1],’C1,<71,E1 Py Pn l_[pn—l]JCn—l,Gn—l,En—l Pﬂ)

be a TTME-MSR derivation, where E; denotes the sequence of extending
clauses in the i-th extension step. We say that D is stable wrt. minimality 4ff

fori=1... ,n—1:K;0;---0,_1 is minimal T -complementary.

In words, the stability wrt. minimality expresses that a once chosen key set
Ki, which must be minimal 7 -unsatisfiable by definition of TTME-MSR-Ext
step, remains minimal 7T -unsatisfiable as it is further instantiated along the
derivation.

This is a negative example: suppose in a given derivation we have K; =
{z =2z, ~(x =y)} and 0; = {2z « y}. Using the theory of equality we find
that o; is a minimal 7-MGR for ;. Now suppose that o;4; = {y < z}.
We arrive at K;o;0i41 = {z =2z, -(z =z)} which is not minimal 7-
complementary. Hence, this derivation would be not stable wrt. minimality.
Note again that stability wrt. minimality is not an issue in syntactic model
elimination (cf. Note 4.2.5).

Fortunately, the restriction to derivations which are both stable wrt. min-
imality and regular is complete. Implementations can take advantage of this
fact by remembering all key sets (or selected branches) and setting up con-
straints expressing their minimality (or expressing their regularity).

4.4 Total Theory Model Elimination — MSR-Version 109

Surprisingly, it looks like the proof of the “switching lemma” for theory
model elimination (Lemma A.1.11), and hence the “independence of the com-
putation rule” (cf. Section 3.3) cannot be done if stability wrt. minimality
cannot be presupposed.

4.4.3 Soundness and Answer Completeness of TTME-MSR

We conclude with the main result of the material developed so far:

Theorem 4.4.1 (Answer Completeness, Soundness of TTME-MSR).
Let T be a universal theory, ¢ be a computation rule, P be a program and
+— @ be a query (cf. Def. 3.2.5).

Then, for every correct answer {Q®1,... ,QPy} for P and < Q there
is a regular TTME-MSR refutation D¢ of P and < Q via ¢, which is stable
wrt. minimality, with computed answer Answer(D°) = {Q1,...,@Q:i}, and
such that

{Q1,.-. , QY C{QP1,...,QP,,} for some substitution §.

Conversely, Answer(D°) is a correct answer for P.

Proof. We first show the first part, the “completeness” direction. The missing
details in the proof can be found in Section A.1.1; here we will glue things
together.

The following proof is structured in four parts. This makes it easier to
refer to them in later completeness proofs.

Part 1: “Herbrand”. Given the correct answer {Q®,,... ,QP;} we
know by definition that P 7 V(Q®1 V --- V Q¥;). By proposition 2.5.1 we
conclude that PU{-V(Q®; V---VQP;)} is T-unsatisfiable. By transforming
this into clausal normal form we get the 7-unsatisfiable set of clauses M’ =
PU{+ QP17,...,+ QP&1} where each 7;(1 < i < [) substitutes new
Skolem constants for the free variables of Q®;.

With the abbreviation &} = &;7;, we get a T-unsatisfiable set of clauses

M =PU{« Q¥,, ... ,« QP .

By the Skolem-Herbrand-Lowenheim theorem for universal theories (Theo-
rem 2.5.2) a T-unsatisfiable ground clause set exists

M"=P U{+Q%,,...,+ QP}

where P’ is a finite set of ground instances of clauses from P. From M" we
select a minimal T-unsatisfiable subset

M" =P'"U{« QF,,...,« Q)

110 4. Theory Reasoning in Connection Calculi

where P” C P, and (without loss of generality) 1 < r < [. It must be that
r # 0 because otherwise P"” alone would be T-unsatisfiable, contradicting
the requirement that P is a program, hence T -satisfiable.

Part 2: Ground Completeness. By ground completeness (Lemma A.1.2)
a regular TTME-MSR refutation Dfpppp_ e of M with length, say, n
via some computation rule with start clause «+ Q®] exists (this choice is
arbitrary, but any of these r instances must be used). Since only the empty
substitution is employed in every TTME-MSR-Ext step, D/pr 5 amrsg 1S triv-
ially stable wrt. minimality.

Part 3: Query usage. The stated minimality condition ensures that each
of clauses {« Q®1,... ,« Q®P,}in M"" isused at least once in Dy mrsro
either as the start clause (Q9}) or as an extending clause in an TTME-MSR-
Ext step. Let f(k) (1 < k < r) be the number of usages of < Q®}, (due to
regularity we can even conclude that f(1) = 1).

Part 4: Lifting. By application of the lifting lemma (Lemma A.1.9) we
obtain a regular TTME-MSR-Ext refutation D of P U {< @} with start
clause {< @} which is stable wrt. minimality. The length of D is also n, and
the computed substitution can be written as oy -+ - 0,,_1. From property A.9
in the lifting lemma it follows that < Qo ---0,_1 can be instantiated by
some substitution, call it 0, here, to the start clause of Dlrpsp_ s> 1€
+ Qoy -+ op_10, =« QP. Further, by property A.11 in the lifting lemma,
for every extending clause in Dy 5 g there is a corresponding extending
clause in D. In particular, for each of the f(k) occurrences of < Q&) in
DirramE—msk there is an occurrence of a variant of «— @, say < @ pg,m, where
1 <m < f(k), in some set of extending clauses, say Ej, . (1 < jrm <n—1)
such that

<« ka’m()'jk’m s O’n_l(sn =< Q¢;c .
In sum, the computed answer of D thus is by definition 3.2.5

Answer (D) = {Qp1,10j1,1 Tt On—1)--- 7Qp1,f(1)aj1,f(1) 1 O0n-1,

=01

Qpr,lo'jr,l T O0np—1--- Qpr,f(r)ajr,f(r) T O—nfl}a

—Q

and it holds

Answer(D)é, = {Q®],... ,QP.}
={Q%1m1,... ,Q,71} .

4.4 Total Theory Model Elimination — MSR-Version 111

Next apply the “independence of the computation rule” (Proposition A.1.3)
to obtain a regular refutation D¢ via the desired computation rule ¢ which is
stable wrt. minimality. D¢ is the desired refutation to proof the theorem.

With respect to answers, Proposition A.1.3 gives us a substitution &’
such that Answer(D¢)§' = Answer(D). Thus, Equation 4.3 now rewrites to
Answer(D®)d'6, = {QP171,...,QP, 11}

However, in order to prove the theorem we have to find a substitution ¢
such that Answer(D°)é = {QP1,...,QP,}. In order to define § recall that
T, is a Skolemizing substitution and hence can be written as

T = {20 & a, | 0€ O}

for some finite index set O and new constants a,. In this case we can treat
in the refutation D¢ the a,’s as new variables and define the substitutions

ot ={a, <2 | T+ a, €T} .

Every 7 introduces new Skolem constants. Hence the domains of the 7, ls

are pairwise disjoint. But then with defining 7=! =77 --- 77! we get

7 Dom () =7t . (4.4)
Finally define
§=086,71 .
This is the desired substitution since
Answer(D°)§ = Answer(D°)§' 8, 77!
= Answer(D)s, 7!
4.3 _
W) Qb ... QB)
={Q® 1 t,..., Q8,7 1}
(4-4)

- {Q¢17 7Q¢T} .

This concludes the “completeness” direction. We turn to the second part,
“soundness”. Hence let {Q1,. .. ,Q;} be the answer for P and + @ computed
by a refutation D¢. We have to show that

PErY(@1V---VQ) ,
which is by Proposition 2.5.1 equivalent to saying that
PU{H(+ Q) A A (< Qu)} (4.5)

is T-unsatisfiable. Let X be the set of variables occurring in 3((«+~ Q1) A--- A
(« @), and let v be a Skolemizing substitution for X, i.e. a substitution

112 4. Theory Reasoning in Connection Calculi

mapping each variable in X to a distinct new constant. Now, (4.5) is T-
unsatisfiable if and only if

is T-unsatisfiable (cf. Theorem 2.4.1, which also holds in our theory case).

Now consider the given refutation D¢. Clearly, every usage of a variant
+ Qp;i (1 <14 <) of the query clause < @, which will be further instanti-
ated towards < Qp;o; ---0,—1 (= (= Q;)), can be replaced by the usage of
Q- This results not necessarily in a TTME-MSR, refutation (because the
employed substitution might no longer be most general), but since instantia-
tion with v does not affect the 7T-complementarity of the employed key sets
(Proposition 4.2.1.1), the resulting refutation, say D', is still a TTME-Sem
refutation (cf. Def. 4.3.2) of M. Now, by Theorem 4.3.1, D' can be simu-
lated by a TTCC-Link refutation, which trivially is also a TTCC refutation
(Def. 4.2.3). Next, by soundness of TTCC (Theorem 4.2.2) we conclude that
M is T-unsatisfiable. But now we can go from (4.6) the equivalences upwards
and conclude that {Q1,...,Q:} is a correct answer for P and < Q.

4.4.4 Related Work

In Section 4.1 several calculi were mentioned which were extended towards
theory reasoning. The closest relatives to TTME-MSR are clearly analytic
clausal calculi, and in particular Petermann’s theory connection methods
[Petermann, 1992; Petermann, 1993a).

Theory reasoning was described for a connection method in Bibel [Bibel,
1982a) (without proof). The first such calculi which proceeds in a goal-
oriented way (i.e., employs a link-condition) was an earlier version of TTME-
MSR [Baumgartner, 1992a]. The TTME-MSR calculus, however without sta-
bility wrt. minimality, and without a lifting theorem was first described in
[Baumgartner, 1993; Baumgartner, 1994).

In [Petermann, 1993a] the completeness for a goal-oriented theory connec-
tion calculus very similar to TTCC-Link is stated. The differences between
the link-condition there and the one used in TTME-MSR, were discussed in
Note 4.2.8.

As other important differences we have that our calculus is more restric-
tive due to the regularity and the stability wrt. minimality restrictions. Fur-
ther, TTME-MSR needs fewer ancestor literals than the connection calculus
in [Petermann, 1993a] (recall that the “extending literals” are not included in
the tableau after extension steps). A detailed discussion of the consequences
of this can be found in Section 4.3.3, and in particular in Note 4.3.2.

Finally, we proved an answer completeness theorem, which includes the
usual notion of refutational completeness as a special case.

4.4 Total Theory Model Elimination — MSR-Version 113

4.4.5 A Sample Application: Terminological Reasoning

Terminological reasoning was mentioned above in Section 4.1.2 as an instance
of total theory reasoning. We will show here how TTME-MSR can be used to
reason about clauses containing both ordinary and A-Box literals; the latter
will be interpreted over a background theory given by a T-Box. After some
preliminary remarks we will go to a more formal treatment.

As a prerequisite we will assume a language for the T-Box which contains
the usual constructs such as “atomic concept”, “concept conjunction”, etc.,
but allows also “concept definition, =". See [Hollunder, 1990] for a brief
introduction.

For the assertional formalism (“A-Box”), we allow object descriptions
of the form a:A, where a is an object (i.e. a symbol taken from some
alphabet), and A is a concept name. For instance, Peter:Male is an ob-
ject description. Furthermore, the A-Box may contain relation descriptions
of the form (a,b):R, where a and b are objects and R is a role (e.g.
(Peter, Beate) : Married). Obviously, both object and relation descriptions can
be formulated in first-order logic. For this, simply take the objects as con-
stants symbols, let “” be a two place predicate symbol and let “(.,.)” by a
2-ary function symbol. With this view we talk of A-Box literals, and we let
an A-Box consists of a finite set A-Box literals.

Usually, terminological reasoning system provide (among others) a service
to decide the consistency of an A-Box wrt. a T-Box (see e.g. [Hollunder, 1990;
Schmidt-Schaul and Smolka, 1991]), i.e. whether there is a model of both
the A-Box and the T-Box. Consistency is the most elementary problem, in
the sense that many other interesting problems, such as the subsumption,
instance, realization and retrieval problem are instances of it (see [Hollunder,
1990]).18

The algorithm in [Hollunder, 1990] presupposes that an A-Box literal is
always positive, i.e. unnegated. In order to bring in negative information for
A-Box literals one defines in the T-Box a new concept which expresses the
complement of a given concept. For instance, in order to express that Peter
is not a Male state the A-Box literal Peter : Male where Male is a new concept
which is defined in the T-Box by adding Male = —Male to it.

As mentioned above, we are concerned with a more general proof task,
in that instead of an A-Box we allow arbitrary clauses which contain both
ordinary and A-Box literals. This clearly increases expressive power. Such an

18 As shown in [Paramasivam and Plaisted, 1995] even good ordinary theorem
provers can compete well with dedicated implementations for common services
such as “concept subsumption” and “classification”. For this, the knowledge
base (i.e. T-Box + A-Box) is translated into predicate logic, as usual. In order to
achieve good performance some preprocessing on the translation of the knowl-
edge base (e.g. a relevance analysis for the clauses) is needed. Further, since the
common services are quite often decidable, a theorem prover being capable of
finding finite models (if they exist) is most suitable.

114 4. Theory Reasoning in Connection Calculi

approach was first suggested by [Stickel, 1985] for theory resolution in con-
junction with KL-1. In [Hanschke and Hinkelmann, 1992] a forward-chaining
rule system was combined with a terminological logic for a mechanical engi-
neering application.

Now we are going to define the combination within our framework more
formally.

Let Ya—por = (OU{(,,)},{:},0) be a signature. “O” is the set of ob-
jects, “” is the A-Box literal symbol, and “(.,.)” is the constructor symbol
used in relations. An A-Box consists of a finite set of positive X 4_ go,-literals.

There is no need for explicitly fixing a language for the T-Box here. Instead
we only define that an A-Box A is consistent wrt. a T-Box 7 iff there is
a X A_pog-interpretation Z which is both a model for A and 7. If such a
X 4_ Boz-interpretation does not exist then A is said to be inconsistent wrt.
7. Again, a basic algorithm such as the one in [Hollunder, 1990] can be used
to decide any T -consistency problem.

Now let Xr = (F, P, X) be a signature whose elements are disjoint from
24— Boz- The signature X' consists of the union of Yp and X4 _p,,. We
consider X-clauses whose literals are either Y g-literals or positive X 4A_ goz-
literals.

Theorem 4.4.2 (Completeness with T-Box Reasoning). TTME-MSR
instantiated with terminological reasoning is sound and complete, where every
key set K used in a TTME-MSR-Ext extension step is either a set of A-Box
literals {A1, ... ,An}, and in this case

if {A1,...,An]} is inconsistent wrt. T
otherwise.

MSRr({Ar, ..., An}) = {ég}

or else KC consists of two Xp literals {P(s1,...,8,), °P(t1,... ,tn)} and

MSR7({P(s1,---,8n), {o} if there exists a MGU o for
SP(t1,...,t)}) = P(s1,...,8,) and P(ty,... ,t,),
0 otherwise.

Proof. (Sketch, completeness direction). We instantiate the general TTME-
MSR completeness Theorem 4.5.3. The only nontrivial part is to show that
any minimal 7-refuter for a given key set set K belongs to one of two two
cases as suggested. This follows from the fact that the signatures X4 p,, and
X' are disjoint, which allows us to consider X-interpretations as conservative
extensions of T-interpretations over X'4_ pog-

More precisely: suppose, on the contrary, there is a key set X and a
minimal 7T-MGR ¢ for K, and K is of the form X = K4_po; U Kr with
Ka_Boz # 0 being a set of X 4_p,z-literals and Kr #) being a set of Xp-
literals.

4.5 Partial Theory Model Elimination - Inference Systems Version 115

From the minimal T-complementarity of Ko we know that Zr = Kro and
that Za_Box = Ka—Bozo for some T-YXp-interpretation Zp and T-X4_pog-
interpretation Z4_ g,z - Due to disjointness of signatures, we can define a 7-X-
Interpretation Z as Z(L) = Zp(L) if L is a Xp literal and Z(L) = Zao— By (L)
if Lis an X4 gy literal, and it will still hold Z = Kpo and Z |= K4 pos0-
That is, Ko is T-satisfiable. Contradiction.

Thus, either K4_p,z = 0 or Kr = 0. In the case that Kz # () it remains
to be proved that g is of the claimed form, i.e. that g is a pair of literals
which can be made complementary by o. Suppose, on the contrary, that
Kro does not contain literals L and L. Then, however, we can find a Xp-
model for ro which can be extended by any 7-X4_ po,-interpretation to a
T-X-model for Kro. Contradiction. Thus, Ko contains two complementary
literals. Clearly, any excess literals can be deleted which gives us that Ko
contains exactly two literals.

Recall that our approach presupposes a ground A-Box. If one would like
to deal with variables inside A-Box literals, several ways of extensions are
conceivable: first, by an appropriate computation rule one would have to
guarantee that only instantiated A-Box literals are passed to the decision
procedure!?. A second, more general approach would be to use more so-
phisticated decision algorithms to compute non-trivial 7-MGRs for A-Boxes
with existentially quantified variables. This was basically the approach taken
in [Baumgartner and Stolzenburg, 1995] within a more general constraint-
reasoning approach.

4.5 Partial Theory Model Elimination — Inference
Systems Version

The calculus which will be developed now is a refined partial version of the-
ory model elimination (TME-Sem, Section 4.3), much like TTME-MSR is a
refined total version of TME-Sem?’. We recall that for TTME-MSR we in-
troduced the concept of a most general set of T-refuters (Definition 4.4.2). It
is a semantical concept, and it serves as a specification for background rea-
soners for total theory reasoning. It seems natural to elaborate a respective
framework for partial theory reasoning. That is, find criteria for the design
of background reasoners such that their combination with model elimination
yields a complete calculus.

19 As with the “floundering” problem in logic programming, one would seek for
syntactical conditions which guarantee that always at least one appropriately
instantiated A-Box can be found.

20 For a general discussion of partial vs. total theory reasoning and the particular
interest in partial reasoning the reader is referred back to Section 4.1.1, page 70.

116 4. Theory Reasoning in Connection Calculi

A first step in this direction is the description of partial extension steps
by means of T-residues (Definition 4.3.1). The next step then would be to
develop completeness criteria for key set — T-residue pairs.

The only work?! in this direction comes from Stickel [Stickel, 1985]. Stickel
introduced a key selection criterion within the ground case of theory resolu-
tion. In our terminology, it says that for any minimal 7 -unsatisfiable (ground)
literal set M there must exist a key set X C M and a minimal (ground) 7-
residue R such that the clause set (M \K)U{R} is minimal 7-complementary.
Further, it is required that K consists of at least two literals if |[M| > 2 (or
one literal if |M| = 1). This latter condition then serves as the base for
the completeness proof. The idea of Stickel’s proof (Theorem 9 in [Stickel,
1985]) is to split a given clause set into sets of T-unsatisfiable unit clauses,
each of them being T -unsatisfiable. Each of these sets contains a minimal
T-complementary subset M, which is made subject to the key selection cri-
terion. In particular, if M > 2 then also |K| > 2 and thus (M \ K) U {R}
contains strictly less clauses M. Hence, the induction hypothesis can be ap-
plied. If the induction start with |M| = 1 or |M| = 2 is reached eventually,
then it must hold that R = O, because otherwise R would not be a minimal
T-residue (because X = M alone is minimal 7 -complementary).

The key selection criterion is applicable to, for instance, the theory SO of
strict orderings: any SO-unsatisfiable literal set M contains either —(¢t < t)
or two literals s < t and ¢t < u. In the latter case, these literals can be replaced
by s < u without affecting the T -unsatisfiability of M.

Unfortunately, the criterion is not applicable for covering the impor-
tant paramodulation inference rule. Take, for instance, M = {P(a,a),a =
b, =P (b,b)}. Since two paramodulation steps with a = b are necessary to
refute M, we cannot remove a = b after one step from M. For instance,
paramodulating P(a,a) to P(b,a), thus taking X = {P(a,a), a = b} and
R = P(b,a), yields (M \ K) U {R} = {P(b,a), ~P(b,b)}, which is not &-
unsatisfiable.

One way to improve this situation is to give up the just considered “local”
method. By this, I mean that instead of looking at pairs key set — T -residue
one considers background derivations: recall from the introductory section on
theory reasoning, that partial theory reasoning can be thought of as breaking
“big” total steps into smaller, more manageable pieces. This idea can serve as
a base for a completeness criterion which also includes the paramodulation
case. For PTME-Sem such a criterion would roughly consist of the following
two components (it will be made precise in Def. 4.5.6):

Ground completeness: For every minimal 7T -unsatisfiable ground literal set
K, and any literal Ly € K there are sequences Ly, La,...,L,,0 (i =
1,...,n, the L;s being ground unit clauses??), and My, M, ... , M, with
M; C K, usually written more suggestively as

21 Known to me.
22 We use unit clauses in order to be compatible with linearizing completion.

4.5 Partial Theory Model Elimination - Inference Systems Version 117

L& L% L, O=L),

such that (L;y1,€) is a T-residue for the key set K; = ({L;} U M;).

Lifting: For any T-residue (L;y1,€e) for K; on the ground level, there is a
“first-order” T-residue (Lj, ,0;) for Kj, where K; is an instance of Kj,
such that L;1; is an instance of L} 410 Further, some variable conditions
have to be obeyed.

This splitting in two conditions is motivated by the usual “ground-proof plus
lifting” proof technique. The ground completeness allows us to break a total
extension step extending at leaf Ly and with key set K at the ground level into
a sequence of partial extension steps with residues Lo, ... , L,, terminated by
a total extension step with residue L, ; = O. In particular, the requirements
that K; = ({L;}UM;) and M; C K will guarantee that the sequence of partial
extension steps uses not more resources than the total extension step. The
lifting property would then allow us to lift the whole PTME refutation to
the first order level.

Thus it is basically this setup we are interested in, and which will be
pursued in what follows. However, it will be more concrete, and a specific
framework for computing 7T -residues will be proposed. This framework is
called theory inference systems. They provide a syntactic characterization
of how to map key sets into residues. This framework is attractive for the
following reasons:

— Lifting comes for free. That is, the lifting property is a property of the
framework. So it remains to prove ground completeness “only” for a given
theory.

— Since the completeness criterion is “global”, it covers a broader spectrum
than a “local” one. For instance, the “paramodulation” inference rule is
easily covered (see below for details).

— The proof of the ground completeness can be automated in many cases by
the technique of linearizing completion (Chapter 5). Even stronger, by this
method a complete theory inference system can be computed automatically
from the theories’ axioms.

— Due to the syntactical nature, the language of theory inference systems can
be implemented once and for all in a theorem prover. Instantiation with a
specific theory does not need any implementation work.

— The TME-Sem-Ext inference step is defined purely “semantically”; it is
the characterizing property in Definition 4.3.2 which only guarantees the
soundness of the calculus, but does not give us any restrictions on the
possible inferences. In fact, since theory reasoning with total extension
steps alone is complete, partial steps are in a strict sense not necessary at
all.

Thus, in order to make the total/partial theory reasoning framework more
meaningful, we need some way to restrict the total/partial inferences. This

118 4. Theory Reasoning in Connection Calculi

can be achieved in a completely declarative way using theory inference
systems.

The plan of this section is as follows: next, theory inference systems are
introduced. Building on this, we will define a specialized version of PTME-
Sem. Then, the completeness proof follows. Finally, the applicability of the
approach is demonstrated using some well-known instances of theory reason-
ing.

4.5.1 Theory Inference Systems

In the following, let X = (F, P, X) be a signature, and let £F = (F, P U {F}, X)
be its extension by the new predicate symbol F, meaning “false”.

Definition 4.5.1 (Theory Inference System). A theory inference rule
over a given signature X° (the short forms inference rule or simply rule will
be used as well) is a pair P — C, where P is a nonempty multiset of X-
literals and C' is either a nonempty set of X -literals or the singleton {F}}. P
is called the premise and C' is called the conclusion of the inference rule.

Some mnotational conveniences: in inference rules we will often write
Ll; P ;Ln - Ln+17 A 7Ln+k instead Of{[Ll, P ;Ln]} — ‘{an+17 P ;Ln+k]};
and Q, P — C instead of QUP — C, and L, P — C instead of {L}UP — C,
etc.

An instance of an inference rule is obtained by application of a substitution
to both the premise and the conclusion. Ground inference rules do not contain
variables.

A (theory) inference system (over XF) consists of a possible infinite set
of inference rules over XF. The letter “I” will be used to denote inference
systems.

A ground inference system consists of ground inference rules only. If T is
an inference system then 19 is defined as the inference system consisting of
all ground instances of all rules from T.

The operational meaning of inference is roughly the same as that of hyper res-
olution: from given literals {K7, ... , K, } derive the literals {Ly,11, ... , Lnti}o,
where o is a simultaneous unifier for the K;’s and L;’s. More precisely:

Definition 4.5.2 (Minimal First-Order Theory Inference).

We say that a clause Ro is inferred from a literal multiset K by means of
o minimal first-order theory inference step with inference rule P — C' and
substitution o (the short forms inference step or simply inference will be used
as well), written as

K :>P—>C', o Ro

iff

4.5 Partial Theory Model Elimination - Inference Systems Version 119

1. o is a multiset-MGU K'c = Po for some amplification®® K' J K, and
2. Ko contains no duplicates (Premise Minimality), and

O C=F
3. R=
{C’ else.

Occasionally, we will relax o bit and require that o is only a multiset unifier,
but not necessarily a multiset-MGU. This usage then, however, will always
be announced explicitly.

By overloading of notation, K is also called the premise, Ro is called the
conclusion of the inference and P — C' is called the used inference rule. We
will often abbreviate K =p_,c,o Ro to K =p_,c Ro or even K = Ro if
contezt allows.

Notice that if IC and P — C are ground then 0 = € and we can safely write
inferences as K = p_,c R without omitting any information. Such inferences
are also called ground inferences.

In inferences we amplify K towards X' because from K = {A} and inference
rule A, A — B we would like to infer B, which would not be possible if
using multiset unification applied to K instead of K'. Instead of allowing such
redundancies in inference rules, an alternative would be to require that for
each inference rule also its “factors” (in the sense of resolution) are present.

The premise minimality in theory inferences is motivated by their in-
tended application within partial theory ME, where we prefer to have the
amplification as part of the inference, but not as being carried out before-
hand.

Example 4.5.1. Consider the theory of strict orderings in Example 4.1.1
again. This is a corresponding theory inference system:

Iso : r<y, y<z—ozxr<z (Trans-1)
—(z<z), z<y—(y<z) (Trans-2)
r<zx—F (Irref)
(zr<y),z<y—F (Syn)

The first three rules stem from the theory immediately, while the additional
(Syn)-rule is used to treat syntactical inconsistencies. Note that only two rules
are given to treat transitivity, although three of such contrapositives exist.
Further, all residues are unit clauses or the empty clause. This prevents us in
particular from deriving “useless” residues such as?* =(b < ¢)V—(d < a) from
the key set {a < b,c¢ < d}}. We remark that this key set would be suspicious
due to its “unconnected” constituents. Notice that such key sets cannot occur

in inferences based on Zgsp.
Here are some inferences (except the last one):

2 «Amplification” is defined in Section 2.1.
24 This example is taken from [Stickel, 1985].

120 4. Theory Reasoning in Connection Calculi

K =ro Ro K' o
f(w) < v =(irref), o O flu) <w z « f(u), v+ f(u)
—(g(u) < f(u)), g(a) < h(a) —(g9(u) < f(u), z < g(a), y « h(a),
= (Trans—2), o _'(h(a’) < f((l)) g((l) < h((l) Z2 f((l), U< a
flu,v) < fv,u) flu,v) < f(v,u), 2,9,z fv,v),
b(Tra.ns—l),a f(U,U) < f(Ua U) f(ua U) < f(v’u) UV
flu,v) < f(v,u), f(u,0) < flo,u) flu,v) < f(v,u), 2,9,z f(v,0),
i(Transfl),a— f('U;U) < f(va U) f(ua ’U) < f(v,u) U

The last line contains no inference because the premise minimality is
violated. Also, the expression a < a, @ < a =(1er) O is not an inference,
because no amplification of {a < a, a < a} unifies with {z < z}. This
example shows that using multiset-unification where one multiset is amplified
is different from using sets (because {a < a, a < a} is the same as {a < a}).

It should be noted that Zse is indeed a “complete” set of theory infer-
ence rules (in a sense which will be made precise in Def. 4.5.6 below). This

result can be proven completely automatically by “linearizing completion”
(Chapter 5).

Theory inferences should at least be sound wrt. a given theory. Hence we
define:

Definition 4.5.3 (Soundness of Inference Systems). A T-X-interpre-
tation is a T -X-interpretation in which F is interpreted by false. Henceforth,
we will consider only T-XF-interpretations.

A theory inference system is called sound wrt. theory T iff for every of
its inference rules (P — C) € T it holds =17 V(P — C), where P (resp. C)
is read as the conjunction (resp. disjunction) of its literals.

That is, in a sound theory inference system, the universal closure of each of
its rules P — C has to be T-valid. Soundness is such a fundamental property
that we shall assume it implicitly from now on. Notice that by Lemma 2.5.3
we can always assume that =7 V(P — C)o for any instance of a sound rule
P—C.

4.5.2 Definition of PTME-T

Now we are ready to apply the framework of inference systems within partial
theory model elimination. It needs only to restrict the computation of residues
in TME-Sem (Def. 4.3.2) to theory inferences:

Definition 4.5.4 (Partial TME, Z-Version (PTME-T)). LetT be an in-
ference system over X% which is sound wrt. a given theory T. The infer-
ence rule partial theory model elimination Z-extension step PTME-I-Ext is
the same as TTME-Sem-Ext (Definition 4.3.2), except that the characterizing
property is changed in the following way:

4.5 Partial Theory Model Elimination - Inference Systems Version 121

p-K], Q LyvRkRy, --- L,VR,

PTME-I-Ext
(P, Qo
where
P [p- K]x fRVR V---VR, =0,
[p-K]o(RVRV---VR,) else,
where

K = P—=C,o Ro

and K = BU{K}U{Ly,...,Ly} for some BCp, and P = C is a
new variant of some inference rule from T.

(characterizing property for PTME-I-Ext)

We will refer to the thus changed inference rule partial theory extension step,
PTME-I-Ext. Extending Definition 3.2.4, we will write PME-I-Ext inferences
as ([P], Q) |_[p],IC,P—»C’,(’R,U),{[leRl,...,L"\/Rn]} (Q', Q)U-

The calculus of partial theory model elimination, I-version (PTME-I) is
obtained from TTME-Sem (Definition 4.3.2) by replacing its inference rule
TME-Sem-Ext by PTME-I-Ext. Occasionally, we will also speak of a calculus
PTME-Z in order to indicate that PTME-I is instantiated with a particular
inference system T; respective PTME-I-Ext inferences will be referred to as
PTME-Z-Ext inferences.

The need for using sound theory inference systems should be obvious: it
guarantees the soundness of the overall calculus.

In order to get an intuition for the new characterizing property we will
describe its operational behavior: in order to carry out a theory extension
step one has to find a key set K, made up from all the extending literals
Lq,...,L, from input clauses and from a subset of the ancestor literals p.
Notice the demand that the leaf literal K is part of the key set K. As in
previous versions, this can be seen as the adaption of the “link condition”
towards PTME-I (cf. Definition 4.2.4 and the subsequent discussion for the
link condition in total theory reasoning).

Then, a theory inference using some new variant is carried out on K.
We need a new variant for two purposes: first, as usual, it avoids failure of
unification due to name conflicts; second, it guarantees that extra variables
in the (instantiated) conclusion of the inference rule will be different from
any variable in the context. The underlying problem is much the same as in
TTME-MSR (Def. 4.4.3), where we had to protect extra variables introduced
by T-MGRs against unwanted bindings in the context (cf. Note 4.4.1).

122 4. Theory Reasoning in Connection Calculi

Finally, the conclusion of the theory inference comprises the residue
(R, o), which is used together with the rest literals of the extending clauses as
in TME-Sem-Ext (Def. 4.3.2) for carrying out the extension step. Notice that
the case with R = (O,0) describes a total extension step, while otherwise a
partial step results. Further notice that the premise of a theory inference rule
is never empty. This means, operationally, that a residue cannot be guessed
without any “justification”.

We will briefly rephrase non-theory model elimination (ME, Def. 3.2.3)
within PTME-I. For this, take for every n-ary predicate symbol P of the
given signature X an inference rule

P(z1,...,zy,), "P(z1,... ,2,) = F .

This inference system is referred to by Zsyn. It is easy to check that Zsyn
is ground complete.

In PTME-I-Ext inferences, by the premise minimality of theory inferences,
the key sets are forced to contain no duplicates Hence, in PTME-Zgyy every
key set consists of exactly two literals, as is the case in ME. Further, the link
condition of ME is realized through the characterizing property of PTME-I-
Ext, which requires the leaf to be part of the key set. All this together gives
us the following trivial theorem:

Theorem 4.5.1 (Theory Model Elimination simulates ME).
Every ME derivation is also a PTME-TIgyy derivation, and vice versa.

Note 4.5.1 (PTME-I and Minimality of Residues). Since we require that the
inference system 7 is sound wrt. the given theory T, it follows immediately
from the respective definitions that (R,o) is a T-residue of K (Def. 4.3.1).
Hence, as desired, PTME-I is an instance of TME-Sem (Def. 4.3.2). More
precisely, since our theory inferences are not forced to compute minimal T-
residues, PTME-I is an instance of weak TME-Sem. Thus, in order to turn
PTME-I into a proper instance of TME-Sem one would have to impose a
respective minimality condition on the theory inferences. Fortunately, unlike
in TTME-MSR (cf. Note 4.4.3) such a “local” minimality condition is not
required for PTME-I and can be replaced by a more “global” one.

Further, insisting on minimal 7T-residues would not fit nicely into our
syntactical-oriented framework due to its semantic nature. However, we can
safely insist on the weaker concept of premise minimality in theory infer-
ences, because this property can easily be checked syntactically (recall that
we demand that the instantiated key set contain no duplications).

A typical example to demonstrate the benefit of the premise minimal-
ity is as follows: assume an inference rule P(z,y), P(y,z) — Q(z,y), a
branch p = [P(a,u)] and an input clause C' = P(a,v) V R (think of R as
a long disjunction). Then, the PTME-I-Ext inference based on the theory in-
ference P(a,a) = Q(a,a) exists, which lengthens p towards [P(a, a) - Q(a, a)].
Notice that within the theory inference the premise is amplified towards
{P(a,u), P(a,u)}, but the input clause C' is not used.

4.5 Partial Theory Model Elimination - Inference Systems Version 123

On the other hand, if the premise minimality restriction in theory in-
ferences were dropped, a PTME-I-Ext inference based on the the key set
{P(a,u), P(a,v)} (which is obtained from two copies of C), amplifica-
tion {P(a,u), P(a,v)} and resulting theory inference P(a,a),P(a,a) =
Q(a,a) would be possible, which in turn would result in the branch set
[P(a,a) - Q(a,a)], [P(a,a)] o R{v + a}. Notice that in this case unneces-
sary open branches are introduced. Clearly, this should be avoided.

To sum up, the premise minimality restriction in theory inferences forbids
multiple occurrences of (instantiated) key set literals, which is never neces-
sary, as required copies can be drawn within the theory inference by suitable
amplification.

One more example will illustrate the new definition.

Ezample 4.5.2 (Strict Orderings). Consider the theory of strict orderings
and the respective inference system Zso of Example 4.5.1 again. None of
the extension steps in Figure 4.3.2 is a PTME-I extension step, because Zso
does not contain suitable theory inference rules. A comparable derivation is
depicted in Figure 4.9.

4.5.3 Soundness and Answer Completeness

Theorem 4.5.2 (Soundness of PTME-I). LetT be a universal theory, T
be an inference system which is sound wrt. T and let M be o clause set. If a
PTME-T refutation of M exists then M is T -unsatisfiable.

This property in essence follows from the soundness of Z wrt. 7 every in-
stance of an inference rule which will be used in a theory extension step is
T-valid. This implies that any residue is a logical consequence of its preceding
branch literals. This observation is at the heart of the soundness proof.

A formal proof would be carried out much like the soundness proof for
TTME-MSR (Theorem 4.4.1), namely by reducing it to the soundness of
a stronger partial theory connection calculus. This is straightforward and
hence omitted. As always, the other direction — completeness — is much
more complicated. The basic setup was already described in the introduction
to this section, and it remains to rephrase it in the current terminology.
However, we will be more general than needed in that we formulate first-
order “background” derivations:

Definition 4.5.5 (Background Derivation). A (first-order) background
derivation of a literal L, 11 from a given literal set M and top literal T wrt.
an inference system I consists of sequences

(Ll :T)a ey Ln; Ln+1
My, ..., M,
01, ceey On

pP—-C, ..., P,—>C,

'so3po

9} Ye pajyejouue ore S[eIdI S Aoy SUISSI\ UOIYRALdP [-HINILA V "6 oInSig

/N

b<ec

Clauses used in extension steps:

c<d V
d<e V
e<a V

VARN

a<b

AR

b<ec ‘

a<c

g v Y
N v K
v [

AN

av‘<b
b<c ‘ b<‘c b<‘c ‘ ‘
|
a<c a<c a<c
c<d ’\ N

a<d W U

a<d W U a<d B U

d<e

a<e

/
/
/

a<e N N

e<a

a<a

/
/

o) UoIeUUO)) Ul Suruosedy AI09yJ, °§

0 O

Used Inference rules:
(Trans-1)
(Irref)

r<y,y<z—r<z
-(x<y)—F

a<d WA U

a<e

0 o

a<a

*

o 2}5)
(for @)

vel

4.5 Partial Theory Model Elimination - Inference Systems Version 125

such that fori=1,... ,n, M; C Moy---0;_1, P; = C; is a new variant of
an inference rule from T and

Ly, M; =p,0;, 0: Lit1

Background derivations usually are written more suggestive as

M My
(Ll = T):1> P1—Ch, 01L2 Tt Ln:> Prn—Chn,on Ln+1
We will allow dropping of indices if context allows, and we will write
D= (T =% mo, Lnt1), where o =oy---0,|Var(M)

to denote the fact that such a derivation D exists. If L, 1 = O then D is
also called a refutation. In this case the combined substitution o is called the
computed answer.

If T, M and T are ground then necessarily o; = € and hence o = . Thus,
in this case the indices can be dropped without losing information, and we
speak of ground derivations.

Notice that in background derivations linearity is demanded in the sense
that the conclusion of one theory inference is fed into the premise part of
the subsequent theory inference. Further notice that in the i-th step the side
literals M; are drawn from Mo ---0;—1. In other words, in every step the
substitution computed so far oy ---0;_1 is applied to the input set M. This
realizes a “rigid” treatment of variables (cf. Note 4.2.4).

These first-order derivations will be used below in a stand-alone complete-
ness result for “linearizing completion” (Theorem 5.6.4). It will allow us to
use theory inference systems as complete T-unification procedures. But for
the current purpose, to formulate a sufficient completeness criterion, only the
ground version of “derivation” is needed:

Definition 4.5.6 (Completeness Criterion). An inference system T is
called ground complete wrt. a theory T iff for every minimal T -unsatisfiable
ground literal set M and every literal T € M there is a background refutation

R = (T :;Q,M D) .

We say that I is ground complete for negative top literals if such a refuta-
tion R exists for every negative literal T € M (but not necessarily for every
positive literal).

In words, for an inference system Z to be ground complete we require that
any minimal 7 -unsatisfiable literal set M must admit the derivation of the
empty clause by application of theory inferences from ground instances 79
of 7 to M. Notice that we demand the independence of the top literal: any
literal may be used as a starting point (but only for negative literals in the
restricted case).

126 4. Theory Reasoning in Connection Calculi

Why we need a completeness criterion of the stated form to achieve com-
pleteness of PTME-I needs clarification. For this, we return to Example 4.5.1
on page 119. The inference system Zso shown there was used in Exam-
ple 4.5.2 for developing a sequence of partial extension steps. These steps led
to the closing of the branch with literals a < b and b < ¢ in tableau in
Figure 4.9 (page 124). This can be seen as a proof of the T -complementarity
of the involved literals, i.e. of M = {a < b, b < ¢, c < d,d <e, e < a}.
Alternatively, one can think of replacing a given total theory extension step
(cf. Figure 4.2 on page 69) with key set M by the stated sequence of partial
extension steps. Since M is given only conceptually, but not factually, one
can think of M as being computed by search using theory inferences.

For this computation of M, it is totally irrelevant whether in the tableau
context the involved literals are ancestor literals or literals from input clauses;
further, the rest literals of input clauses are also irrelevant. Instead, what
matters is the following: (1) the start literal — b < ¢ — cannot be chosen
arbitrarily, but is given “from outside” as the leaf literal to be extended;
(2) the theory inferences are chained in a linear way, which means that the
conclusion literal of one theory inference — here a < ¢ — is to be part of
the premise of the subsequent theory inference; this stems from the design
decision of model elimination (the “link condition”); (3) the involved literals
must be taken either from ancestor context or from input literals immediately,
but must not be derived.

Altogether, the properties (1), (2) and (3) together with the unit-resulting
property of theory inferences states nothing but a completeness requirement
with respect to linear, unit-resulting refutations for arbitrary goal literal.

Ezample 4.5.3 (Ground Complete Inference System). The inference system
Iso in Example 4.5.1 is ground complete wrt. the theory SO of strict or-
derings. This will be shown in Chapter 5 below for the extended theory with
equality.

For instance, a background refutation for

M={a<bb<c,c<d d<e,e<a}

with top literal b < ¢ is as follows:

b<cgga<céga<dga<ega<azo>ﬂ

The last theory inference uses a ground instance of the (Irref) inference rule,
all other inferences use ground instances of the (Trans — 1) inference rule.
Notice that this background refutation corresponds to the computation in
Example 4.5.2.

Before turning towards completeness one more improvement will be intro-
duced now.

4.5 Partial Theory Model Elimination - Inference Systems Version 127

In Section 4.4.2 we defined the restriction “stability wrt. minimality”
for TTME-MSR. Tt said that a once chosen key set remains minimal 7T-
complementary, even after further instantiation. We are going to define the
analogous restriction for PTME-I:

Definition 4.5.7 (Stability wrt. Minimality for PTME-I). Let

D = (P1 Fipyl,kr, PioCr(Re,on), By P2 Pt Flp 1] Kn 1, (R0 m 1)y En ey Pr)

be a PTME-I derivation, where E; denotes the sequence of extending clauses
in the i-th extension step. We say that D is stable wrt. minimality iff

fori=1,... ,n—1: Kjo;---0n_1 contains no duplicates.

It is clear by definition of theory inferences (Def. 4.5.2) that K;o; contains
no duplicates. However, as for the respective minimality property in TTME-
MSR (see the discussion following Definition 4.4.4), there is no guarantee that
Kio;-- - 0,1 contains no duplicates. Hence, this property must be demanded
explicitly.

Theorem 4.5.3 (Answer Completeness of PTME-I). Let T be a uni-
versal theory, Tt be an inference system which is ground complete wrt. T, ¢
be a computation rule, P be a program and < Q be a query (cf. Def. 3.2.5).

Then, for every correct answer {Q®1,... ,QPn} for P and « Q there
erists a PTME-TZ1 refutation D¢ of P and < @Q wvia ¢, which is stable wrt.
minimality, with computed answer Answer(D¢) = {Q1,...,Q:}, and such
that

{Q1,..., QY C{QP1,...,QP,,} for some substitution §.

In order to get an idea of answer computation within theory reasoning, con-
sider the toy application of Figure 5.1 in Section 5.1.1.

Proof. The first part of the proof is taken literally from Part 1 in the respec-
tive proof of Theorem 4.4.1 on page 109. Hence let

M" =P'"U{«Q®,,...,« Qd.}

be a finite minimal 7 -unsatisfiable ground clause set, consisting of instances
of clauses from P and of instances of «+ Q. Furthermore, from Part 2 (ground
completeness) in the proof of Theorem 4.4.1 we take the TTME-MSR, refu-
tation Dy p_ s of M with start clause + Q&].

Now the PTME-I specific part comes. By Lemma A.1.13 the refutation
Dirrave—msr can be transformed into a PTME-ZS- refutation Dppp,p_; of
M" with start clause < Q®}, which is stable wrt. minimality.

The further argumentation is taken literally from Part 3 (query usage) and
Part 4 (lifting) of the proof of Theorem 4.4.1, however, using the refutation

! : !
Dormp— instead of Dlpr g vrsr-

128 4. Theory Reasoning in Connection Calculi

Note 4.5.2 (Regularity in PTME-I). As with the other calculi treated so far,
we are interested in regularity restrictions (Def. 3.3.2) also for PTME-I.

One simple regularity refinement for background refutations is to insist
(on the ground level) that L; # Lj, for 4,5 € {1,...,n+ 1}, i # j in
Definition 4.5.5. This obviously preserves completeness, because, if violated,
one simply has to delete the inferences carried out between identical literals,
yielding a shorter derivation whose computed answer is the same or more
general. The lifting to the first-order level would be straightforward; also,
as the proof of the previous theorem shows, a background refutation is still
contained as a chain of residues within a PTME-I refutation. Hence, the
suggested regularity restriction can be applied within these chains.

Also, the regularity restriction possible in the TTME-MSR, version (which
is the base for PTME-I) carries over for such structural reasons to PTME-I
except for residue literals. Residue literals are usually “new” with respect to
the replaced total extension step, and there is no simple argument to guaran-
tee that these are not identical to other literals in the refutation (stemming
from side literals in extension steps or stemming from other residue chains).
I suspect that such a strong form of regularity can be demanded, but unfor-
tunately I did not find a proof. The difficulty is that in order to modify a
regularity violating refutation into a regular one, non-local transformations
on the tableau seem to be necessary which I could not prove to terminate.

4.5.4 An Application: Generalized Model Elimination

The purpose of this example is to demonstrate the usefulness of the language
of theory inference systems. Other sample inference systems, namely ones
which are produced by linearizing completion, will be described in Chapter 5
(modal logic in Section 5.7.3 and the combined theory of strict orderings and
equality in Section 5.7.2).

In generalized model elimination (GME) [Bollinger, 1991] (finite) conjunc-
tions of literals take the place where a literal is required in ordinary model
elimination. Such a conjunction of literals is called a generalized literal.

Consequently, in a GME extension step a connection is searched for among
the literals of two generalized clauses. That is, a connection between two gen-
eralized literals L A. . .AL,, and KiA.. . AKp, is apair (L;, K;) (i € {1,... ,n},
j € {1,...,m}) which can be made complementary by some substitution.
Since no residues are involved, GME can be seen as an instance of total
theory reasoning. Nevertheless, the underlying theory reasoning can also be
“programmed” using theory inference rules. This shall be demonstrated here.

In order to express GME within our framework we adopt the convention
that a conjunction Ly A --- A L, of literals shall be represented as the list
[L1,...,Ly]. It requires only two steps to express GME within PTME-I:

— A GME input clause
(Li A AL,)V -V (LT A--- AL)

n

4.6 Restart Theory Model Elimination 129

becomes the TME clause

g lit((Ly,..., LY)V ---V g lit((LT",... , L) .

Nm

Of course, g_lit is just a new literal symbol. Note that every predicate
symbol in GME becomes a function symbol in TME. Let Mgy g refer to
the thus translated clause set.

It should further be noted that by introducing lists & la Prolog we do not
leave first order logic; the notation [Ly, La, . . . , Ly,] is nothing but syntactic
sugar for the term cons(Lq, cons(La, ... cons(Ly, nil))).

The procedure for searching for complementary literals in the generalized
literals can be coded immediately into the inference rules. For this we take
the following inference system?® Zgarg:

Teme: 9-lit(GLy), g lit(GLy) — connectzon(GLl,GLQ)
connection([-A|Ry],[A|Rz]) —
connection([A|R1],[-A|R2]) —

connection([L|R],GL) — connectzon(R GL)
connection(GL,[L|R]) — connection(GL, R)

The first rule sets up a “call” to the connection predicate, which in turn

scans through the lists and finds complementary literals. Of course, this
is a Prolog program in disguise. In other words, we used the language of
theory inference systems as a programming language to describe theory
inferences?®

We conclude with the relevant theorem:

Theorem 4.5.4 (Theory Model Elimination simulates GME). Let M
be a set of generalized clauses. Then a GME-refutation of M exists if and only
if a PTME-TgpE refutation of Mgy E erists.

4.6 Restart Theory Model Elimination

In this section it will be demonstrated that model elimination — and hence
PTTP — can be defined such that it is complete without the use of contra-

positives. As argued for in [Baumgartner and Furbach, 1994a] we believe that

this result is interesting in at least two respects: it makes model elimination
available as a calculus for non-Horn logic programming and it enables model
elimination to perform proofs in a natural style by case analysis.

%5 The notation [L|R] means cons(L, R).

26 A totally different application in this spirit is to express the Hyper tableau cal-
culus in [Baumgartner et al., 1996] within theory model elimination. For this,
the input clause set is transformed into a set of theory inference rules in a tricky
way, and PTME-I will “behave” like the Hyper tableau calculus.

130 4. Theory Reasoning in Connection Calculi

Let us explain what we mean by the term “without the use of contrapos-

itives”. In implementations of theorem proving systems usually n procedural
counterparts Lj:~LyA+---AL;_1 ALj;1 A---AL, for a clause Ly V- --V L, have
to be considered. Each of these is referred to as a contrapositive of the given
clause and represents a different entry point during the proof search into the
clause. It is well-known that for Prolog’s SLD-resolution one single contra-
positive suffices, namely the “natural” one, selecting the head of the clause as
entry point. For full first-order systems the usually required n contrapositives
are either given more explicitly, as in the SETHEO prover [Letz et al., 1992],
or more implicitly, as in the connection calculus of [Eder, 1992] by allowing
the setting up of a connection with every literal in a clause (Cf. Note 3.1.1
in Chapter 3). The distinction is merely a matter of presentation and is not
essential for our purposes. Now, by a system “without contrapositives” we
mean more precisely a system which does not need all n contrapositives for a
given n-literal clause. The modifications will be such that for any clause, only
one single head literal is selected for establishing the connection in extension
steps.

This calculus is called restart model elimination (RME) and was intro-
duced in [Baumgartner and Furbach, 1994b); in [Baumgartner and Furbach,
1994a) an extended version also dealing with implementational issues can
be found. Further, we discovered that the connection calculus [Eder, 1992]
is complete without contrapositives and without any change to the calculus.
This surprising result is due to its relaxed complementary-literal condition
which includes the RME inference rules. The logic programming aspects of
RME were further investigated in [Baumgartner et al., 1995] by further mod-
ifying the calculus and deriving answer completeness results.

Here, we are concerned with lifting this latter answer completeness result
to the theory reasoning level, which I think is of particular interest for auto-
mated reasoning and problem solving purposes?” As mentioned above, RME
is attractive in this context for its “case analysis” properties. For instance, in
proving theorems such as “if z # 0 then 22 > 07 a human typically uses case
analysis according to the axiom X <0 V X =0 V 0 < X. This seems a very
natural way of proving the theorem and leads to an easily understandable
proof. The RME calculus carries out precisely such a proof by case analysis.

As was carried out for theory model elimination, there are several alterna-
tives for the restart versions. We will restrict ourselves to our primary frame-
work of theory inference rules. A restart version corresponding to TTME-
MSR would be defined in a straightforward way then.

4.6.1 Definition of Restart Theory Model Elimination

As a preliminary, we have to presuppose definite theories (cf. Def. 2.4.1),
represented by theory inference rules of a certain form:

2T An earlier ground version of total restart theory model elimination with a refu-
tational completeness result was presented in [Baumgartner, 1994].

4.6 Restart Theory Model Elimination 131

Definition 4.6.1 (Contra-Definite Inference System). A theory infer-
ence rule P — C (over a signature X) is called contra-definite iff P is of the
form {—A Ay, ... A} where n > 0 and either C = F or C is of the form
{-Bi,...,7Bp}, where m > 1. A contra-definite theory inference system
consists of contra-definite rules only. A contra-definite theory inference is a
theory inference carried out with a contra-definite rule.

That is, a contra-definite rule contains exactly one negative literal in the
premise and allows for a contrapositive of the form A;,...,4, — A or
Ay,...,An, B1,...,B,;, — A, which is nothing but the usual notation for
a definite clause. Notice that, for instance, A — B is not a contra-definite
rule, but =B — —A is one. Our interest in contra-definite inference system
comes from the fact that these are sufficient in the calculus below, as rules
of the form A — B are never applicable.

The restriction to contra-definite inference systems covers practical im-
portant cases such as equality and partial orderings. Although modifications
towards more general theories are conceivable, these will be not considered.
A motivation for this restriction follows below.

As said, restart model elimination is motivated by logic programming
purposes. As is common in the literature, clauses shall also be written in the
“logic programming style” using an arrow “<”. Notice that “« C” is no well
formed-formula according to Definition 2.2.3. This fact will, however, simply
be neglected. The translation of Ay,...,A,, + Bi,...,B, into a clause is
AiV---VA,V B V---V-B,.

As mentioned, only one positive literal per clause as entry point for exten-
sion steps shall be allowed. This is formalized at the calculus level by using
selection functions:

Definition 4.6.2 (Selection Function). A selection function f maps a
clause C = (A1,...,A, < Biy,...,By) withn > 1 (i.e. a nonnegative
clause) to a nonempty subset Sc C {A1,... ,Ap}. S is called the set of se-
lected literals of C' by f. The selection function f is required to be stable
under lifting, which means that if f selects Scy in the instance of the clause
C~ then f selects S¢ in C.

Notice that for definite clauses A + By, ..., B,, any selection function nec-
essarily selects {A}.

Definition 4.6.3 (Partial Restart TME, 7-Version). Let Z7 be a contra-
definite inference system which is sound wrt. a given definite theory T and
let f be a selection function. The inference rule partial definite?® theory
model elimination Z7-extension step, PDTME-I-Ext is the same as PTME-
I-Ext (Definition 4.5.4), except for the following changes:

28 The term “contra-definite” would be too long here.

132 4. Theory Reasoning in Connection Calculi

lp- K], Q LV I VEn bpTME-LExt
(P, Q)o
where
p_)P Klx ifRVRV---VR, =0,
[p-K]o(RVR1V---VR,) else,

where K is negative literal, and
K = P—=C,o Ro

and K = BU{K}U{Ly,...,Ly} for some BCp, and P = C is a
new variant of some inference rule from L. Furthermore,

1. B consists of positive literals only, and

2. L; is a positive literal and L; € f(L; V R;) (fori =1,...,n),
and

3. R =0 or R consists of negative literals only.

(characterizing property for PDTME-I-Ext)

The inference rule restart step, Restart, is defined as follows:

[p-K]o(mA1V---V-4,), 9

Restart

where K is a positive literal, and " A1 V---V A, is a new variant of
a negative clause from the given input clause set, also called restart
clause in this context.

The calculus of partial restart theory model elimination, I-version (PRTME-
I) consists of the inference rules PDTME-I-Ext and Restart. We insist that
any PRTME-I derivation starts with a negative start clause ~Ay V---V A4,
from the input clause set M (cf. Def. 8.2.4).

Notice that the inference rules PDTME-I-Ext and Restart are disjoint: PDTME-
I-Ext is applicable only to negative leaves and Restart is applicable only to
positive leaves. The selection function achieves the possibility of restricting
the set of contrapositives and of “entering” clauses only via head literals.
The selection function can be restricted to select one literal only, without
sacrificing completeness.

Note 4.6.1 (Redundancy of Conditions 1, 2 and 3). In a strict sense, the con-
ditions 1, 2 and 3 in the definition of PDTME-I-Ext are not necessary, as they

4.6 Restart Theory Model Elimination 133

are a consequence of the requirement that the leaf K is negative and the
precondition that the used inference system Z7 is contra-definite: the contra-
definite rules enforce that from a negative literal we either close the branch
or append a residue consisting of negative literals only (giving condition 3).
Further, this must be done by means of some positive literals, stemming ei-
ther from the ancestor context of K (giving condition 1) or from extending
clauses (giving 2). Nevertheless, although redundant, the conditions 1, 2 and
3 are stated in order to make the structure of inferences of PDTME-I-Ext
inferences explicit.

In the case that the input clause set is a Horn set, then, with respect
to derivations, the result and argumentation of Proposition 4.3.2 established
for PTME-Sem-Ext inferences in PTME-Sem derivations still holds if PTME-I-
Ext inferences are used instead, provided that the underlying theory inference
system is contra-definite. In this case, Restart can never be carried out, and
PRTME-I coincides with PTME-I.

Ezample 4.6.1 (Strict Orderings). Consider the theory of strict orderings
and the respective inference system Zso of Example 4.5.1 again. Figure 4.10
contains a sample refutation, where the depicted inference system consists of
the contra-definite rules (Trans — 2) and (Syn— <) from Zso and the addi-
tional rule (Syn— =).

Tableau | 1| contains the start clause clause (1). Tableau | 2| is obtained
by a total extension step with input clause (5), using the inference rule Syn-
<. Here, we assumed that the leftmost literal in clause (5) is selected. Since

the upcoming leaf 0 < a is positive, only a Restart step can be carried out
(Tableau) The new leaf —(a < b) in tableau |4 |is obtained by application

of a PDTME-I-Ext step applied to 0 < a and —(0 < b). Tableau and @
are obtained by extension steps with clauses (5) and (6).

The price of the absence of contrapositives is that whenever a branch ends
with a positive literal, the search has to be “restarted” with a new negative
clause. Now we can also motivate the restriction to definite theories.

Note 4.6.2 (Restriction to Definite Theories). If more general theories than
definite theories were allowed, for instance Horn theories, then the restriction
to negative clauses as queries would no longer be complete, even when more
general than contra-definite inference systems were allowed. For instance,
taking the inference system Zso again and the SO-unsatisfiable clause set
{a < a} would not even allow a setup as initial branch set. In general, any
input clause would have to be considered as a start clause and for restart
steps. A respective calculus would be defined easily, although one might doubt
that it is in the goal-oriented spirit of model elimination.

On the other hand, for definite theories one can allways find a contra-
definite inference system by means of linearizing completion, which is ground
complete for negative top literals (Corollary 5.6.2). As will be shown below

“uoreAlop [FHININ V "0T'% 2SSty

=(a < 0) —(a < 0) =(a < 0) —(a < 0)
0<a a=0 0<a a=0 0<a a=10
Restart: —(0 < b) -(0<b)
ﬂ(a‘< b)
Input Clauses: Used Inference rules:
(1) —(a<0) (Trans-2) Sz <z),z<y—(y<z)
(2) =(0<b) (Syn-<) “(r<y),z<y—F
3) a<b
(4) =(a =0) (Syn-=) “(z=y),z=y—F
(5)

r<0VO<zVz=0

VET

o) UoIeUU0)) Ul Suruosedy L1090y, °§

4.6 Restart Theory Model Elimination 135

in Theorem 4.6.1, this suffices to obtain a complete calculus. We take this as
the motivation to restrict to contra-definite inference systems.

Note 4.6.3 (Related Work.). The non-theory version of the PRTME-I calcu-
lus was described in detail in [Baumgartner and Furbach, 1994a]. There re-
main some minor differences, however. In [Baumgartner and Furbach, 1994a],
we used what we called the goal-normal form, a syntactic transformation on
the input clause set which replaces every negative input clause =Ly V---V—L,
with Goal < Ly A --- A L,. The start clause to be used then is «+ Goal, and
a restart step there consists of copying the topmost literal, which is always
the literal = Goal. In the present version, we make the purpose of this trans-
formation explicit, which is to allow any negative clause as a start clause or
for restarts.

As another difference, expressed in the present terminology, we allowed
either the selection of every positive literal in a clause, or precisely one.
Thus, the present definition allows for more flexibility in this respect by the
possibility of selection “in between”.

In some cases it helps to find a shorter refutation if additionally PTME-
I-Ext steps are allowed at positive leaves. This is in particular the case if no
extending clauses are involved. In this case the inference could be described as
a “reduction step” with a positive leaf literal. In [Baumgartner and Furbach,
1994a) this version was called non-strict RME.

Note 4.6.4 (Non-Theory Restart ME). Short of these minor differences, the
non-theory model version in [Baumgartner and Furbach, 1994a)] is obtained
by instantiating PRTME-I with a theory inference system consisting of syn-
tactical rules only (cf. the Syn-< and Syn-= rules in Example 4.6.1). This
paper also contains a comparison to related methods, such as near-Horn
Prolog [Loveland and Reed, 1989] and Plaisted’s problem reduction formats
[Plaisted, 1988].

The only work related to theory restart model elimination is the calculus
described in [Petermann, 1993b]. In fact, Petermann rediscovers the total
version of our PRTME-I calculus, which was first described in [Baumgart-
ner, 1993]. His total version of our PDTME-I-Ext inference rule is called “T-
connection inference with positive refinement” there, and our Restart rule has
the same name.

4.6.2 Soundness and Answer Completeness

The soundness statement for PRTME, and also its proof would be much
the same as that of PTME-I, and hence is omitted. We only remark that
the soundness of new inference rule Restart (i.e. the fanning of a new clause
below some branch) is already covered by Lemma, 4.2.1.1

Concerning completeness, we start with the ground version of PRTME-I.
Following that, an analysis of the completeness proof will allow us to incor-
porate a specific regularity restriction. Then we treat the first-order version.

136 4. Theory Reasoning in Connection Calculi

Lemma 4.6.1 (Ground Completeness of PRTME-I). Let T be a def-
inite theory and It be a contra-definite theory inference system which is
ground complete wrt. T for negative top literals (cf. Def. 4.5.6). Then for
every minimal T -unsatisfiable ground clause set M and every negative clause
G € M and selection function f a PRTME-T% refutation of M wrt. f and
start clause G exists.

Proof. Informally, the proof is by splitting the non-Horn clause set M into
Horn sets, assuming by completeness of PTME-Z7 on the ground level
(Lemma A.1.13) respective refutations, and then assembling these refuta-
tions (without reduction steps) into the desired restart model elimination
refutation. There, reduction steps come in by replacing extension steps with
split positive unit clauses by reduction steps to the literals where the restart
occurred.

For the formal proof some terminology is introduced: we say that a branch
set P “contains (an occurrence of) a clause A;,---, A, + By,---,B,,” if P
is of the form

PZ([p'Al]a-"J[p'An]a[p'_‘Bl]a"'J[p'_'Bm]JP’)

for some branch p. If we speak of “replacing a clause C in a derivation by
a clause C' 'V D” we mean the derivation that results when using the clause
C'V D in place of C in extension steps. Also, the same literal L € C must be
selected as extending literal.

By a “derivation of a clause C” we mean a derivation that ends in a
branch set which contains at least one occurrence of the clause C.

Let k(M) denote the number of occurrences of positive literals in M
minus the number of definite clauses in M (k(M) is related to the excess
literal parameter in [Anderson and Bledsoe, 1970]). Now we prove the claim
by induction on k(M).

Induction start (k(M) = 0): M must be a set of Horn clauses. Clearly, M
must contain a negative clause G as claimed. By the ground completeness of
TTME-MSR (Lemma A.1.2) and Lemma A.1.13 we can obtain a PTME-Z%
refutation D of M with start clause G. Since Z7, and hence also Zg— is given as
a contra-definite theory inference system every PTME-I-Ext step must follow
the structure given in Proposition 4.3.2. This was argued for in Note 4.6.1
above. Thus, any PTME-I-Ext step is also a PDTME-I-Ext step. Hence, D is
a PRTME-Z% refutation as desired.

Induction step (k(M) > 0): As the induction hypothesis suppose the result
to hold for unsatisfiable ground clause sets M' with k(M') < k(M).
Since k(M) > 0, M must contain a non-Horn clause

CZAl,AQ,...,An(—Bl,...,Bm

with n > 2. Without loss of generality assume that 4; € f(C), i.e. that 4
is selected by f in C. Now define n sets

4.6 Restart Theory Model Elimination 137

M; = (M\{C})U{Al (—Bl,... ,Bm}
My = (M \{C})U{Az}

My = (M\{C}) U{An}

Every set M; (i = 1...n) is T-unsatisfiable (because otherwise, a model
for one of them would be a 7T-model for M). Furthermore, it holds k(M;) =
k(M)—n+1 < k(M). Thus, by the induction hypothesis respective PRTME-
7% refutations D; of M; exist.

Now consider D; and replace in D; every PDTME-I-Ext step with the
clause A; « By,---,B,;, by a PDTME-I-Ext step with C using the selected
literal A;. Call this derivation Dj.

D; is a derivation of, say, k; occurrences of the positive unit clauses A;
(j = 2,...,n) from the input set M. Now every occurrence of A; can be
eliminated from the derived branch set according to the following procedure:
for j =2,...,n and for every of the k; branches [p1],... , [p;] ending in A;,
cumulatively extend D;_l in the following way: first apply a restart step to
[pi] (1 <4 < kj;) using as the restart clause the start clause @), of D; (the
induction hypothesis gives us that (); is a negative clause and hence is a
legal restart clause). Now that (); occurs in the resulting derivation, we can
append the refutation D;, however using [p;] o @; instead of @);. Note that
A; occurs now in every branch of R;.

Let D} be the resulting derivation. D} is a PRTME-Z7 derivation of
clauses 4;41,...,A, from M U{A;}. In order to turn D} into a derivation
D;. of clauses Aj;1,... , Ay from M alone, every use of A; as extending clause
in a PDTME-I-Ext step in the appended refutations D; can be replaced by
the ancestor literal A; € [p;] occurring on the extended branch.

Notice that this construction shortens the list of positive unit clauses by
one to Ajy1,...,A,. Hence, repeated application will terminate and, at the
end Dj, is the PRTME-ZJ- derivation of the empty list, i.e. Dj, is a refutation.

4.6.3 Regularity and First-Order Completeness

The regularity restriction as it is usually defined for the non-restart versions
(Section 3.3, “no literal occurs more than once in a branch”) no longer holds
for restart theory model elimination. This is rather easy to see since after a
restart step it might be necessary to repeat — in parts — a refutation derived
so far up to the restart step.

However the following observations allow the definition of a somewhat
weaker notion of regularity. The proof of the ground completeness lemma
(Lemma 4.6.1) proceeds by recursively splitting the input clause set M into
Horn sets M, ... , M; and then assembles the respective PTME-I refutations
R,, ... R; into PRTME-I refutation R of M. Every branch in R is of the form

138 4. Theory Reasoning in Connection Calculi

[p1- A1 pn1-An_1-pn] where p; (for i = 1,...,n) consists of negative
literals and stems from some Ry, (k € {1,...,l}) and A;,...,A,_1 are the
positive literals causing the restart steps. Let us call each p; a block.

Since the assembling of the Rys does not disrupt their structure, some
properties of the Rys carry over to their respective occurrence in R. In partic-
ular, the regularity of the Rys (which can be demanded due to Theorem 4.5.3)
carries over in this way. Hence we define a branch as weakly blockwise reg-
ular iff every pair of (different occurrences of) identical negative literals is
separated by at least one positive literal. In adaption of Definition 3.3.2, a
derivation is is called weakly blockwise regular iff every branch in every of its
branch sets is weakly blockwise regular.

However, since the weak blockwise regularity restriction applies only to
the negative literals within a block, we might still derive a branch of the form
p=---A---A--. which is weakly blockwise regular. We wish to extend weak
blockwise regularity to forbid such duplicate occurrences of positive literals,
and say that a branch is positive regular iff all the (different occurrences
of) positive literals occurring in it are pairwise not identical. Extending the
preceding definition, we define a branch to be blockwise regular iff it is both
weakly blockwise regular and positive regular.

The completeness for the blockwise regularity restriction is preserved by
the following line of reasoning. Again, we analyze the proof of Lemma 4.6.1:
while for the induction start positive regularity is trivial, for the induction
step the following observation can be used: consider the split sets Ms,... , M,
and the associated positive literals Ay € M, ..., A, € M,. Clearly we can
delete any clause of the form

C=A;,By,...,By+Ci,...,Cm (where k> 0)

from M; (i =2,...,n), and use the resulting 7-unsatisfiable set M/ instead
of M;. For this syntactical reason, a branch containing A; cannot come up in
the refutation R; of M (which can be supposed to be positive regular by the
induction hypothesis). Thus, in the assembling of the R;s into the final refu-
tation R, the occurrence of A; which caused the restart step remains the only
occurrence of A;. In other words, positive regularity holds for this branch,
and hence more generally also for the whole refutation R. We conclude with
the first-order completeness. Again, as was exercised for TTME-MSR and
PTME-], it is formulated as an answer completeness result (cf. again Fig-
ure 5.1 in Section 5.1.1 for a toy example on answer computation.)

Theorem 4.6.1 (Answer Completeness of PRTME-I). Let T be o uni-
versal theory, It be a contra-definite inference system which is ground com-
plete wrt. T for negative top literals (cf. Def. 4.5.6), ¢ be a computation rule,
I be a selection function, P be a program and < Q be a query (cf. Def. 3.2.5)
such that Q consists of positive literals (i.e. + Q is a negative clause).
Then, for every correct answer {Q®1,...,QPn} for P and < @ a
PRTME-Tt refutation D¢ of P and < Q) via ¢ and selection function f

4.6 Restart Theory Model Elimination 139

exists, which is stable wrt. minimality, with computed answer Answer(D¢) =
{Q1,--.,Qi}, and such that

{Q1,.-.,Qi}d C{QP1,...,QPy} for some substitution 6.

In [Baumgartner et al., 1995] we obtained an answer-completeness result
for the (non-theory) “ancestry restart” variant of model elimination. This
variant has the nice property that for correct definite answers, i.e. the answer
is a singleton, the computed answer is also a singleton. I conjecture that a
respective variant with theory reasoning could also be defined and proven
complete.

Proof. The proof is the same as for the answer completeness of PTME-I (The-
orem 4.5.3) except that the ground completeness of PTME-I (Lemma A.1.13)
used there is replaced by the ground completeness of PRTME-I (Lemma 4.6.1
above). Here, also the restriction to contra-definite inference systems and neg-
ative query clauses « () comes in.

It should further be noted that the lifting lemma, Lemma A.1.9, has
to be updated with the case of the new Restart inference rule. Since this is
straightforward, it is omitted. Further, since the selection function is required
to be stable under instantiation (Def. 4.6.2), we are guaranteed that the lifted
derivation conforms to the choice of selected literals on the ground level. Also,
the blockwise regularity of the ground level, which was argued for above,
carries over to the first-order level (because any violation on the first-order
level necessarily results in a violation at the ground level). Concerning the
independence of the computation rule, the switching lemma, Lemma A.1.11,
has to be updated by the Restart inference rule. Again, this is straightforward
and hence omitted.

Recall that for PRTME-I we insist on negative query clauses < . By defini-
tion of PRTME-I, negative clauses can only be used for restart steps. Hence,
the computed answer in PRTME-I refutations is obtained by looking at the
restart clauses alone. But notice that this does not imply that every (neg-
ative) clause used at a restart step contributes to the computed answer,
because negative clauses might also be present in the program P.

Other Refinements.. It is obvious that for reasons of efficiency a proof
procedure based on this calculus must provide some more refinements. Com-
pared to PTME-I, the factorization inference rule (Section 3.3) is even more
significant. This is due to the relaxed regularity restriction. In ordinary model
elimination it is impossible due to regularity that along one branch the same
instance of a clause is used more than once. This does not hold for restart
model elimination, because only blockwise regularity can be demanded. How-
ever, the new subgoals introduced by the more leafmost occurrence of such a
replicated clause can be closed immediately by factoring.

Another refinement is unique to restart model elimination. Restart model
elimination is “partially proof confluent”: call a tableau all of whose open

140 4. Theory Reasoning in Connection Calculi

branches end in positive leaves as a positive disjunctive tableau. Let D =
Po F --- F P, be a PRTME-I derivation of M which ends in a positive
disjunctive tableau P,,. Then, if M admits a refutation at all (i.e. if M is 7-
unsatisfiable), then also D can be continued to a refutation. In other words,
PRTME-I is proof confluent in such a situation. This is fairly easy to see, as
the existing refutation, say R with start clause @), can always be appended
sufficiently often to D by restarting with the clause @) at the branches of P,,.

For a backtracking-oriented proof procedure this means that no back-
tracking over positive disjunctive tableaux is necessary. Such a strategy is
best supported by a computation rule which always selects a branch with a
negative leaf literal, if present.

5. Linearizing Completion

Automated reasoning with Horn clause logic (or even definite clause logic)
has been widely recognised as a practically important special case. Typically,
logic programming and deductive databases languages are based on Horn
clause logic. Consequently, much effort has been spent into the development
of calculi and proof procedures for Horn clause logic.

Like e.g. SLD-Resolution [Apt and van Emden, 1982], the method pre-
sented in this chapter — linearizing completion — is intended as an efficient
computation technique for Horn theories. The idea of linearizing completion
is to compile a Horn theory into another Horn theory which allows more
efficient proof search than the original Horn theory. More technically, with
the resulting Horn theory, resolution derivations can be carried out which
are both linear (in the sense of Prolog’s SLD-resolution) and unit-resulting
(i.e. the resolvents are unit clauses). This is not trivial since although both
strategies alone are complete, their naive combination is not. Completeness is
recovered by the method through a certain “completion” of the Horn theory
in the spirit of Knuth-Bendix completion, however with different ordering
criteria. A powerful redundancy criterion quite often helps to find a finite
system.

Linearizing completion can be used as a stand-alone computation tech-
nique for Horn theories. However, it was conceived and motivated within the
context of theory reasoning. More precisely, the transformed theory can be
used in combination with linear, goal-oriented calculi such as partial theory
model elimination (Sections 4.5 and 4.6) to yield sound, complete and effi-
cient calculi for full first order clause logic over the given Horn theory. For
this, the clauses of the transformed Horn theory are read as inference rules
for the computation of residues from key sets.

As an example application, the method discovers a generalization of the
well-known linear paramodulation calculus for the combined theory of equal-
ity and strict orderings (Section 5.7.2). Another application is an efficient han-
dling of properties of the reachability relation for modal logics (Section 5.7.3).

142 5. Linearizing Completion

5.1 Introduction

Linearizing completion works by saturating a Horn clause set 7 under several
deduction operations until only redundant consequences can be added. The
resulting possibly infinite inference system (cf. Def. 4.5.1) Zo(7T) enjoys the
following completeness property: for every minimal 7 -unsatisfiable literal set
L and every literal G € L there is a linear resolution refutation of Zo, (T)UL
with goal literal G, i.e. G is processed stepwise until the empty clause is
derived, and, all inferences are done in a wunit-resulting way, i.e. in an n-
literal parent clause at least n — 1 literals have to be simultaneously resolved
against n — 1 complementary unit clauses in order to carry out an inference.
Thus linearizing completion is a device for combining the unit-resulting
strategy of resolution [McCharen et al., 1976] with a linear strategy & la Pro-
log in a refutationally complete way (See e.g. [Stickel, 1986] for an overview
of theorem proving strategies; it covers the linearity and the unit-resulting
restriction). This is not trivial, since although each strategy alone is complete
for Horn theories, their naive combination is not. Furthermore we insist on
completeness for an arbitrary goal literals taken from the input set.

5.1.1 Linearizing Completion and Theory Reasoning

As mentioned above, the development of linearizing completion was initi-
ated by the desire to automatically construct inference systems for theory
reasoning calculi. Further, answer completeness is an issue. Currently, lin-
earizing completion is tailored towards the use with linear, goal-sensitive
calculi (in the sense of [Plaisted, 1994]) such as linear resolution [Loveland,
1970] or model elimination (cf. Chapters 3 and 4). The interest in linear
calculi comes from their successful application in automated theorem prov-
ing (see e.g. [Baumgartner and Furbach, 1994c; Stickel, 1989; Stickel, 1990a;
Letz et al., 1992; Astrachan and Stickel, 1992] and Chapter 6 for descriptions
of running systems.

In Section 4.5 (4.6), the answer-complete calculus partial (restart) the-
ory model elimination was introduced, and the device of inference rules
(Def. 4.5.1) was suggested as a means of describing the computation of
residues. In Definition 4.5.6 we stated a sufficient completeness criterion for
inference systems. However, how to come from a given theory to a complete
inference system was left open. The purpose of the present chapter is to fill
this gap.

As a motivating example take the diagnosis scenario in Figure 5.1. An-
swer computation is an issue here. Intentionally, the task is to find out which
treatment T can be applied if symptom s is detected. The theory declares
general (i.e. non-problem specific) knowledge about the possibility of substi-
tuting one treatment by another. The tableau at the right side indicates one
PTME-I step, where the involved clauses and the returned residue are high-

5.1 Introduction 143

lighted. Although the program is non-Horn, definite answers exist (namely,
t0 and ¢1).

The question arises as to what extent linearizing completion is tailored
towards application within linear, goal-sensitive calculi, such as theory model
elimination. We have presently not carried out the combination with a com-
pletely different calculi, such as resolution or its ordered version [Baumgart-
ner, 1992b]. However, the completeness result in Section 5.6 below allows
us to compute most general T-refuters (Def. 4.4.2) by completed inference
systems, and this result can be the base for the combination with resolu-
tion. In this case the completeness demand for an arbitrary goal literal can
be dropped (although it might be advisable for efficiency reasons to keep it)
and the completion requirements can be relaxed a bit. This, however, is not
touched by the present work.

5.1.2 Related Work

This section covers related work concerning linearizing completion. Related
work on theory reasoning calculi in general was discussed in Sections 4.1 and
4.4.4.

One exception is the link deletion approach proposed by Klaus Mayr in
[Mayr, 1995). It relates to the combination “partial restart theory model
elimination plus linearizing completion” and not just linearizing completion,
proper.

As linearizing completion, link deletion is conceptually to be carried out
in a preprocessing phase, and works for Horn theories. Link deletion does not
take the viewpoint of theory reasoning. The idea is to avoid the exploration of
certain connections in the proof space of model elimination. That is, although
a connection between the leaf of the branch to be extended and an input
clause exists, this extension step is not carried out. In order to be complete,
it has to be shown that instead of carrying out such an extension step to,
say, T and producing T" one can alway extend T' towards a tableau T" (by
a different extension step) which can “substitute” T". More precisely, it has
to be shown that whenever 7" could be extended to a closed tableau, then
also T" could be extended to a closed tableau. For this, restructuring of T" is
considered such that T" results. Further, restructuring must be well-founded
(that is, 7" must be strictly smaller in some well-founded ordering).

There seems to be some overlap between link deletion and the approach
presented here. For instance, link deletion when applied to transitive relations
behaves much the same as if the axiom of transitivity would be processed by
linearizing completion. An important difference to linearizing completion is
that the creation of new inference rules is not an issue in link deletion. Link
deletion behaves much like a restricted form of linearizing completion, where
only the generation of contrapositives of inference rules is at our disposal (a
precise meaning of this should become clear in Section 5.1.4).

“UMOYS J0U I8 o {— 7T ‘7] WLIOJ 9} JO SO[NI

douauayul oy T, "uorddwod Surziresur| jo uorjedridde Suiajos-wsiqoid y *1°g 2an3r g

Query:
+ treatment(T)

Program:
symptom(s) <
cause(cl) V cause(c2) <

symptom(s)
treatment(t0) < cause(cl)
treatment(t0) < cause(c2
treatment(t2) < cause(c2

substitute (10, t1) «+

Theory:
treatment (X) «+
substitute(X,Y) A
treatment(Y)

substitute(X,Y) +
substitute(Y, X)

Linearizing
Completion

[Restart] Theory Model Elimination

—treatment(T)

treatment(t0) —cause(cl)

| <N\

—substitute(T, t0)

—treatment(T) .
treatment (t0) —substitute(T, t0)

Theory Inference System:

substitute(X,Y), treatment(Y) —
treatment(X).

substitute(Y, X), treatment(Y) —
treatment(X).

—treatment(X), treatment(Y) —
—substitute(X,Y).
substitute(Y, X) — substitute(X,Y).
—substitute(X,Y) — —substitute (Y, X).

474"

uorpoidwo)) Suizireaury ‘g

5.1 Introduction 145

Next we turn to related work on theory reasoning, proper. In Section 4.1.2
we reviewed several systems for dedicated classes of theories. Linearizing com-
pletion applies to Horn theories and thus relates closest to the more general
approaches mentioned under “compiled theories” there. These shall be com-
mented on now.

Dixon’s [Dixon, 1973] and Ohlbach’s [Ohlbach, 1990] method is less gen-
eral than linearizing completion, as it is restricted to two-literal clauses.

The method of Murray and Rosenthal [Murray and Rosenthal, 1987] is
even more general than linearizing completion as the restriction to Horn theo-
ries is not necessary. As mentioned, they propose closing 7 under application
of binary resolution modulo subsumption, yielding a possibly infinite set of
clauses 7*; T* is used for total theory extension steps by simultaneously re-
solving away all literals from a clause from 7* against given literals in input
clauses. The idea of closing the theory under resolution is similar to the lin-
earizing completion process. As major differences we have that, first, linearity
is not relevant in their context, and, second, the redundancy criterion of lin-
earizing completion is stronger than subsumption. For instance, they would
have to unfold a transitivity rule infinitely often by self-resolution, because
none of the unfolded versions is subsumed. See also Section 5.1.5 below for a
more detailed discussion of linearizing completion and resolution.

It seems that the related work closest to linearizing completion is the
approach of the special relation rules [Manna and Waldinger, 1986; Manna
et al., 1991]. For a brief description see Section 4.1.2. The “special relation
(SR) inference rules” derived by this method are embedded into a resolution
calculus, much like our inference rules are embedded into model elimination
(see Section 5.1.1).

The SR inference rules and the inference rules generated from lineariz-
ing completion (LC) compare on the common domain as follows: both are
“unit-resulting” (i.e. all premise literals have to be resolved away simultane-
ously). The SR rules are fewer than the respective LC rules. For instance,
no extra contrapositive is required for “transitivity” (cf. the inference system
Zso in Example 4.5.1). This is not surprising as no completion takes place.
Furthermore, the SR rules are more restrictive than the LC rules, since no
replacement below the variable level occurs (cf. Section 5.7.1 for a discussion
on that).

However, in this comparison it is important to note that the LC rules
work in conjunction with a linear, and hence more restricted, calculus than
the SR rules. This restriction has a large impact on the completion procedure.

Unlike the LC rules, the SR rules are incomplete [Manna et al., 1991]. In
the canonical counterexample it would help to replace subterms below the
variable level, which is forbidden.

The authors of [Manna et al., 1991] first speculated that the situation can
be repaired by adding more inference rules, called relation matching (RM)
rules. These rules generalize the well-known RUE-resolution inference rule

146 5. Linearizing Completion

[Digricoli and Harrison, 1986] towards general monotonicity properties. Un-
like the SR rules (and the LC rules), the RM rules are no longer unit-resulting,
i.e. the conclusion might consist of more than one literal. Furthermore, it is
now necessary to deductively close the RM rules (similar to those in lineariz-
ing completion). In order to arrive at a finite system, variable elimination
rules are used to simplify resolvents. However, these rules are sound only
when making very strong assumptions about the underlying relations; this
restricts the method’s applicability. Finally, as said in [Manna et al., 1991],
completeness is still open.

As an overall evaluation, it seems that the linearizing approach marks
some progress towards solving open issues in the Manna, Stickel and Waldinger
paper.

Other sources for related work are the completion techniques developed
within the term-rewriting paradigm. In fact, linearizing completion was in-
spired by Knuth-Bendix completion [Knuth and Bendix, 1970] (cf. also Sec-
tion 5.1.3 below) and its successors (e.g. [Hsiang and Rusinowitch, 1987;
Bachmair et al., 1986; Bachmair et al., 1989; Bachmair, 1991)).

Knuth-Bendix completion has been generalized to conditional equational
theories (e.g. [Kaplan, 1987; Dershowitz, 1990; Bachmair, 1991; Dershowitz,
1991a; Dershowitz, 1991b; Ganzinger, 1991]) i.e. definite clauses with built-in
equality, and even to full first-order equational theories, e.g. [Bachmair and
Ganzinger, 1990; Zhang and Kapur, 1988; Nieuwenhuis and Orejas, 1990;
Nieuwenhuis and Rubio, 1992; Bronsard and Reddy, 1992].

These approaches allow for equational specifications, whereas we do not
have a dedicated treatment for equations. There are several ways to translate
Horn logic into equational logic. As a first method, at least for propositional
logic, a formula F over usual logical connectives can be translated into an
equation F' = true which then is processed by a term rewriting system for
Boolean algebra [Hsiang, 1985; Paul, 1985; Paul, 1986]. It is even possible to
model linear input strategies for Horn theories within specialized versions of
extended (by associative-commutative operators) Knuth-Bendix completion
(see e.g. [Dershowitz, 1985]). However, the unit-resulting restriction and the
independence of the goal literal are not considered in those settings.

Another, straightforward, translation of Horn logic into equational clause
logic results from simply reading a literal A as the equation A = true (over
a different signature). Note that since we allow purely negative clauses such
as —(z < z) in the specification to be completed, this translation requires
full first-order clauses and not just definite clauses. It is common to methods
operating on such equational clauses that they rely heavily on term-orderings
for certain purposes: first, term-orderings are used to select — usually only
maximal — literals inside clauses for inferences; second, restricted versions of
paramodulation are directed in an order-decreasing way; finally, redundancy
is typically defined employing term-orderings.

5.1 Introduction 147

Here a major difference between these techniques and linearizing com-
pleted can be identified, as the linearity and the wunit-resulting restrictions
are not considered as a restriction for refutations in the completed theory.
While linearizing completion insists on linearity of derivations, they consider,
more “locally”, derivations built from term-ordered inferences. Consequently,
the notion of a “goal” literal is not a topic of interest.

An exception is [Bertling, 1990] which describes a procedure to complete
towards a combination of term-ordering restrictions and the linear restriction.
However, the unit-resulting restriction is not considered there.

As a further difference, for linearizing completion the above-mentioned
independence of the selection of the goal literal requires the presence of con-
trapositives of the same clause, such as (Trans — 1) and (Trans — 2) in Ex-
ample 4.5.1. In the term-rewriting paradigm this is not necessary.

All these observations indicate to us substantial differences between lin-
earizing completion and the completion techniques described in the term-
rewriting literature. It seems that none of these approaches can be instanti-
ated in such a way that linearizing completion results. However, many stan-
dard notions and techniques developed in term-rewriting can be taken ad-
vantage of.

5.1.3 Relation to Knuth-Bendix completion

Like Knuth-Bendix completion (see [Bachmair, 1991] for a “modern” pre-
sentation), linearizing completion can be understood as a sort of compiler,
which compiles a specification once and for all into an efficient algorithm.
There are also some analogies in processing: Knuth-Bendix completion re-
lates to equational theories and ordered derivations as linearizing completion
relates to general Horn theories and linear derivations. Thus a different or-
dering criteria is used (“linearity” rather than “orderedness”), and, second, a
more general viewpoint is proposed by treating arbitrary Horn theories, not
just equality.

Technically, a Horn clause {—L, ..., Ly, Lp41} is viewed as an inference
rule Lq,... ,Ly, = L,+1 which stands operationally for a unit-resulting infer-
ence “from Lq,...,L, infer L, 1”. Linearizing completion proceeds by iden-
tifying sources for non-linearity in unit-resulting proofs® carried out with such
inference rules. Non-linearities correspond to “peaks” in the term-rewriting
paradigm. In analogy with these peaks, linearizing completion has to invent
a new inference rule that repairs the situation. This is done by overlapping
inference rules by the so-called Deduce transformation operation. Possible
nontermination comes in by saturating the rule set under this (and simi-
lar) operations. However by the use of redundancy criteria termination is
achieved quite often for practically relevant theories. If the completion does
not terminate, we arrive at an “unfailing” procedure, i.e. for every provable

! More precisely: hyper resolution proofs.

148 5. Linearizing Completion

goal eventually enough inference rules will be generated that are sufficient
to prove the goal for such a system. Figure 5.2 summarizes the relationships
between Knuth-Bendix completion and linearizing completion. Some of the
concepts listed there will become clear as the text proceeds.

Concept Knuth-Bendiz Linearizing
Completion Completion
Underlying Theory Equality Arbitrary Horn

Theory T

Link Syntax-Semantics

Birkhoff’s Theorem

Soundness and Com-
pleteness of
Unit-Resulting
Resolution

Proof Task

?
s=t

Is {Ki,... , Kn}
T -unsatisfiable?

Object-Level Inferences

by rewrite rules u — v

by Inference Rules

Ll,... ,Ln —)Ln+1
Non-normal Form Proof st Non-linear

Unit-Resulting Proof

of {K1, e ,Km}
Ordering Criteria Orderedness Linearity and Unit-

Resulting
Property

Removal of Peaks

in Proofs

By critical pairs

turned
into rewrite rules

By Deduced inference

rules

Normal form Proof

Valley Proof
s—*u et

Linear and Unit-
Resulting Proof of
{Ki,...,Kn}

First-Order case

Narrowing Proofs

First-Order
Derivations

Completeness

Yes: unfailing

Yes: unfailing

Figure 5.2. Summary of Relationships between Knuth-Bendix completion and
linearizing completion.

5.1.4 Informal Description of the Method

Since the main part of this chapter is lengthy and quite technical, it might
be advisable to supply a brief and informal description of the method be-
forehand. Readers familiar with term-rewriting will note that in order to ex-
press linearizing completion several notions from the term-rewriting paradigm
have been adapted, like completion, fairness, redundancy and others (see e.g.
[Bachmair et al., 1986)).

5.1 Introduction 149

As a first step in linearizing completion, a set of inference rules (cf. Defi-
nition 4.5.1) is obtained by re-writing a given Horn theory in an obvious way.
Consider again the theory SO of strict orderings:

SO: Vex,y,ze<yNhy<z—ozx<z (Trans)
Vz -(z <z) . (Irref)

From this theory we construct an initial inference system Zo(SO) that con-
tains the following inference rules:

To(SO) : <y, y<z—ozx <z (Trans)
r<zx—F (Irref)
“(z<y), z<y—F. (Syn)

The (Trans) is obvious, the (Irref) shows how negative clauses are treated,
namely by turning them into rules with conclusion “F”, and the additional
(Syn)-rule is used to treat syntactical inconsistencies. The formal definition
is given in Section 5.2.1 (Def. 5.2.4).

This inference system is sufficient to refute the literal set M = {a <
b,b<c c<d, d<e, e<a}of Example 4.5.3 on page 126. In fact, the
background refutation there uses only the rules already present in Zo(SO).
This background refutation is linear in the sense that the conclusion of an
inference step is used in the premise part of the subsequent inference and
that the rest of the premise literals is drawn from the input set M; further,
it is unit-resulting by definition of “theory-inference”. Later on we will also
temporarily consider non-linear derivations, for which the rest of the premise
literals — such as b < ¢ in the first inference — may also be computed in
derivations themselves.

Unfortunately, the strategy of simply rewriting the theory as an initial
inference system does not result in a system for which the combined unit-
resulting and linear strategy is complete. To demonstrate this a different
example is needed. Assume the theory consists of the clauses

S={-AvB,-CvVvD, -BV-D}

The derived initial inference system then is as follows:

Zo(S) : A—- B A,-~A—>F
C—D B,~B—F
B,D—F C,-C —>F

D,-D —F .

Now let M; = {A,C}. There is, for instance, a (non-linear) Unit-Resulting
refutation of My U S (Figure 5.1.4) where the Unit-Resulting inferences are
carried out as suggested by the arrow-notation of the rules in Zo(S).

150 5. Linearizing Completion

A B C—D
B D B,D—F
F

Figure 5.3. A non-linear unit-resulting refutation of {A,C} U S.

The inferences are carried out according to Zo(S). The given input literals — A
and C' — are boxed.

However, no linear refutation of My with top literal A exists (neither does
one exist with top literal C for reasons of symmetry); if A is given as the top
literal then only the rules A — B and A,—A — F contain the literal A in the
premise and thus are the only candidates to be applied. However, the latter
is not applicable as = A is not given in M, and application of the former
yields B which is also a dead end (because D is not contained in M; and
thus B, D — F is not applicable). However D could be derived from the input
literal C' by an application of the rule C — D. But then, however, due to
this auxiliary derivation the refutation would no longer be linear. The same
argument holds for the case of C being chosen as top literal.

This problem is solved by linearizing completion by generating a new in-
ference rule that implicitly contains the auxiliary derivation. This generation
of new inference rules is the central operation in linearizing completion; it al-
lows a new inference rule to be obtained from two present inference rules by
unifying a rule’s conclusion with a premise literal of another rule and forming
a new rule from the collected premises and the conclusion of the other rule.
The new rule is then joined to the present ones. Operations such as this one
(and others) on inference systems are described by the device of transforma-
tion rules. Returning to the last example one can generate a new inference
rule by application of the Deduce transformation rule in the following way:

cC - D
D,B —» F
c , B — F.

Using this new rule C, B — F a linear refutation of M; can be found. Fig-
ure 5.4 depicts this refutation in the same notation as in Figure 5.1.4; in our
preferred notation it reads as follows:

el
A= sBB= B,c-fF

For a first order example of an application of Deduce consider again the
system ZoSO from above. Two copies of the (Trans) rule can be combined in

5.1 Introduction 151

B B,C —+F

L

F
Figure 5.4. A linear unit-resulting refutation, using the new rule B,C — F.

the following way:
r<y, yYy<z — <=z
<y, y<Z - <
s o<

Q\
A
S

<y, y<y

where the unifier for z < z and ' < y' is {z + 2',2 < y'}. In words, the
transitivity rule is unfolded once. Repeated application would yield infinitely
many unfolded versions of the transitivity rule, but fortunately a redundancy
criterion helps to find a finite system here.

This concludes the informal presentation of the Deduce transformation
rule. Unfortunately, Deduce alone does not suffice to obtain completeness
as desired. In order to demonstrate the problem here consider the slightly
modified example from above:

S'=Su{D}
M2:M1U{B} .

Of course the old clause =C' V D is not needed for the unsatisfiability of
S’ U Ms; but this is not important here. According to the transformation to
initial inference systems defined above, the unit clause D becomes the rule
=D — F. The initial inference system Zy(S") looks as follows:

To(S') : A—- B A-A—>F
C—D B,-B > F
-D—F C,—|C—)F

B,D—~F D,-D —F .

Clearly, S’ U M, is unsatisfiable, but there is no Zo(S’)-refutation of Mo.
In particular, the rule B,D — F cannot be applied since there is no input
literal D. On the other hand the literal D is “hidden” in the theory and
has been turned into a rule =D — F. In order to obtain completeness it is
necessary to consider all such rules of the form —-D — F, where D is a positive
literal, as an operational substitute for the side literal D in an inference.

152 5. Linearizing Completion

This could be done either dynamically, i.e. during the proof search, or else
in the compilation phase. In order not to spend extra time during the proof
search we have decided on the latter alternative. Similar to Deduce above,
the necessary operations are carried out by transformation rules. In order to
solve the example the Unit2 transformation rule is used, which works in this
example as follows:

-D — F
B, D — F
B - F.

Thus, one could say that, when the rules are read as their equivalent clauses,
a unit resolution step has been carried out. This is what Unit2 does. There
is a second form, Unitl, which is like Unit2 but for the case when the second
involved inference rule contains only one literal in the premise. In both cases
the use of a rule =D — F instead of a side literal D in an inference is
simulated. It is easy to see that {B} now has a one-step refutation with the
new rule B — F.

All these transformation rules — Deduce, Unitl and Unit2 — yield, when
applied properly, complete inference systems wrt. the desired linear and unit-
resulting restrictions. This is the central result. If Deduce is omitted, then
completeness wrt. the unit-resulting restriction alone results.

These results hold if the transformation rules are carried out in a fair way.
Fairness means that no possible application is deferred infinitely long. But
then the rule generation can be iterated and would result in infinite inference
system quite often. For example, the presence of a rule for transitivity alone
suffices for infiniteness (the transitivity rule will be unfolded without bound).
In order to avoid this, additional transformation rules are needed for the dele-
tion of inference rules. A powerful deletion rule is based on the concept of re-
dundancy. Informally, an inference rule is to be redundant if its application in
a derivation can be simulated by the other inference rules. As a sufficient and
reasonably implementable condition we say that a rule Lq,... ,L, = Lyt
is redundant in an inference system if a linear derivation of L, exists from
input set Ly,...,L, with any top literal from {Ly,...,L,}. For example,
the once unfolded version z' < y, y < ¢', ¥y’ < 2’ = ' < 2’ of the transitivity
rule can easily be shown as redundant with this criterion.

Linearizing completion proceeds by repeated fair application of generating
and deleting transformation rules to the initial system. Generation can be
further restricted: it is fair to generate only new inference rules from persisting
rules, i.e. rules that are generated eventually and never deleted afterwards.
However, each of the transformation rules Deduce, Unitl and Unit2 have to
be considered for the generation of new inference rules. Consequently, these
transformation rules are labeled as mandatory.

The result of a (mandatory) generating transformation rule need not be
added if it can be shown to be redundant. The result of this process is a

5.1 Introduction 153

(possibly infinite) system that is closed under derivation of non-redundant
inference rules. Such systems are called “completed”, as they can be shown
to be (refutationally) complete. Once a completed system is discovered, the
notion of redundancy can be extended to cover more cases (“redundancy
for derivations”). This is done formally by introducing the NonRed operator
(Def. 5.3.4) on inference systems. Although “completedness” is destroyed
then, refutational completeness is preserved.

There is one thing more to say about deletion: deletion of a redundant
inference rule must enable a refutation which is strictly smaller wrt. some
well-founded ordering on refutations than the refutation which uses the re-
dundant inference rule (this does not mean that the substituted refutations
are necessarily shorter). This property is crucial for the completion process
because it guarantees that an inference system capable of proving a given
proof task (provided it is provable at all, of course) will be reached after
finitely many steps®. Concerning implementation, this means that we may
approximate stepwise infinite inference systems by ever increasing finite sys-
tems until a system “large” enough for a concrete proof task is obtained.

Besides the mentioned mandatory transformation rules, there is also an
optional one which allows the addition of a contrapositive of a given rule.
It is called Contra. The Contra transformation rule allows, for instance, to
derive from the (Trans) inference rule z < y, y < z = = < z the new rule
—(z < 2),z <y — —(y < 2z) by “swapping” the conclusion and some premise
literal.

The Contra rule is most useful, because it allows to obtain a finite set of
inference rules more often than it would be the case if it were not present.
See Note 5.7.1 for an example.

5.1.5 Linearizing Completion and Resolution Variants

We conclude this informal presentation with a note on the relation to reso-
lution variants.

Unit-Resulting Resolution. In traditional unit-resulting resolution [McCha-
ren et al., 1976] every literal from a n + 1 literal clause L; V...V L, can
serve as the unit resolvent. If this is to be modeled as inference rules, all n+1
contrapositives (i =1...n +1)

Lla"' 7Li717Li+17"' JLTL-‘rl _>Li

have to be used. For example, the transitivity axiom for strict orderings
results in the following three contrapositives:

2 Thus the approach here of proving termination is similar to the approach of proof
orderings [Bachmair et al., 1986; Bachmair, 1987; Bachmair, 1991] in equational
logic. Indeed we use a similar complexity measure, based on multiset orderings.
However, we found it advantageous to extend the comparison of refutations by
additionally considering (optional) weights assigned to the used inference rules.

154 5. Linearizing Completion

1. z <y, y<z — <z
2. =<z, y<z — - <y
3. <y, <z — —w<x.

However, there are cases where not all contrapositives are needed. For ex-
ample, one of contrapositive 2 or 3 can safely be deleted without affect-
ing completeness. Such restrictions are expressible in our more fine-grained
framework, while they are not in traditional unit-resulting resolution frame-
work. This motivated us not to use the traditional formalism but to define a
new one.

Hyper Resolution. Hyper resolution [Robinson, 1965a] is a complete calcu-
lus for Horn clause logic. It implements a bottom-up evaluation by starting
from the given positive unit clauses and deriving new unit clauses in a unit-
resulting way. In our terminology, only the “natural” contrapositives, such as
1, in the last example are needed for this. However, hyper resolution alone
does not suggest any completion procedure and yields inherently non-linear
refutations. But hyper resolution refutations will serve as a starting point for
the completeness proof of linearizing completion.

Binary Resolution. As mentioned above, the Unitl and Unit2 rules are in-
stances of unit resolution. Similarly, the Deduce rule works much like the
traditional binary resolution inference rule (see e.g. [Chang and Lee, 1973)).
In fact, short of implicit factoring due to set notation, it is merely a suggestive
notation for it which seems appropriate for the purposes here. So the ques-
tion might come up where linearizing completion is different from ordinary
resolution.

First, ordinary resolution does not have a restriction to certain contra-
positives, as just explained.

Second, every refutation in the linearizing completion paradigm can be
simulated stepwise by an ordinary resolution refutation in the following way,
but the other direction does not hold. Let 7y be the Horn clause theory
subject to linearizing completion, M be a Tp-unsatisfiable literal set, and
Gy € M be the desired top literal of the refutation.

Then a refutation in the linearizing completion framework can be written
as a resolution refutation

76;715"' 77;7,7G0;G17"' 7GnaF)

where (1) the T;’s are obtained from the 7;_1’s by application of binary res-
olution, corresponding to the transformation rules of linearizing completion,
and (2) the G;’s are obtained from the G;_1’s and literals from M by unit-
resulting resolution, using a nucleus clause from 7. These unit-resulting steps
could be simulated by sequences of ordinary resolution steps, of course.

It is apparent that this refutation is a highly structured one; evidently not
every ordinary resolution refutation is structured in that way. Thus, stepwise
simulation in the other direction does not hold.

5.1 Introduction 155

Third, linearizing completion uses powerful redundancy criteria which are
usually not applied in ordinary resolution.

Fourth (connected with three), linearizing completion functions as a com-
piler, which allows for careful analysis of the input clause set independent of
the proof task to be given later. This means that 7, can be computed once
and for all. This is not done to that extent in ordinary resolution.

Linked Inference Principle. The linked inference principle [Wos et al., 1984;
Veroff and Wos, 1992], or linked resolution, is related to linearizing comple-
tion. According to [Kunen, 1991], linked resolution is a general technique for
doing several binary resolution steps at once, keeping the final clause, and
discarding the intermediate clauses. This technique diminishes the number
of clauses stored in the database. The most unlimited version of linked reso-
lution is trivially complete, but is also not feasible to implement because of
the large number of sequences of binary resolutions which must be examined
at each stage of the deduction.

In [Kunen, 1991] a rather general completeness result was obtained. In this
setup, linking clauses are written as ¢ || 1 where ¢ and 1 are disjunctions of
literals. Semantically, || stands for “or”. Thus, by || a clause is devided in two
parts. In pure linking clauses 1 = O (the empty clause), and in pure standard
clauses ¢ = O. The following inference rules are needed:

1. linking (ground case): from center clause a1 V ...V ay || ¥ and n pure
standard clauses o, V4; (i =1,...,n) derive O || ¥ V)1 V...V ¢y,. This
rule lifts as usual to the first order case by taking new variants.

2. left resolution: “standard” resolution among linking clauses using com-
plementary literals both to the left of ||.

3. left factoring: “standard” factoring, analogously to 2.

4. right resolution: “standard” resolution among linking clauses using com-
plementary literals both to the right of ||.

5. right factoring: “standard” factoring, analogously to 4.

A refutation is found if O || O is derived. As a pruning technique, tautologies
can be deleted except “right tautologies” which contain A and —A on the
right of || (for some literal A).

The question arises whether linked resolution can simulate linearizing
completion, or vice versa. In order to make linked resolution simulate lineariz-
ing completion for given Horn theory 7 one can write every clause C' € T as
C || O. For instance, the theory S and literals set M; = {A,C} from above
become

Sl ={-AvB| O -CvD| O -Bv-D| O}

Now, application of the transformation rules of linearizing completion can
be simulated by linked resolution in such a way that for every new derived
inference rule there is an equivalent clause derivable by linked resolution:
the Unitl, Unit2 and Deduce are nothing but standard resolution inferences,

156 5. Linearizing Completion

and hence can be simulated by left resolution. The Contra transformation rule
only reorders an inference rule, but as a clause it remains the same. The same
holds when applying transformation steps to the inference rules 4,-4 — F
from Zo(T).

For instance, the new inference rule C, B — F would be obtained as the
clause =C' V =B || O by left resolution of =C'V D || O and =B V —-D || O.

Now let a T-unsatisfiable literal set £ as given. It seems natural to write
every literal L € £ as O || L (writing it as L || O would reduce linked
resolution to ordinary binary resolution).

Now, the linear and unit-resulting refutation of £ and the completed
theory (cf. Def 4.5.6) would not be exactly simulated by linked resolution
because only one link inference is necessary to obtain the empty clause O || O.
The price to be paid for this is a possible much larger completed theory (e.g.
a transitivity clause «(X < V)V (Y < Z) V(X < Z) || O would lead to
nontermination). Thus, in this setting linked resolution is much like Murray
and Rosenthal’s method [Murray and Rosenthal, 1987], which was discussed
above.

On the other side, since linked resolution is not restricted to Horn theories,
linked resolution could possibly be used as a generalisation of linearizing
completion towards the non-Horn case (this is future work).

An alternative approach: linked resolution has hyper resolution as an
instance. To obtain this, clauses are divided such that the negative literals
come the left of || and positive literals come to the right of ||. Writing a
theory 7 in this way has a similar effect as using the initial inference system
Zo(T). It was argued above that Zo7T does not suffice for the purpose of
theory reasoning. Application of the transformation rules can in general not
be simulated by linked resolution. For instance, from A — B and B — C one
can Deduce A — C, but there is no inference possible beween —A || B and
=B || C. This is not intended to argue that one approach is better than the
other. Instead it shows us that the calculi are different.

In sum, although linked resolution and linearising completion have similar
motivation and inference rules, there seems to be no perfect simulation of one
approach using the other.

The rest of this chapter is organized as follows: after recalling some pre-
liminaries in Section 5.1.6, we extend in Section 5.2 the definition of inference
systems (Def. 4.5.1) towards non-linear derivations; it also contains the com-
pleteness of initial inference systems for non-linear refutations. As mentioned,
deletion of redundant inference rules is tightly coupled with associated or-
derings of derivations. Section 5.3 describes orderings and redundancy. Then
we are prepared for the transformation systems of Section 5.4. This section
introduces the related important notions of limit and fairness of a deduction,
and also that of a completed inference system. There it will be shown that the
defined transformation rules and redundancy criterion preserve refutational
completeness. In Section 5.5 we build on Section 5.4 and show that the trans-

5.2 Inference Systems 157

formation systems have the complexity-reducing property, which means that
eventually a normal-form refutation will be reached. In Section 5.7 we will ap-
ply the material developed so far to two non-trivial examples (one is equality
extended by strict orderings, and the other is concerned with modal logic).
Then, in Section 5.6 the material developed so far will be assembled into
various completeness results; notably, first-order results are also contained.

5.1.6 Preliminaries

Concerning multisets we refer to Section 2.1. If a set is used below where a
multiset is required, then the type conversion is done in the obvious way.

Furthermore we make heavy use of the data structure ‘sequence’. If in
the computations below a sequence appears where a multiset is required, the
transformation from sequences to multisets is done in the obvious way.

We are dealing with clause logic and Herbrand interpretations. See Sec-
tion 2.4 for the definition of clause logic; concerning the semantics of clause
logic we recall Lemma 2.4.1. In particular, Lemma 2.4.1.4 justifies the interest
in Herbrand-interpretations.

A Horn theory T is a satisfiable set of Horn clauses®. For the model-
theoretic notions (satisfiability etc.) see Definition 2.5.6.

5.2 Inference Systems

Inference systems play the same role as sets of rewrite rules in Knuth-Bendix
completion: they are used for inferences on the object-level. Inference systems
are the objects of computation by transformation systems which are intro-
duced in the next section.

We will slightly generalize the previous definition of inference rules
(Def. 4.5.1) in that inference rules may be labeled by weights. Further, the
notion of a background refutation (Def. 4.5.5) will be generalized towards
non-linear refutations.

Definition 5.2.1 (Theory Inference System). A theory inference rule
with weight over a given signature X% (XF is defined in Section 4.5.1) is
a triple P —,, C, where P is a nonempty multiset of X -literals, w is a non-
negative integer (called weight) and C is either a nonempty set of X -literals
or the singleton {FJ}. Quite often, we will drop the weight index if not relevant
in the context. The short forms inference rule or simply rule will be used as
well.

The notions premise, conclusion, (ground) instance, (theory) inference
system, as well as the notational conventions are adapted from Def. 4.5.1

3 To be precise, we would have to speak of “theories which are axiomatized by
a finite set of Horn clauses”; however, for simplicity we will prefer the shorter
expression. See also Section 2.5.

158 5. Linearizing Completion

accordingly. Unless otherwise noted, in this chapter always theory inference
rules with weight are considered.

Obviously, an inference rule in the old sense is obtained by forgetting about
the weight. Weights are motivated by extended redundancy checks (cf. Ex-
ample 5.3.2 below).

Definition 5.2.2 (Matching Theory Inference Step). We say that a lit-
eral C' is inferred from a literal multiset P' by means of a matching theory
inference step with inference rule P —,, C' and substitution §, written as

P =p,.csC'

iff P = P and C' = C94.

The notions of premise, conclusion, ground inference, used inference rule,
as well as the abbreviated notation are taken from Definition 4.5.2.

Unless otherwise noted, in this chapter the term “inference step” always
refers to matching theory inference steps, but not to the minimal first-order
theory inferences of Definition 4.5.2.

This definition differs from the minimal first-order theory inferences of Def-
inition 4.5.2 in two respects: firstly, instead of a unifier now matching sub-
stitution is used. Matching based inferences will be used for the major part
of this chapter. Secondly, the premise minimality and the attached notion
of amplification is dropped. This makes the proof in this chapter technically
simpler. The lifting to the first-order level, as well as the premise minimality
will be recovered below in Section 5.6.

Next we are going to inductively define Z-derivations based on this notion
of inference:

Definition 5.2.3 (Z-derivation). Let M be a finite set of literals, also
called input literals and 7 be a not necessarily finite inference system.

1. The literal L1 (not necessarily from M) is an Z-derivation of Ly from M
with top literal Ly and length 1. Such o derivation is also called trivial.
2. If
a) D, is an I-derivation of Ly, from input literals M with top literal Ly
and length n, and
b) D},...,D™ (m, > 0) are Z-derivations (called side derivations in
this context) of side literals L., ..., L™ respectively, from M, all
respective top literals are contained in M, and
c) P, =, Cn is an inference rule from T, and
d) &, is a substitution, such that

1 n
Ln:LnJ cee :L:Ln = Py —wn Crs0n Ln+1

5.2 Inference Systems 159

then

1 m
1...pmn

D
Dn+1 = (Dn:> Pn—>wnCn,6nLn+1)

is an T-derivation of L1 from input literals M with top literal L1 and
length n + 1.

If context allows, the involved inference rule and/or the substitution 0y,
shall be omitted.

The symbol € denotes the empty sequence of T-derivations. Often we use the
term derivation instead of Z-derivation.

Note that derivations are nothing but syntactically sugared terms over a
respective signature, and thus can be subject to structural induction. In non-
trivial derivations the principal (4-ary) construct symbol is “=", which takes
as arguments the derivation D,, derived so far, the sequence D} --- D™ of
side derivations, the inference rule and the substitution involved. We will
often omit parenthesis and write derivations like

D}---D"! DY..pmn

1
Dpy1 = (li=—= p»,,c1,6: L2 Ly=—"= p, . Cn.6. Lin+1)

Some more terminology is convenient: if D is a derivation of L we also
say that L is the derived literal of D; the derivation D is called ground iff
every of its inferences is ground; D is called a refutation iff D is a derivation
of F. An inference rule is said to be used in D iff (some instance of) it is used
in some inference in D. D is called linear iff every side derivation occurring
in it is a trivial derivation. Otherwise D is called non-linear. We will write

L]_ =>?Z<,—,M L’I’L

to denote the fact that a Z-derivation of L,, from M with top literal L; exists;
similarly the notation

D = (L1 =7 5 Ln)

means that D is such a derivation.

Note that a derivation does not instantiate the input literals. This is the
same as in a “rewriting” proof in the term rewriting paradigm. Carrying on
this analogy, a derivation relates to a first-order derivation (to be defined in
Section 5.6) much like “rewriting” relates to “narrowing” [Hullot, 1980)].

The top literal plays the role of a goal to be proved. We are interested in
arbitrary goal literals, not just negative literals as usually defined for SLD-
resolution. Positive goal literals arise naturally: think e.g. of an inference
system for strict orderings, containing a rule X < X — F for irreflexivity. A
provable query is then for example (in Prolog notation) ?— —(a < a).

160 5. Linearizing Completion

5.2.1 Initial Inference Systems

As the first step of linearizing completion a given Horn theory 7T is re-written
in a straightforward way as a set of inference rules:

Definition 5.2.4 (Initial Inference Systems). Let T be Horn theory and
let W C IN be a finite set of weights. The initial inference system of T, Zo(T),
is the inference system consisting of the rules

1. = A — F for every positive unit clause A € T, and
2. Ay,...,Ar — F for every purely negative Horn clause - A; V...V Ay €
T (k>1), and
3. Ay,..., Ay = B for every definite clause =A; V ...V Ay, VB €T
(k>1), and
4. Q(x1,--- ,%p), " Q(x1,--. ,2n) = F for every n-ary predicate symbol Q
inT.
Furthermore, some arbitrary chosen weight w € W is attached to every rule

in To(T). Note that with the theory being satisfiable, the empty clause is not
contained in T . Thus for every clause in T exactly one case applies.

Ezample 5.2.1. Let T ={-AV B, -CV D, BV -D, D} be a ground Horn
theory (it was also given as S’ in the introduction). Then an initial inference
Zo(T) system is

Io(T) A—5 B A, -A— F
C=4D B,~B = F

BaD_>3F C,ﬁc—)lF

D =6 F D,-D - F

Next let M; = {A, C}. This is a derivation of F from M; with top literal A
(weights are omitted, as not needed here):

Dy = (A= 4,pB==2=22D, | 1 oF)

D, is non-linear, since the second inference step violates linearity. Figure 5.1.4
in the introduction depicts the same derivation in an alternative notation
which emphasizes the tree character of derivations.

Ezample 5.2.2. As a non-trivial example consider the joint theory £S of
equality and strict orderings (Figure 5.5). The predicate symbol = is inter-
preted as an equivalence relation and the predicate symbol < is interpreted
as a strict ordering (i.e. as a transitive and irreflexive relation). Furthermore
we have included a single function symbol f of arity 1, which gives rise to
the substitution axiom Vz z = 2’ — f(z) = f(2'). The extension to a richer
signature is straightforward.
The corresponding initial system is given in Figure 5.6.

Equivalence:
—“r==z (Ref=)
t=y—y=z (Sym=)
T=y,y=z—T=2 (Trans=)
f-Substitution:
z=1' = f(z) = f(z') (Subf)

5.2 Inference Systems 161
Strict Order:
<z — (IRef<)
r<y,y<z—ozxr<z (Trans<)
<-Substitution:
z=z,z<y—z <y (Sub<-1)
y=y,z<y—sz<y (Sub<-2)

Figure 5.5. The theory £S of equality and strict orderings with unary function
symbol f. Here, and below the usual “—” notation is used for clauses.

Equivalence:
r=y, ~(z=y)~F (Syn=
“(z=2)—>F (Ref=)
z=y—y=z (Sym=-1)
(

z=y,y=z—->x =2z (Trans=)

f-Substitution:
z=1"— f(z) = f(z’) (Subf)

Figure 5.6. The inference system Zo(£S).

Strict Order:

<y, ~(z<y)—>F (Syn<)
z<T—> (IRef<)
z<y,y<z—ozr<z (Trans<)

<-Substitution:

z=1z,z<y—z <y (Sub<-1)
y=y,z<y—z<y (Sub<-2)

162 5. Linearizing Completion

5.2.2 Completeness of Initial Inference Systems

The completeness result (wrt. unit-resulting refutations) of initial inference
systems is needed as a starting point for the proof of the completeness result
(wrt. unit-resulting and linear refutations) of the generated inference systems.
More precisely, the following line of reasoning applies: given a 7T -unsatisfiable
literal set, by ground completeness a — possible nonlinear — refutation exists
in the initial inference system. By repeated generation of new inference rules
in a fair way (see the introduction) eventually an inference system is generated
that admits a linear refutation. Furthermore, deletion of redundant inference
rules does not destroy linearity.

Thus, ground completeness is the initial link between semantics and syn-
tax and plays much the same role as Birkhoff’s completeness theorem (see
[Huet and Oppen, 1980]) in Knuth-Bendix completion.

As explained in the informal presentation in the introduction, initial in-
ference systems constitute an “almost complete” calculus for the underlying
theory (cf. the example of the clause set S’ there again). As was previously
stated, in order to obtain completeness it is necessary to access all positive
literals, no matter whether they are contained in the input set or contained
in the theory. Regarding this, we will slightly differ from the introduction
in that we will not immediately compile away the “hidden” positive literals
A into a rule -A — F. Instead it is more convenient for us to define for an
inference system 7 the set

Punit(I) ={A | ~A—>FeI}

as the set of positive unit clauses from Z. For example, Punit(Zo(ES)) = {z =
z}, and in Example 5.2.1 we find Punit(Zo(T)) = {D}.

The set Punit(Z) shall temporarily be accessible for derivations as addi-
tional input literals (later their usage will be compiled away by respective
transformation rules). But then it is clear that the present formalism is just
a reformulation of traditional Unit-Resulting resolution (which is biased to-
wards our completion application). Taking the soundness and completeness
of traditional Unit-Resulting resolution for granted, it is thus not surprising
that respective results can be obtained for our formulation. Nevertheless we
will state the precise ground completeness result here, since it will be needed
below.

Lemma 5.2.1 (Ground completeness of Zy(7)). Let T be a ground the-
ory (i.e. a theory consisting of ground clauses only) and M be a set of ground
literals. If M is T -unsatisfiable then L =>}o(T),MUPunit(Io(T)) F for some

L € (M U Punit(Zo(T))).

For instance, it is easily verified that in Example 5.2.1 a Zo (7T)-refutation of
{A} U Punit(Zo(T)) = {A, D} exists, but a Zo(T)-refutation of {A} alone
does not exist.

5.2 Inference Systems 163

Proof. By definition of T-unsatisfiability, M is T -unsatisfiable iff M U T is
unsatisfiable, where M is considered as a set of unit clauses. Since the unit-
clauses of T can be used as input literals (via Punit(Zo(7T))) an existing
Hyper-resolution refutation of M U7 can be reflected in our framework. For
an explicit proof from scratch see Appendix A, SectionA.2.1%.

We cannot be content with this completeness result because (1) the literals
from Punit(Zo(T)) are needed, and (2) a linear derivation may not always
exist. For instance, there is no linear refutation of My = {4,C} in Exam-
ple 5.2.1, either with top literal A or with top literal C.

5.2.3 Subderivations

We will have to access and replace subderivations within derivations. For this
let D be a Z-derivation®

D=Ly Lo L)

It is apparent that
. D;_
LiZS Ly L =551,

for 1 <i <j <n+1isaZ-derivation of L; with top literal L;, called an im-
mediate subderivation of D; it is denoted by D|; ;. Immediate subderivations
with j =4+ 1 are also called derivation steps.

Derivations may be concatenated. If E is a J-derivation of the form

E= (K 25K Kn== K1)

and L,+1 = K; then the concatenation of D and E, denoted by D - E, is
defined as

D-E=(I12Ly Ly 2K 25Ky K22 K1)

Evidently, D - E exists as Z U J-derivation from M U N, where D (resp. E)
is a derivation from M (resp. N). It is easily verified that this concatenation
is associative. Hence we can omit parenthesis when writing expressions as
D-E-F.

In order to recursively access subderivations we need the positions of
derivations. A position is a finite string over nonnegative integers and is
written in Dewey decimal notation. The empty string is denoted by A. The
set of positions of D, P(D) is the smallest set satisfying:

1. Xe P(D).

4 In the sequel the proofs can often be found in the appendix.
5 Inference rules and substitutions being omitted for brevity; the D;s stand for
sequences of derivations.

164 5. Linearizing Completion

2. i.jr € P(D) if
a) D is of the form I1 =5 L, ... Li==Liyq ... Ln=2Lnyr where 1 <
1 <n, . .
b) and D; is a sequence of the form D} ---DJ"'DIDIt' ... D¥ where
1< .7 < ki; .
¢) and r € P(D})
Building on positions, subderivations can be introduced: let D be a deriva-
tion and p € P(D). The (occurrence of a) subderivation of D at position p,
D|, is defined recursively as follows:

D ifp=2X
D}|, if p=1i.j.r and D is of the form

D|, = . .
o Ll L Ly .. Ly =25,

where D; :D}--.Dg...Dfi
For instance, take

C, E,
B D F H
X = (4E=P=r o=

I)

then X|11 = (B=> D= F), X|1.» = (G= H) and X|1.101 = E.

For ease of notation we abbreviate the selection of an immediate sub-
derivation (D|p)|q,s Of a subderivation D|, to D|p,q4,p. In words, first p is
used to locate a subderivation in D and then this subderivation is returned
in between the indices a and b. For instance X|i 123 = (D=E> F) and
X211 =G.

Next we turn to replacement of derivations. Suppose D is an Z-derivation
from M, and suppose E is an J-derivation from N. Furthermore suppose
that D|p .5 and E have the same top literal and derived literal, respectively.
Then the sequence which results from replacing D|p .4 in D by E, written
as D[E]p,aq., evidently is an ZU J-derivation from M UN with same top and
derived literal as in D.

For instance,

c L N.
X[D=L> M% F]1.1’2’3 — (A B—=—>D—>M—7F G=H I)

More formally, replacement is defined as follows:
D|1o-E-Dlpy, ifp=2A

‘D[E]paavb = D|1’i . (Lz%} Pi—>Ci,5iLi+1) . D|i+1,n if p= l]T
where D' = D} ... D' D![E],D!™" ... DF

5.3 Orderings and Redundancy 165

5.3 Orderings and Redundancy

The transformation systems defined below allow for the deletion of redundant
inference rules. Redundancy in turn is based on orderings for derivations.
Hence these notions have to be introduced first.

5.3.1 Orderings on Nested Multisets with Weight

Section 2.1 contains standard definitions concerning orderings. Here we are
concerned with a certain kind of multisets and orderings on them.

A multiset with weight over a set X is a tuple (N, w), also written as
Ny (or {...},) where N is a multiset over X and w € IN. Thus, a multiset
with weight is obtained from an ordinary multiset by attaching some integer
to it. As a recursive generalization, define a nested multiset with weight over
a set X as either an element from X or else as a multiset with weight over
a nested multiset with weights. For instance, {a, {b, ¢, {d}};},, e}, is such a
set over {a,b,c,d,e}. They will be used as a complexity measure for proofs
below.

Since multisets with weight are tuples, they can be compared lexicograph-
ically. The resulting ordering »-psw,- over multisets with weight over a set
X of terms, base ordering > on terms and the usual ordering > on integers
then reads as follows:

My >=uws Ny = (M %, Norelse (M =N and v > w))

where M,, N, are multisets with weights over X. Thus we first compare
the set-components; if these are equal then the weight gives the decision. It
is clear that with the well-founded orderings », and > the lexicographic
extension »- pw,» also is well-founded.

Orderings on multisets can be generalized to nested multisets[Dershowitz
and Manna, 1979]. For our purposes we have to go a little further and to
compare nested multisets with weight over a set of constants C'. This ordering
is nothing but a recursive path ordering with status (see e.g. [Steinbach,
1990]) where the multiset constructor “{.}” is given a multiset status, and
the tuple-constructor (N, w) (to attach weights to multisets) is given a left-
right status. The proof of proposition 5.3.1 below will make this more precise.

Definition 5.3.1 (Nested Multisets with Weight). Let C be a finite set
of constants, ordered by the well-founded ordering =, and let W C IN be
a finite set of weights. Define the nested multiset ordering with weights,
>~ NMW,s, recursively as follows:

166 5. Linearizing Completion

1. X={z1,...,zn}, =~vuws {15 U}, =Y
if (1.1) z; *=w~mw, Y for somei=1...m,
or (1.2) X %MW, yuw, ¥ and v,w € W,
(i.e. MW, nuw., 15 the recursive extension
of =Nmw,- to multisets with weight).
2. X={21,..., 2w}, >Nuw,> ¥
if yeC andx; Nyuw,- y for somei=1...m

3. THNMW,- Y
if z,yeCandz >y .

Most often we will write » nyw instead of »nuw,- when > is clear from
the context.

Ezample 5.3.1. Let C = {a,b} with a > b, and W = {0, ... ,10}. It holds
{a,{a.{a}, }5}5

=nuw, b {a, a Jule -

This is, because with a »wnarw,- b (by 3.) and

{a.{abs}s = ~nmw, {a,al, (5.1)

case 1.2. applies (we replaced in a multiset with weight two elements by
smaller ones, hence increasing the weight from 3 to 6 does not matter). We
still have to show Equation 5.1. It holds {a}, » ~mw,~ a by 2., and hence
for the multiset extension,

{[a7 {[(1]}4]} >>'>>>NMW,>- {[(J‘J a]}

and thus, after attaching the weights, also

{[av{la]}4]}3 »'MW,»NMW,> {[av a]}(s)
which is by 1.2. the same as Equation 5.1.

Fortunately, the ordering $ nasw is monotonic and well-founded; this holds
by Theorem 2.1.1 and the following property:

Proposition 5.3.1. The ordering »nyw s o simplification ordering.

Proof. Nested multisets with weights to be compared by » naw are terms
built from the variadic constructor symbol {.}, the 2-ary sequence construc-
tor {.,.) and a set C' of constants. Furthermore a finite set W C N is given.
Now consider the recursive path ordering with status >grpos (see e.g. [Stein-
bach, 1990]), where {.} is assigned a multiset status and (.,.) is assigned a
lexicographical left-to-right status. The precedence >grpos on function sym-
bols uses the given well-founded ordering > on C'; the set W is mapped

5.3 Orderings and Redundancy 167

isomorphically (say, by ¢) to a set of new constants, and >gpog is extended
order-isomorphically wrt. the ordering > on naturals. Finally, the construc-
tor symbols {.}} and (.,.) are given in >pgrpos more weight than ¢(maz(W)).
This implies {.} >rpos ¢(w) for every multiset.

With this definition it can be verified by unfolding >grpos according to
the cases of term structure, that » ypw satisfies >gpog. In particular, the
condition that the constructor symbols {.} and (.,.) is given in >gpog more
weight than ¢(max(W)) implies that we can obtain M, >grpos N, in case
N is a true subset of M (because then M, >grpos w holds, as is required by
>grpos).® Thus, with >pgrpos being a simplification ordering (see [Steinbach,
1990]), = naw is also.

5.3.2 Derivation Orderings

In order to be as general as possible we introduce the following notion:

Definition 5.3.2 (Derivation Ordering). A binary relation = on ground
derivations is called o derivation ordering iff > is a well-founded and strict
ordering. Now let D be a derivation. A derivation ordering > is called mono-
tonic iff D|ps,; = G and G > F implies D >~ D[F),; ;, where F is a deriva-
tion which agrees with G on top literal and derived literal.

Next we will design an appropriate derivation ordering for linearizing com-
pletion. For this let D be a derivation

D=L 2L, L, 25L,,,),

and define the complezity of D, compl(D) as
compl(D) = {0, (compl(D1),w1), ... ,{compl(Dy), wn)} ,
where for a sequence D' D?- .. D" of derivations we define

compl(D*D?-..D™) = U compl(D?) .

i=1l...m

Thus, compl(D) is a multiset whose elements are nested multisets with
weights over the set {0}. compl(D) contains structural information about
the derivation: it expresses the shape (when read as a tree) of the deriva-
tion encoded as multisets, and occurrences of input literals are mapped to
the dummy element 0 at the leaves. Furthermore, the weight of a used infer-
ence rule comes into the complexity measure as the weight of the multiset
corresponding to the rule application. For instance, the derivation D; in ex-
ample 5.2.1 has the complexity {0, {}5, {0, {}4},}-

5 We conjecture that even without the restriction to finite W a simplification
ordering results. This proof, however, does not go through in that case.

168 5. Linearizing Completion

In order to compare two derivations D; and D> we attach the artificial
weight 0 to them and use the nested multiset ordering with weights. More
formally define

Dy > 1in Do iff (compl(D1),0) »nnarw, 1 {compl(D2),0) ,

where the base set X is {0} and its base ordering L is the empty order-
ing @ (this is trivially an ordering). Evidently, a derivation D is linear (cf.
Section 5.2) iff its complexity compl(D) is of the form

£0,40,.. 0} yr- - 140, ,Ob, |

where the w;s are are the weights of the used inference rules. The ordering
> Lin 1S defined in such a way that when weights are neglected smaller deriva-
tions are “more linear”. Even more, if D is linear and D >r;, D' then D' is
also linear (Lemma 5.5.1).

It holds:

Proposition 5.3.2. The relation =i, is a monotonic derivation ordering.

5.3.3 Redundancy

Building on orderings we come to redundancy. In order to be as flexible as
possibly the following definition is rather general and includes the notion of
redundancy presently used for the linearizing completion as a special case.

Definition 5.3.3 (>--Redundancy). Let > be a derivation ordering, and
let T be an inference system. An inference rule P — C is called (>--)redundant
in 7 for derivations (Z need not necessarily contain P — C) iff for every
inference system J with T C J and every ground derivation

D = (L1 ={gup—cyye,m Ln)

which uses P — C' there is also a ground derivation D' < D of the form

D' = (L1 ={s\(p=cyys,m Ln) -

The rule P — C is called (>-)redundant in Z for completion iff (1) P — C is
not of the form —=A — F, where A is an atom, and (2) P — C' is »=-redundant
in T for derivations.

The short forms (>=-)c-redundant in Z and (>--)d-redundant in Z used in
the sequel mean for completion and for derivations, respectively

An inference rule of the form —A — F is never >-redundant due to (1).
The motivation for this comes from the use of such rules in the réle of input
literals during completion. It turns out that the deletion of a rule =4 — F in
general does not provide a substitute for this purpose, even if the rule would
be redundant according to >-redundancy for derivations.

5.3 Orderings and Redundancy 169

>-redundancy for derivations means that any ground derivation in a pos-
sibly extended inference system .7 using the redundant inference rule can
be replaced by a smaller derivation wrt. >, which uses at most the input
literals as given, and this derivation does not use the redundant rule. The
strict decreasing property is required since otherwise the redundancy of a rule
in a certain inference system would not carry over to the inference system
obtained as the limit of the completion process.

Notice that >-redundancy for derivations quantifies over derivations and
hence does not suggest a respective procedure for testing »=-redundancy. We
would thus like to have a more “local”, constructive way of characterizing
>-redundancy for derivations. The following sufficient criterion achieves this
for the case of linearizing completion:

Proposition 5.3.3 (Sufficient >;,-Redundancy Criterion). Let 7 be
an inference system and P —,, C be an inference rule. Suppose that for
every L € P there is a linear Z \ {P —,, C}-derivation from P

(L=
D D, Dn_1
-Ll):l> Pl—)w101L2£ P2—>w202L3 o '-Lﬂ/—l:> Pn_l—n,,n_lcn_l(Ln = C)

with n > 1 and such that for i = 1,... ,n — 1 it holds (P \ {L},w) »uw
(Di,w;) In this comparison the sequence D; of literals is to be read as a
multiset. Then P —,, C is > Lin-redundant in T for derivations.

The proof is by induction on the structure of a derivation, thereby making
use of the monotonicity property of > 1;, in the induction step.

Informally, the condition (P \ {L}, w) » pw (D;, w;) means that the i-th
inference step either uses strictly fewer side literals (the set D;) than the side
literals P \ {L} of an inference step carried out with P —,, C, or else, the
side literals are the same, but an inference rule of less weight is used. This
check has to be done for every L € P according to the potential applications
of the inference rule in a derivation.

Example 5.3.2. Consider the following ground inference system:

(1) A,B,C —4 D
(2) A,B,C —3 FE
(3) E,C —5 D
(4) C -5 D

The rule (1) is > 1;p-redundant for completion , because it is not of the form
—-A — F and it is redundant for derivations. Using Proposition 5.3.3 this is

checked as follows: for A as top literal consider the derivation AZS wD. It

can be replaced by the derivation AZS (2)E=C> (3)D; for the first inference
step we have

170 5. Linearizing Completion

{B.Cl = ({4,B,Ch\ {4}) .

Hence the weights must be considered, which yields 3 < 4. Thus the first
inference step satisfies the condition stated in the proposition. For the second
step we have {C} C {B, C}, hence the weights do not matter. The case for
B as top literal is similar, and for the top literal C rule (4) can be used.

Ezample 5.3.3. Consider the rule R = (z < z',1' < y',¢y' <2 =z < 2)
which expresses a once unfolded transitivity rule Trans = (z < y,y < z —
z < z). We claim that R is > 1;,-d-redundant in an inference system which
contains Trans. Using Proposition 5.3.3 this is checked as follows: for z < '
as top literal consider the derivation

z'<y’ y'<z’
T < xI= RT < zl

whose side literals are {z' < y',y’ < 2'}. It can be replaced by the derivation

s <y 1 y'<z !
T <X == (Trans)T <Y = (Trans)T < 2 .

Furthermore for the first inference step it holds {z' < y'} C {2’ < y',y’' < 2’}
and for the second step {y’ < 2’} C {2’ <y',y' < 2'}. Similarly derivations
with top literals ' < 3’ and y' < 2’ exist. Weights are not needed for these
derivations.

The practical value of the stronger >-redundancy for derivations alone is the
possibility to delete rules from an inference system 7 which are redundant for
derivations without losing completeness. In the search for derivations (and in
particular refutations) we will thus never have to consider rules of the form
—-A — F, provided they are redundant for derivations. Section 5.7.3 below
contains an example of a successful application of this idea.

The formal account is as follows:

Definition 5.3.4 (NonRed(Z)). Let T be a possibly infinite inference sys-
tem. Consider any possibly infinite sequence

(Zo=T)2T12---2Z; -

of inference systems, where T; 11 is obtained from Z; (for i > 0) by deletion
of an inference rule which is redundant in T; for derivations. Define the non-
redundant inference rules of this sequence as

NonRed(Z) = (Z; -
i>0

That is, we stepwisely remove inference rules which are redundant for deriva-
tions. The limit NonRed(Z) just consists of the rules which are persistent,
i.e. which are not deleted. Of course, NonRed(Z) is not determined uniquely.
The next proposition justifies this concept:

5.4 Transformation Systems 171

Proposition 5.3.4 (Completeness of NonRed(Z)). For every ground de-
rivation D = (L1 =7, pr Ln) a ground derivation D' = (L, = NonRed(T)s,M
L,) with D' < D ezxists.

Proof. It is clear from the definition of redundancy for derivations that
Ly =%, ,, Ly for all i. Further, for some 7; it must be the case that all infer-

ence rules 7' C Z; ground instances of which are used in D; = L, =% ur Ln

are never deleted afterwards, i.e. Z' C Z; for all j > i (*). Reason: otherwise

there would be an infinite sequence (Dy, = D) = Dy, > --- > Dy > ---

of derivations Dy, = Ly =>Z‘,£ v Ln, which however, is impossible by well-
]- b

foundedness of the derivation ordering >. Thus, from (*) it follows immedi-
ately that 7' C NonRed(T), and D' exist as claimed.

5.4 Transformation Systems

Transformation systems are the formal device for transformations of the in-
ference systems of the previous section. A transformation system transforms
an initial inference system in a fair way by application of certain transfor-
mation rules into a completed state. Completed inference systems in turn are
refutationally complete wrt. the desired restrictions (in our case “linearity”
and “unit-resulting”).

Definition 5.4.1 (Transformation system). A transformation rule with
premise P and conclusion C' is an expression of the form g where P is a
multiset of inference rules and C' is an inference rule. By applying a trans-
formation rule to a multiset of inference rules P' we mean the matching of P
to P' by some substitution p. The result of such an application then is Cp.
A transformation rule can be labeled as mandatory or optional. A transfor-
mation system consists of a set of transformation rules and a well-founded
ordering > on derivations.

Let S be a transformation system. The relation T s T' (deduction step)
on inference systems means that I' is obtained from T by either (1) adding the
result of an application of a transformation rule from S to variable disjoint
variants of rules in I, or else (2) by deleting a =-c-redundant inference rule
from I. In case (1) the weight of the added inference rule can be chosen
arbitrarily. A S-deduction from an inference system Zy is a sequence Zg s
Tits---FsIybs---. Deductions may be of finite or infinite length.

In this book we concentrate on the instance “linearizing completion”.
Therefore we define the transformation system Lin to consists of transfor-
mation rules given in Figure 5.7. The transformation rules Unitl, Unit2 and
Deduce are labeled as mandatory, and Contra is labeled as optional. As the
derivation ordering we use > L, as defined in Section 5.3.

172 5. Linearizing Completion

Unitl:

A —~C -As - F
Co—F

{ If Ayo = Aso by MGU .

Unit2:

Al,P—)C -A; - F If (1)P?£®, and
(P— Q) (2) A1o = Azo by MGU o

Deduce:

P — C Loy, Py — Co If (1) P, #0, and
(P1, P, > Cy)o (2) Cro = Lro by MGU o

Contra (optional):

L,P—>C

St A IfC#F
C,P—~L { 7

For atoms A1,A», literals C, L, Ly and literal multisets P,P; and P>».

Figure 5.7. The transformation rules of the transformation system Lin.

5.4 Transformation Systems 173

Example 5.4.1. From the ground rules A — B and =A — F the rule -B — F
can be obtained by Unitl?. Consider the inference system Zo(7) of Exam-
ple 5.2.1 again. From B,D — F and =D — F we can obtain B — F by
Unit2. Unitl and Unit2 share the same purpose: to eliminate in derivations
applications of literals from Punit(Z) (these are initially needed, as stated
in Lemma 5.2.1). For instance, the set M; = {4,C} in Example 5.2.1 now
admits the Zo(7) U {B — F}-refutation

Dy = (A= s,pB= p_fF) .

From the rules C' — D and B, D — F in Example 5.2.1 the rule B,C — F
can be obtained by Deduce. Deduced rules are used to turn a refutation
stepwise into a “more linear” refutation. Again, using Zo(7) U {B,C — F}
the refutation D from Example 5.2.1 of My = {A, C} can be linearized with
the new rule. We hayve:

D} = (A= 48B3 B,c—FF) .

If the new rule B, C — F is given the weight, say, 10, then the complexity of
Dj is {0, {}5, {0},o} and it can be verified that Dy > i Dj.

From the transitivity rule z < y,y < z — = < z and a copy z' <
Y,y < 2’ - 2’ < 2 by Deduce with 0 = {y + 2',z + 2’} one obtains
<z, o' <y,y < -ozxz<z.

From A, B — C by Contra -C, B — —A can be obtained.

This Contra transformation rule is an optional rule and thus is not labeled as
mandatory. It is sometimes valuable in order to come to a finite system (see
Section 5.1.4 in the introduction for an example). However, the Contra rule
should be applied carefully since it increases the search space of the generated
inference systems; applying Contra exhaustively will produce every possible
contrapositive of a theory clause. This is clearly not intended. Surprisingly,
an application of the Contra rule may increase the deductive power of an in-
ference system: consider e.g. Z = {A — B}. The only non-trivial Z-derivation
is A=B. However, when 7 is enriched with the contrapositive =B — —A,
the derivation ~B=-—A4 also exists. However its application does not increase
the refutational power of inference systems.
We collect for later use the following lemma, which states that c-redundancy

persists along transformation steps:

Lemma 5.4.1. Let S be a transformation system with derivation ordering
>. Suppose P — C is »=-c-redundant in some I, and suppose that T ks J.
Then P — C is also =—-c-redundant in J.

Proof. If J is obtained by adding a new rule to Z the lemma is trivial by
the property J D Z in the definition of c-redundancy (Def. 5.3.3). If 7 is

7 Weights are not considered in this example.

174 5. Linearizing Completion

obtained from Z by deletion of a redundant rule then well-founded induction
is used to eliminate every use of P — C and the deleted rule in derivations.
See the appendix for the full proof.

It should be remarked that the proof goes through even if d-redundancy
would be used instead of c-redundancy. This holds in other (but not all)
situations as well. But we do not need this here.

Note 5.4.1 (Soundness). We conclude this section with a note on soundness.
In order to achieve the soundness of the overall approach, one has first to guar-
antee that all derivations obtainable from initial inference systems are sound.
This, however, is clear since they are nothing but Unit-Resulting refutations.
Secondly, one has to guarantee that derivations obtainable from transformed
inference systems are sound. The key to this result is the observation that
newly generated inference rules are just resolvents of present rules, and hence
are logical consequences of these.

5.4.1 Limit Inference Systems

The process of applying the transformation rules of a transformation system
may terminate or not. In order to treat both cases in a uniform way it is useful
to define the limit inference system Z.,, which is finite if the transformation
system eventually does not produce new inference rules any more, and infinite
otherwise.

Definition 5.4.2 (Limit, [Bachmair, 1991]). The limit of a deduction
Iob-IhF--- I, is defined as

I.=JNz -
i j>i
The elements of T, are also called the persisting inference rules.

The limit Z, of a deduction is the set of inference rules generated eventually
and never deleted afterwards:

Lemma 5.4.2. Let Ty - Z; b ... be a deduction and suppose (P — C) €
Zoo. Then for some k, and for olli > k: (P - C) € Z;

Proof. By contradiction. Assume P — C € 7, and suppose that for all k
an ¢ > k exists such that P — C ¢ 7Z;. Hence whenever P — C € 7 then
P = C ¢ >k Zi- Thus P — C ¢ U, ;> Zi and hence by definition of Z,
P — C ¢ I. This however contradicts the assumption of the lemma.

This result can be extended for derivations:

Proposition 5.4.1. Let Ip - Z; F ... be a deduction and let D be a 19 -
derivation (resp. I, derivation). Then for some k, D is also a I} -derivation
(resp. Iy derivation,).

5.4 Transformation Systems 175

Proof. Let {r1,...,rn} C Zoo be the (finite) inference system used in the
given derivation. For every r; (j = 1...n) by Lemma 5.4.2 it holds that for
some kj, all i > kj: r; € Z;. Now take k = max({ki,...,kn}) and observe
that {Tl, . ,’I‘n} g Ik.

The next lemma extends Lemma 5.4.1 to the limit 7, i.e. c-redundant in-
ference rules remain redundant in the limit:

Lemma 5.4.3. Let S be a transformation system with derivation ordering
—. LetTo Ty F - -- be a S-deduction. If for some k, P — C' is =-c-redundant
in Iy then P — C is =-c-redundant in L.

Also the Punit-literals persist:

Lemma 5.4.4. Let Ty - Z; & --- be a deduction. If A € Punit(Zy,)9 then
also A € Punit(T)?.

Proof. A is a ground instance of some atom A’, where —A’ — F € Z;. By
definition of »--c-redundancy, a rule “A — F € 7}, is never >-c-redundant
and thus is never deleted. Hence - A — F € Z; for every 1 > k. Thus

CA-FeNZcUNTi=Tw -

i>k E>0i>k
By this the claim follows.

Lemma 5.4.3 and Lemma 5.4.4 imply the following central property:

Lemma 5.4.5. Let S be a transformation system with derivation ordering
—. Let Ty =1y - --- be an S-deduction. If there is a derivation

D = (L =%y mupunit(zg) L)
then there is also a derivation
D'=(L =79, MUPunit(1%) L)

with D' < D.

5.4.2 Fairness and Completion

Deductions must be fair, which roughly means that no application of a
mandatory transformation rule is deferred infinitely long. Fairness is impor-
tant since it entails that “enough” inference rules to obtain normal derivations
are generated. Our definition of fairness is an adaption of standard definitions
in the term-rewriting literature (see e.g. [Bachmair, 1991)).

176 5. Linearizing Completion

Definition 5.4.3 (Fairness). Let S be a transformation system with deriva-
tion ordering =. An S-deduction To - Ty & --- + T, --- is called fair iff
whenever Too b Lo U{P — C} for some application of a mandatory trans-
formation rule from S, then for some k, P — C € T} up to renaming, or
P — C is =-c-redundant in Ty,.

Fairness states that it is sufficient either to generate an inference rule or
to prove it c-redundant from persisting inference rules only. This notion of
fairness enables the use of a “delete as many inference rules as possible”
strategy in implementations, since a rule once shown to be c-redundant is
redundant in all subsequent stages (Lemma 5.4.3) and thus need not persist.

The next central concept is that of a completed inference system, which
means that only c-redundant new inference rules can be generated. Com-
pletion is a useful concept since it allows us to characterize refutationally
complete inference systems, which is a semantic concept, in a more syntacti-
cal way?®.

Definition 5.4.4 (Completed Inference System). Let S be a transfor-
mation system with derivation ordering ». An inference system T is com-
pleted (wrt. S) iff whenever T s TU{P — C} by application of a mandatory
transformation rule from S then P — C € T up to renaming or P — C is
>-c-redundant in T.

Fairness, deductions and completion relate as follows:

Theorem 5.4.1. Let S be a transformation system and Ly be an inference
system. The limit T, of a fair S-deduction Ty - T & --- is completed wrt.
S.

Proof. By contradiction. Suppose Z, is not completed. Then, for some appli-
cation of a mandatory transformation rule from £ we have Z, + Zoo U{P —
C} such that P - C ¢ Z, and P — C is not =-c-redundant in Z, (*).
However, by fairness, for some k, P — C' € 7, or P — C is c-redundant in
7. This suggests the following case analysis:

Case 1: Suppose P — C € I;,. If P — C is not deleted afterwards, i.e. for
alli >k, P = C € I;, then P — C € ();5, Z; and thus also P — C € Z.
Contradiction to (*). a

Otherwise, if P — C is deleted in some Z;, P —+ C must have been >-c-
redundant in 7; ;. But then by Lemma 5.4.3 P — C is >-c-redundant in
Zoo- Contradiction to (*).

Case 2: If P - C is »-c-redundant in 7} then by Lemma 5.4.3, P — C'is
>-c-redundant in Z,. Contradiction to (*).

8 Note that the term “complete” has two distinct technical meanings here, and
the refutational completeness of a completed system depends additionally on
how the inference rules are used (unit-resulting linear hyper resolution, in this
case), and what deduction rules are used to complete the system.

5.5 Complexity-Reducing Transformation Systems 177

5.5 Complexity-Reducing Transformation Systems

Up to now we have seen that the inference systems generated along a deduc-
tion never increase the complexity of a once obtained derivation. However,
in order to obtain completeness wrt. normal-form derivations (linear deriva-
tions) more is required: the transformation system has to eventually gener-
ate inference rules that will strictly decrease the complexity of a non-normal
derivation.

Definition 5.5.1 (Normal Derivations, Order-Normalizing System).
A set N of ground derivations is called normal iff N is downward closed wrt.
a given derivation ordering >, i.e. if D € N and D' < D for some ground
derivation D' then D' € N. In the sequel N always denotes a set of normal
derivations.

Now let T be an inference system and let S be a transformation system
with derivation ordering . Then S is called order-normalizing wrt. N iff
whenever there is a ground derivation D = (L =7, 5, L') such that D ¢ N'
then there is a derivation D' = (L ={z.), 3, L') with D' < D, where I' =1
or I ks I' by one single application of some mandatory transformation rule.

The normal derivations are the ones to be achieved by the completion process.
In the case of linearizing completion we thus target the set LinG of all linear
ground derivations.

From downward closure we can always conclude that if ground deriva-
tion D is normal and D' < D then also D' is normal. This is important
because if D' replaces a normal derivation D according to the definition of
>=-c-redundancy (Def. 5.3.3), then also D' will be normal.

For the case of linearizing completion it is therefore important to have:

Lemma 5.5.1. The set LinG of all linear ground derivations is normal wrt.
the derivation ordering > r;,. That is, if ground derivation D is linear and
D = 1in D' then D' is also linear.

Proof. Suppose, to the contrary, there is a linear ground derivation D and
a ground derivation D' such that D >, D' but D’ is not linear. Hence
compl(D") is of the form (weights omitted)

compl(D") = {0,c,...}}, where ¢ ={0,{0,...},...]},
whereas

compl(D) ={0,{0,...,0},...{0,... ,0}} .

Suppose compl(D) contains n multisets as indicated. Let ¢ be a maximal of
those. Clearly, by property of nested multiset ordering it holds ¢’ %y pw c.
Next let ¢ be obtained from compl(D") by replacing ¢’ by n + 1 occurrences
of c. It follows compl(D') »nuw ¢". On the other hand also ¢ »nuyw
compl(D). Thus, together compl(D') »namw compl(D), which is a contra-
diction to the assumption D >, D' (i.e. compl(D) % npw compl(D")).

178 5. Linearizing Completion

An order-normalizing transformation system enables the generation of a new
inference rule (if not present already) that allows a decrease in complexity of
a given non-normal ground derivation. Note that not necessarily D' € N in
Definition 5.5.1. Such a property is not required, because the derivation order-
ing > is well-founded. So we will eventually end up with a normal derivation
D' € N for any given derivation D (see Proposition 5.5.2 below).

As an example for an order-normalizing transformation system take “lin-
earizing completion”, which is order-normalizing wrt. linear ground deriva-
tions:

Proposition 5.5.1. The transformation system Lin is order-normalizing
wrt. LinG.

In essence, the proof uses the facts that the Deduce transformation rule is la-
beled as mandatory and furthermore works towards strictly decreasing deriva-
tions wrt. the well-founded ordering > ;-

Returning to the general level, we find that a completed inference system
in conjunction with order-normalizing transformation systems yields normal
derivations:

Proposition 5.5.2. Let S be an order-normalizing transformation system
wrt. N and let T be a completed inference system wrt. S with derivation
ordering . Whenever there a ground derivation D = (L =7,y L') exists
then a ground derivation D' = (L =7, ps L') with D' € N and D' < D also
exists.

Proof. By well-founded induction on the derivation ordering >: either D € N/
and we are done by taking D' = D, or else by definition of order-normalizing
transformation systems there is a derivation D" = (L ={z,, ,, L') with
D" < D, where I' =T or Z bs I' by application of some mandatory trans-
formation rule. If 7' = 7 we can immediately apply the induction hypothesis
to D" to obtain the desired derivation D’. Otherwise, Z' = ZU {P — C}.
Since 7 is completed either (a) a variant of P — C' is contained in Z, or (b)
P — C is =-c-redundant in Z. In case (a) we can replace in D" every use of
P — C by its variant from 7 and obtain a Z-derivation alone (to which the
induction hypothesis can be applied). Now for case (b): either P — C is not
used and thus D" is a Z-derivation alone (to which the induction hypothesis
can be applied), or else, by definition of ¢-redundancy (Def. 5.3.3) there is a
79-derivation D" < D" of the same kind as D". By applying the induction
hypothesis to D" this concluding case is done.

Chaining ground completeness (Lemma 5.2.1), the completion property
of limits (Theorem 5.4.1) with Proposition 5.5.2 we can obtain normal refu-
tations of M U Punit(Z), where M is some T-unsatisfiable literal set. Thus, a
refutation might still use unit inference rules being turned via Punit(Z) into
input literals. However, every use of a literal from Punit(Z) represents a com-
putation among the inference rules and should be avoided. In order to admit

5.5 Complexity-Reducing Transformation Systems 179

normal refutations with input literals M alone, we will compile the literals
Punit(Z) into the inference system. The situation is much like normalizing
above, but now “normal” means “free of usages of elements of Punit(Z)”.
In order to obtain termination when eliminating these cases we require the
respective mandatory transformation rules to work strictly decreasing wrt.
>. This is captured in the next definition.

Definition 5.5.2 (Punit-Normalizing Transformation System).
The multiset of used input literals of a derivation D is defined as

Used(D) = {L | L is the top literal of D|,, where p € P(D)} .

The function used is extended homomorphically to sequences and multisets
of derivations as expected.

Let S be a transformation system with derivation ordering > and let N
be a set of normal derivations. Then S is called Punit-normalizing wrt. N
iff whenever there is a non-trivial ground derivation

D = (L =79, MU punit(z9) L)

with D € N such that Used(D) N Punit(Z9) # 0 then there is a derivation

D' = (K #?II)Q’MUPunit((I')g) Ll)

with D' < D where K € M U Punit((Z')9)U{L} and T' =7 or Tts T' by
application of some mandatory transformation rule.

“Punit-normalization” means that whenever an inference rule A — F is
used as an input literal A then a strictly smaller derivation exists. That
derivation, however, need not start with the same top literal L, but may as
well start with a top literal from M U Punit((Z')¢). Note that according to
this definition it suffices for a Punit-normalizing transformation system to
work on normal-form derivations only.

Fortunately it holds:

Proposition 5.5.3. The transformation system Lin is Punit-normalizing
wrt. LinG.

This is essentially due to the transformation rules Unitl and Unit2.

Ezample 5.5.1. Consider the inference system Zo(7") in Example 5.2.1 again.
It holds Used(D;) = {A,C}. Since Zy(T) includes a rule -D — F, we have

M3 = M]_ U P’ll,n'Lt(Io(T)) = {A,C,D} ;

and we can find a Zo (7T)-derivation

D3 = (A= 4,5B= 5 p_¢F)

180 5. Linearizing Completion

from Ms3. It holds that
Used(D3) N Punit(Zy(T)) = {A,D}N{D} #0 .

By the previous proposition we should be able to find a smaller derivation wrt.
> Lin after application of some mandatory inference rule from Lin. Indeed, the
Unit2 rule applied to B,D — F and =D — F, gives the new rule B — F and
allows for a smaller derivation. This derivation is just Dy in Example 5.4.1.

Completed inference systems in conjunction with Punit-normalizing trans-
formation systems yield derivations that are free of applications of inference
rules A — F as input literals A. This result is similar to Proposition 5.5.2
for order-normal derivations:

Proposition 5.5.4. Let S be a Punit-normalizing transformation system
wrt. N, and let T be a completed inference system wrt. S. Whenever there
is a ground derivation D = (L =79, MUPunit(Z9) L") with D € N then there
is also a ground derivation D' = (K =%, s L') with D' X D, D' € N and
some K € M U{L}.

Since we are interested in both properties — Punit-normalization and order-
normalization — we define:

Definition 5.5.3 (Normalizing Transformation System). A transforma-
tion system S is called normalizing wrt. N iff S is both order-normalizing
wrt. N and Punit-normalizing wrt. N.

Combining Propositions 5.5.1 and 5.5.3 we then obtain:

Theorem 5.5.1. The Transformation system Lin is normalizing wrt. the set
LinG of linear ground derivations.

5.6 Completeness

The goal of this section is to assemble the material of the previous sections
into several completeness results. A soundness result for linearizing comple-
tion shall not be formally established. Soundness can easily be shown by
observing that all derivations and deductions can be simulated by resolution.
Hence, if a refutation of a T -satisfiable set M would exist, it could also be
found by resolution, which is impossible by soundness of resolution.

We first establish a general ground completeness result which does not
refer to a special derivation ordering. This result will then be instantiated
for the case of linearizing completion, and it will be shown that linearizing
completion yields suitable background reasoners for the intended application
within both total and partial theory reasoning.

5.6 Completeness 181

5.6.1 Ground Completeness

In purely equational logic and Knuth-Bendix completion, Birkhoff’s theorem
links model theory and proof theory: two ground terms are equal in an equa-
tional theory 7 — i.e. a set of equations — iff they can be made identical by
replacement operations using the equations from 7. Since we deal with more
general theories we proved in Section 5.2 a corresponding result (ground com-
pleteness, Lemma 5.2.1). In order to apply it we find it helpful to introduce
the following notion:

Definition 5.6.1 (Relative Completeness). Inference system T is called
relatively complete wrt. an inference system J iff whenever L :>"“79, MU Punit(79)
L' then also L =70, MU Punit(Z9) r
Now we can turn towards completeness. Notice that quite often we will use
an inference system NonRed(Z) and not just Z. That is, during “refutation
time” there is no need to keep inference rules of the form - A — F which are
redundant for derivations.

We start with a general result:

Theorem 5.6.1 (General Ground Completeness Theorem). Let T be
a theory and let S be a normalizing transformation system wrt. some set N
of normal derivations. Suppose an inference system I is completed wrt. S,
and also suppose that T is relatively complete wrt. To(T). Then for every T -
unsatisfiable ground literal set M there is a NonRed(Z)?-refutation D € N
of M with some top literal from M.

Proof. Tt holds that M is T-unsatisfiable iff M’ U7’ is unsatisfiable for some
finite subsets M’ C M and 7' C T9 (apply Proposition 2.5.1.3, equivalence
(a)-(e), and the Skolem, Herbrand, Lowenheim Theorem, Theorem 2.4.3). By
ground completeness, Lemma 5.2.1, then

L =70, mrupunit(zomy) T
for some L € M' U Punit(Zo(T")). With Zo(T") C Zo(T)? and M’ C M it
follows

L =7, (1y9,MUPunit(7o(T)s) F -

Since Z is given as relatively complete wrt. Zo(7) we find by definition

*
L =76 mupunit(ze) F -

With S being given as normalizing wrt. AV we can first find (by Proposi-
tion 5.5.2) an order-normal refutation

(L =%o mupunitzs) F) EN

and then we can find (by Proposition 5.5.4) a Punit-normal refutation

182 5. Linearizing Completion

(K=>7.uF)eN,
for some K € M. Finally apply Proposition 5.3.4.

This theorem requires the existence of a completed and relatively complete
inference system wrt. Zo(7). Such a system can be obtained in a constructive
way as the limit of a fair deduction:

Theorem 5.6.2. The limit Zo, of an S-deduction To(T) bs Ty bs Iy ... is
relatively complete wrt. Zo(T), where T is o theory.

Proof. Use Lemma 5.4.5, setting there Zo = Zo(T) and k = 0.

Thus we can instantiate the general ground completeness theorem:

Corollary 5.6.1. (to Theorem 5.6.1) LetT,S and N as in Theorem 5.6.1,
and let T, be the limit of a fair S-deduction To(T) bs Z1 Fs Then for
every T -unsatisfiable ground literal set M there is a NonRed(Z,)? -refutation
D € N of M with some top literal from M.

Proof. By Theorem 5.6.2 T, is relatively complete wrt. Zo(7), and by The-
orem 5.4.1 7T, is completed wrt. S. Hence the corollary follows from the
theorem.

Next we are going to instantiate this corollary towards “linearizing com-
pletion”. Before we do so, observe that the corollary (as well as the theorem)
states completeness for some top literal chosen from the input literal set. How-
ever, as motivated in the discussion following Definition 4.5.6 (page 125), the
intended application of completed inference systems as background reasoners
within theory reasoning calculi demands that we insist on a completeness
result with respect to every literal as top literal. This “independence of the
goal” property corresponds to e.g. linear resolution for Horn theories where
it suffices to start derivations with a negative clause. In practice, this means
that the top literal need not be guessed in a don’t-know nondeterministic
way, but can be chosen a priori.

Fortunately, the transformation system Lin is powerful enough to generate
inference rules that allow rearrangement of a given linear derivation such that
any literal used inside a derivation can be switched to the top position. This
is expressed in the following lemma:

Lemma 5.6.1 (Top Literal Lemma). LetZ be a completed inference sys-
tem wrt. the transformation system Lin. Suppose there is a linear ground
derivation D = (L %o L,) with Ly € M. Let T € M such that
T € Used(D). Then there is a linear ground derivation D' = (T =%, yr Ln).

Example 5.6.1. The inference system Zsp in Example 4.5.3 is completed wrt.
Lin. Let D be the refutation stated there (the current notation is a bit dif-
ferent, but that does not matter). Since ¢ < d € Used(D) a refutation with
top literal ¢ < d exists, which is as follows:

5.6 Completeness 183

c<dd=<§c<eé%c<aégc<bb=<§c<c=>F .

Note that the top literal lemma is not formulated within the general unin-
stantiated completion theory, since in general it may be not useful to demand
the completeness for arbitrary chosen top literals for arbitrary transformation
systems.

Now with the top literal lemma we can obtain the desired completeness
result for linearizing completion.

Theorem 5.6.3 (Ground Completeness of Linearizing Completion).
Let T be an inference system completed wrt. the transformation system Lin.
Let T be a theory and suppose T is relatively complete wrt. Zo(T). Then for
every minimal T -unsatisfiable ground literal set M and every literal L € M
there is a linear refutation

*
L = Nongeda(zyo,m F -

Note that a relatively complete inference system as assumed in the theorem
can be obtained by application of Theorem 5.6.2.

Proof. By the general ground completeness theorem (Theorem 5.6.1) there
is a linear Z9-refutation D" € LinG of M. Since M is given as minimal 7T-
unsatisfiable, the intended top literal L must be used at least once in the
refutation, because otherwise the refutation of M \ {L} implies by soundness
a contradiction to the minimality assumption about M. Next apply the top
literal lemma (Lemma 5.6.1) to D" and obtain a linear refutation D' with top
literal L. Finally, from Proposition 5.3.4 we learn that a refutation D <, D’
using NonRed(Z) exists. Further, by Lemma 5.5.1 we know that D is thus a
linear refutation as desired.

5.6.2 The Link to Theory Model Elimination

Now the link between linearizing completion and its intended application
within PTME-I and PRTME-I is made:

Corollary 5.6.2 (Ground Complete Background Reasoners).
Let T and T as in Theorem 5.6.3. Then NonRed(Z)~ is ground complete wrt.
T (Def. 4.5.6), where NonRed(Z)~ is obtained from NonRed(Z) by removing
the weight from each inference rule.

Further, if T is a definite theory, then the inference system obtained from
NonRed(Z)~ by deleting all inference rules which are not contra-definite is
still ground complete for negative top literals (cf. Def. 4.5.6 again).

Proof. For the first part, let M be a minimal ground T-complementary literal
set and let T' € M. We have to show that a background refutation as defined
in Def. 4.5.6 exists.

By Theorem 5.6.3 there is a ground, linear NonRed(Z)-refutation

184 5. Linearizing Completion

D = (T =Nonreamys,m F) -

It is rather trivial to map D into a background refutation according to Defini-
tion 4.5.6 of the same length: simply replace each matching theory inference
(Def. 5.2.2) in D, say, P' =p_,c,5 C', where P —,, C € 79 by a minimal
first-order theory inference (Def. 4.5.2) P" =p_,¢,5 C', where P — C € 19
and P" C P’ such that P" contains no duplicates and P’ is an amplification
of P" (cf. Section 2.1). Of course, the last step in D yielding “F” yields “0”
instead in the background refutation (this is only a matter of notation).

For the second part — ground completeness for negative top literals when
restricting to contra-definite rules — we use a simply syntactic argument.
Suppose that T is a negative literal, and R is the background refutation just
constructed in the first part of the proof. We show that in R only contra-
definite inference rules can have been used. This will prove the claim imme-
diately.

Suppose, to the contrary, a non contra-definite rule is used in R. Locate
the leftmost inference step in R using a non contra-definite rule, say P — C
(i-e. if P — C is used in the i-th inference step in R, then all rules applied
in inference steps j < i are contra-definite).

Since in all inference rules treated by linearizing completion the conclusion
C is a single literal or F, P — C must take one of the following forms:

A1, ..., Ay —>F (a)

Ai,...,A, > B (b)

Ai,..., A, > B (c)
~A,Ay,...,Am > B (d)
~Bi,..., =B, A1,...,Am > F (e)
~Bi,...,~By,A1,... ,Ap — B (f)
-Bi,...,=Bi,A1,... ,Ap > B , ()

where n > 1, m > 0 and k£ > 2. We can cancel some of these possibilities
immediately: let the clause form of a rule Ly,... ,L, — L,4+1 be the clause
ILyV---VL,VX where X = 0if L,;; = F and X = L, ;; otherwise. It
is clear from the construction in Definition 5.2.4 that the rules in the initial
inference system for the (definite!) theory 7 all have clause forms which are
definite. Inspection of the transformation system Lin (Figure 5.7) reveals that
this remains invariant under application of any of its transformation rules.
Hence, the possibilities (a) and (d) — (g) for P — C cannot apply, because
their respective clause forms all are not definite ((d) — (g) are even not Horn).

It remains to consider cases (b) and (c). In case (b) the considered in-

. ApAi 1 Aigr Ay
ference step in R must be of the form A;——===L2—% ,, . B, for some

j (1 £ 7 < n). Now, contra-definite rules never have a negative conclusion
literal. Hence, A; must either (1) be the top literal of R or (2) be obtained
by an inference step with a non contra-definite rule. Case (1) is impossible,

5.6 Completeness 185

since the top literal is given as a negative literal, and case (2) leads to a
contradiction to the selection of P — C' as the leftmost non contra-definite
rule in R. Thus, case (b) cannot apply.

In case (c) the same argumentation applies and hence is omitted. Now
since all cases lead to a contradiction we conclude that the assumption must
be wrong, and that R can use contra-definite inference rules only.

5.6.3 First-Order Completeness

Besides the combination result with theory model elimination (Theorem 4.5.3),
the next theorem is the main result for linearizing completion, and its proof
employs most of the material presented in this chapter.

Theorem 5.6.4 (Completeness wrt. Minimal 7-MGRs). Let T be a
theory, and suppose that T is an inference system which is relatively com-
plete wrt. Zo(T) and that T is completed wrt. the transformation system Lin
(or, somewhat weaker, T is the limit T = T, of a fair Lin-deduction

Zo(T) Frin Th Frin Zo---) .

Let M be a minimal T -complementary literal set, T € M, and suppose 7y is
a T -refuter for M. Then there is a first-order background refutation

D= (T :>*NonRed(I)—,M,¢r D)
with computed answer substitution o < v [Var(M)].

Stated differently, this theorem guarantees that linearizing completion can
be used as a complete T -unification procedure (Def. 4.4.1). The relevance of
this result is stated in Note 4.4.3, where it was argued for the possibility of
using complete 7 -unification procedures as background reasoners within total
theory model elimination (TTME-MSR) or theory resolution [Stickel, 1985;
Baumgartner, 1992b).

Proof. Since 7 is a minimal T -refuter, M+~ is, by definition, minimal 7 -com-
plementary. Hence also the instance Ly of L € M is contained in M~y.

By definition, M+ is T-complementary iff M is T-unsatisfiable. Clearly,
all existentially quantified variables can now be Skolemized away, which pre-
serves T-unsatisfiability (See Note 4.2.3 for a proof of this fact). Let +' be
such a Skolemizing substitution which replaces all variables in M~y by con-
stants not occurring in M~. Hence M~yv' is ground and is T-unsatisfiable.
By Corollary 5.6.2 and the definition of ground completeness, Def. 4.5.6,
there is a background refutation of M~~' with top literal Ly+y' with respect
to the inference system NonRed(Z)~. Finally, we apply the lifting lemma
(Lemma A.2.9) to obtain a background refutation on the first-order level.
We are not quite done, because for the computed answer o it holds (for
some §) that 0§ = vy [Var(M)], but not 0§ = v [Var(M)] as required.

186 5. Linearizing Completion

However, recall that 4" is a Skolemizing substitution, i.e. it is of the form

v = {x1 < ai,...2T, < an}, where the a;’s are new and pairwise different
constants. Therefore, the inverse p = {a1 < z1,...a, < T} exists, and it
holds odp = vy'p = v [Var(M)]. In other words, o < v [Var(M)] as de-
sired. A more explicit proof can be carried out analogously to the answer
completeness of TTME-MSR, (Theorem 4.4.3, “Part 4: Lifting”).

For the weaker variant, observe that by Theorem 5.6.2 7, is relatively
complete wrt. Zo(T), and by Theorem 5.4.1 T, is completed wrt. Lin. Hence
the stronger variant follows from the weaker one.

5.7 Sample Theories

The purpose of this section is to demonstrate the application of linearizing
completion to non-trivial examples.

5.7.1 Equality and Paramodulation

We start with the theory of equality alone and then extend it with strict
orderings.

Consider the theory of equality in a language without function symbols
and a 2-ary predicate symbol P (Figure 5.8).

Equivalence: P-Substitution:
—Sr=uz (Ref=) P(z,y), z =2' = P(z',y) (SubP-1)
c=y—y=z (Sym=) P(z,y),y=y — P(z,y') (SubP-2)
T=yY,y=2—3C=2 (Trans=)

Figure 5.8. The theory of equality in a language with a 2-ary predicate symbol P.

The inference system in Figure 5.9 corresponds to that theory and it
is completed wrt. the transformation system Lin (Figure 5.7). The notation
2 = y is a nondeterministic notation for z = y or y = z. If part of an inference
rule, the rule has to be expanded to both cases. This system was obtained
as the result of a fair deduction, starting from the initial inference system
(Definition 5.2.4) associated with the theory. There, we gave a weight of 0 to
every rule. The system in Figure 5.9 was then obtained semi-automatically
with the assistance of an implementation (called LC, see Section 6.0.5) in
the following way: first we added the following contrapositives manually by
application of the Contra transformation rule:

“(z=2),y=z—->-(z=y) Contrapositive of (Trans=)
-P(z',y), z =2’ - —~P(z,y) Contrapositive of (SubP-1)
=P(z,y"), y =y — —P(z,y) Contrapositive of (SubP-1) .

5.7 Sample Theories 187

Equivalence: P-Substitution:
=y, ~(z=y)>F (Syn=) P(z,y), =P(z,y) =+ F
~(x=x)—>F (Ref=) P(z,y), z =2’ — P(2,y)
c=y—y=z (Sym=-1) P(xz,y), y =y — P(z,y')
T=y,Yy=z—r=2=z (Trans=-1) -P(z,y), z =z — —=P(z',y)
~(zx=2),y=z—-(z=y) (Trans=-2) —P(z,y), y =y — ~P(z,y)

Figure 5.9. A completed inference system for equality without function symbols.

All these rules were given the weight 0. Then the mandatory transforma-
tion rules of Lin, i.e. Deduce, Unitl and Unit2 were applied repeatedly in
an exhaustive way, until no more non c-redundant inference rules could be
generated. This part of the construction was carried out automatically. The
generated rules were given weights of somewhat above 0.

Alternatively to this semi-automatic processing, the LC tool can be run
in a fully automatic setting. Then the same system results as in Figure 5.9
except that additionally the rule ~(z = y) — —(y = z) is generated as
a contrapositive of the (Sym=-1) rule. This happens due to a particular
heuristic built into LC, which builds a contrapositive rule if it can successfully
be applied in the redundancy proofs of two or more other inference rules.

Note 5.7.1 (Usefulness of the Contra Transformation Rule). The completed
system in Figure 5.9 also serves as an example for a useful application
of the Contra rule, which lies in the proof of redundancy: applying De-
duce toz = y,y = 2 - 2 = zand x = z,-(x = z) — F results in
z =vy,y = z,~(x = 2) - F. In order to avoid an infinite chain of appli-
cations of Deduce we would like to show that x =y, y = 2, (. = 2) = F
is redundant. This is possible due to the contrapositive (Trans=-2). For the
crucial case with —(x = z) as top literal the redundancy proof is by the
derivation

—(z = 2) = (Trans=-2) (% = y)=—> symF -

Hence, the inference rule z = y, y = z, =(z = 2) — F is redundant and can
be deleted.

How to efficiently mechanize the equality relation has been widely studied
in the literature. It may thus be interesting how the inference system in
Figure 5.9 relates to well-known approaches.

The most prominent approach to dealing with equality is certainly para-
modulation [Robinson and Wos, 1969] and its refinements (see Section 4.1.2).
Briefly, the inference system in Figure 5.9 reflects the linear paramodula-
tion calculus for equational theories (see e.g. [Furbach et al., 1989¢c]) without
function symbols.

188 5. Linearizing Completion

Linear paramodulation proceeds by repeated subterm replacement in a
given goal equation —(s = t) until a trivial goal of the form —(s = s) has
been reached. In order to obtain a corresponding refutation in our system, we
have to start with the top literal =(s = t). Subterm replacement in paramod-
ulation is mirrored in our system by the (Trans=-2) inference rule, while the
derivation of the trivial goal in paramodulation is mirrored by an application
of the (Ref=) inference rule. Note that according to the (Trans=-2) inference
rule it is sufficient to paramodulate into the right hand side of a negative
equation. Technically this is realized by the absence of certain contraposi-
tives of the (Trans-=) inference rule.

Indeed, for negative goal equations, (Trans=-2), (Syn=) and (Ref=) are
sufficient. The formal account for this is the second part of Corollary 5.6.2.
Further, it is easy to see that (Syn=) is redundant for derivations, because
its applications can be replaced by a two step derivation using (Trans=-2)
and (Ref=).

When positive used as a rule of inference within a linear calculus such
as model elimination, paramodulation must also be defined for positive goal
literals (see [Loveland, 1978]). This is already achieved in our system by
means of the (Trans=-) and (Sym=-1) rules.

Things become more complicated when function symbols are involved.
For the sake of simplicity assume a single 2-ary function symbol f as given.
This implies for the theory of equality additional substitution axioms:

r=a' = f(z,y) = f(2',y)
y=y — f(z,y) = f(z,y') -

The thus enhanced theory can then be completed in a way similar to above.
The resulting system is infinite and contains rules like

z=da', ~(f(f(2,9),2) = w) = =(f(f(z',y),2) =w) (Inst-Par) .

In general, such rules for subterm replacement are generated for arbitrary
depth. These rules have also a counterpart in linear paramodulation: it is
well-known (see e.g. [Holldobler, 1989]) that in linear paramodulation the
functional reflexive axioms, i.e. axioms of the form f(x,y) = f(z,y) are nec-
essary for completeness. Equivalently, the additional inference rule instantia-
tion can be used instead (see again [Holldobler, 1989)). It is straightforward
to show that an application of an instantiation inference rule, followed by a
paramodulation step, has the same result as carrying out a first-order infer-
ence with a respective inference rule such as (Inst-Par).

These considerations about paramodulation lead us to the following con-
clusion: linearizing completion did not discover an essentially new calculus
for equality treatment. However, it succeeded in re-inventing a well-known
and fairly efficient calculus, namely linear paramodulation. Furthermore, this
was done in an automatic way, and the completeness of linear paramodulation

5.7 Sample Theories 189

is obtained as an instance of the general completeness for PTME-I (Theo-
rem 4.5.3).

We conclude with a note on RUE-resolution [Digricoli and Harrison, 1986].
Since our approach is successful on rediscovering paramodulation, the ques-
tion arises whether the inference rules of RUE-resolution could be derived as
well. It seems that this is not possible, mainly because in RUE resolution the
conclusion of the inference rules are clauses but not single literals. However,
this unit-resulting property is central to our approach.

5.7.2 Equality plus Strict Orderings

As a generalization of the above system for equality (Figure 5.9) consider ex-
ample 5.2.2 again. Applying a fair Lin-deduction to the initial system Zo(ES)
results in the (infinite) completed inference system depicted in Figure 5.10.
The strategy for deriving this system was the same as in Section 5.7.1 above.
Note that not all contrapositives of the (Trans<) axiom have to be generated.

Equivalence:
=y, ~(r=y)—F
“(z=2z)—>F
rT=y—oy==c
T=Y, Y=z =2
“(z=2),y=z—2-(z=y)

f-Substitution:

z =12, fi(z) =y fi(m’)'= Yy
y=y,e=f(y) »x=fQ)

z=1a',-(fi(z) =y) = ~(fi(z) =y)

Strict Order:

<y, ~(r<y)—F
r<xz—F
z=y— -(z<vy)
r<y—-(y<c)
<z, z<y—2 <y
<z, ~(z<y) = (' <y)
<-Substitution:
r=zz<y—z <y
e=d, fle) <y— fi@') <y
y=y,e<y—sz<y
y=y,z < fiy) >z <)
z=7,-(z <y) = (2 <y)

z=a',=(f (2) <y) = ~(f(2') <y)
y=y,-(z<y) >~ <y)

y=y (@< fy) =@ <))

Figure 5.10. A completed inference system for the theory £S of equality with

function symbols and strict orderings. Inference rules containing f*(x) have to be
replaced by all i-fold instances f(f(--- f(x))), for 7z > 0.
——

i

190 5. Linearizing Completion

5.7.3 Modal Logics

In this section I will argue that linearizing completion can be used to support
reasoning in modal logics. The theories to be completed will be given by a
particular translation approach of (propositional) modal logics into predicate
logics. I will therefore briefly recall this semi-functional translation, and then
turn towards linearizing completion.

The Semi-Functional Translation. I will presuppose basic knowledge of
modal theory. An introduction can be found in [Fitting, 1993]. The semi-
functional translation is due to A. Nonnengart. His thesis [Nonnengart, 1995]
provides a much more elaborate presentation (of course) than the brief sum-
mary of relevant issues for our case given here.

The semi-functional translation is best explained by starting with the
relational translation of modal logic formulae, and then identifying the dif-
ferences. The idea of the relational translation is to relativise the modal
operators “0O0” and “O” by a “reachability” relation R according to the op-
erators’ possible worlds semantics: a formula O@ (O@) is translated wrt. a
world context u in the following way:

O8], = Vo (R(u,v) = [®]0)
[P, = T (R(u,v)A[P],) -

This transformation distributes over the quantifiers and junctors, and atoms
are to be extended as [P(t1,... ,tn)]u = P(t1,... ,tn,u) (see [Nonnengart,
1995]). The translation for a given input formula I" starts with [I"],, where
¢ stands for the initial world.

The disadvantage of this translation is that the clauses are blown up
considerably. Even with simple examples theorem provers will have severe
difficulties. Thus the purpose of translation into predicate logic — gaining
efficiency over, say, Hilbert-style calculi — will be totally negated.

As a solution, H.J. Ohlbach (and others, see [Ohlbach, 1993] for an
overview) suggested converting the relational translation into a functional
one. He observed that whenever a world v is reachable from a world u, i.e.
R(u,v) holds, this is equivalent to saying that a function f exists such that
f(u) = v. This holds under the proviso that the reachability relation is serial,
i.e., for every world a reachable world exists®. Further, it can be shown!® that
instead of the second-order predicate 3f f(u) = v the first-order predicate
dz uw : = v can be used equivalently (read “:” as the “apply” function).
Applying this idea to the result of the relational translation gives the trans-
lations

? The semantics of first-order logics allows only total functions, which means here
that any accessible world is defined, i.e. seriality holds.

10 Tt requires only countably many functions to “simulate” a reachability relation
over a countable domain.

5.7 Sample Theories 191

[OF], = Yv(@Bzu:z=v)—> [P],)
[OP]ly = Fw((Fzu:z=0v)A[P],)

Ve [y
Az [Py -

There is another source for relativized formulas, which are the properties
of the modal logic under consideration. It is natural to consider these as
a background theory within a theory reasoning calculi. For instance, the
reachability relations of K4 is just transitivity, Vz,y, z R(z,y) A R(y, 2) —
R(z,z), and its functional translation results in the equation Vz,u,v (v : u :
z = f(z) :) (f is a Skolem function and says that the composition of u
and v applied to world z exists). In this case, the background theory is an
equational theory'! and can be treated by a suitable E-unification algorithm.
It is important to notice that the nested function symbols in the equational
theory stem from the translation of negative R-literals.

It would be nice to avoid non-trivial equational theories but at the same
time to avoid the drawback of a blown-up clause set as in the relational
translation. Here is the point where the semi-functional translation comes in:
it treats only the < operator functionally (because it introduces a positive
R-literal) and treats the O operator relationally (because it introduces a
negative R-literal). Here is a trivial example:

[~(OP — OP)], = [OPAO-P],

[
= [3OP], A[C-P)],
= (Vz R(t,xz) = P(x)) NIy —P(1:y)

This gives the two clauses P(x) < R(t,z) and —P(¢ : ¢), where ¢ is a Skolem
constant. Obviously, there is no refutation of this trivial theorem possible.
The reason is that the link between the reachability relation R and the reach-
ability functions is missing; it is given by the unit clause R(u,u : z), which
says that the world w : z, for any world v and reachability function x is
in the reachability relation R. Now, these three clauses together allow for a
refutation, as expected.

Application of Linearizing Completion. As mentioned previously, dif-
ferent modal logics result in different properties of the reachability relations,
which can naturally be taken as background theories, i.e. for linearizing com-
pletion. Further, since the R(u,u : x) clause is part of every translation, it
seems natural to take it into the theory. Thus, the (serial) modal logic S4
with a transitive and reflexive reachability relation yields the background
theory

R(u,w) + R(u,v) A R(v,w) (1) R(u,u:z) (3)
R(u,u) (2)

When fed into the LC tool (see Section 6.0.5), and using the automatic
setting, the following completed inference system results (syntactic rules
P,—~P — F omitted):

1 1t can be shown that any Horn theory results in an equational theory.

192 5. Linearizing Completion

) = R(u,w). 1/L: 1/W: 0/initial(input)
) = F. 2/L: 1/W:499 /initial(input)
) — F. 3/L: 1/W:499/initial (input)
) = R(u,w). 5/L: 2/W:499/unit2(1, 3)
) = R(u,v:z). 6/L:2/W:498/unit2(1, 3)
=R(u,w), R(v,w) = —-R(u,v). 8/L:2/W:496/contra(l / 1)
) = F. 9/L: 3/W:500/unit1(5, 3)
-R(u,v:z) & —R(u,v). 10/L: 3/W:494 /unit2(8, 3)
) = F. 12/L: 4/W:500/unit1(5, 9)
) = F. 14/L: 5/W:500/unit1(5, 12)

The comments in the right column are output by LC and show a trace how
each particular rule is generated. In the term “N/L: I/w: w/rule(params)”,
N is the rule number, [is the level where it was generated (LC implements
a level saturation strategy), w is the weight, rule is the applied deduction
rule, and params specifies in which way the deduction rule was applied. For
instance, “unit1(5,3)” in rule 9 means that rule 9 was obtained by a Unitl
deduction step applied to rules 5 and 3.

This completed system, call it Zg4, demonstrates the usefulness of the
concept “redundancy for derivations” (Section 5.3.3). All the rules 9, 12,
14, 16,... are of the form -A — F and hence are not redundant for com-
pletion, but they are redundant for derivations; for instance, for rule 9 the
following refutation according to the sufficient completeness criterion (Propo-
sition 5.3.3) exists:

SR(u, (u: 1) : 22) =(10) "R(u,u : 21) =>(10) "R(u,u) =) F .

Similar refutations exist for the other rules 12, 14, 16,.... Hence, the final
system NonRed(Zs4) (cf. Def. 5.3.4), which is sufficient for refutational com-
pleteness (cf. the completeness results in Section 5.6) can be built by deleting
these rules from Zg4, one after the other. Notice that although Zg4 is infinite,
NonRed(Zs4) is finite and contains the rules 1, 2, 3, 5, 6, 8 and 10 only. Of
course, this insight requires induction which currently is not implemented. In
practice, the completion process is stopped after some levels and then rules
redundant for derivations are deleted.

Practical experiments using NonRed(Z) are documented in Chapter 6 on
page 205. Similar inference systems exist for a great variety of other modal
logics.

6. Implementation

In the last few years, several implementations related to this book have been
developed at our research group. These are

LC: A tool for linearizing completion. It transforms a given Horn clause set
into a completed state, according to the calculus of linearizing completion
(Chapter 5). LC was used in establishing the library used by the SCAN-
IT:

SCAN-IT: Library handling for completed theories. The SCAN-IT tries to
recognize in a given input file a Horn subset for which a respective com-
pleted version in a library exists. SCAN-IT recognizes the structure of
axioms, and thus the naming of the predicate symbols and the order in
writing the clauses is irrelevant. If successful, the theory axioms are re-
placed by the completed version. The resulting file is ready to be fed into
PROTEIN:

PROTEIN: A PROver with a Theory FExtension INterface. Among oth-
ers, PROTEIN implements the partial theory model elimination calculus,
PTME-T (Section 4.5) and its restart variant PRTME-I (Section 4.6). For
search space pruning, regularity and factorization (Section 3.3) are built
in; the independence of the computation rule result (also Section 3.3)
is needed to guarantee the completeness of the depth-first, left-to-right
iterative deepening strategy.

These tools are implemented in ECRC’s ECL!PS® Prolog. The implementa-
tional work was mostly carried out by students!.

An in-depth description of all three of these tools is beyond the scope
of this text. I will therefore briefly describe only some key features of LC
and SCAN-IT, and then turn towards PROTEIN in greater depth. Finally, I
describe the practical experiments we have carried out with our systems.

6.0.4 SCAN-IT

The motivation for the development of SCAN-IT was the observation that
inexperienced users often have difficulties in selecting appropriate Horn sub-
sets of the problem in question for completion. It turned out in practical

! The whole system is available in the World Wide Web, using the URL
http://www.uni-koblenz.de/ag-ki/Systems/PROTEIN/.

194 6. Implementation

experience that in most cases it is not appropriate to select the whole Horn
subset for this. The reason is that in this case the resulting inference sys-
tems are often large (> 100 inference rules), even if LC is stopped after two
levels (running only one level yields too weak inference systems in practice).
Large systems, however, cause a large local search space, with the result that
the model elimination tableaux cannot be explored to a significant depth in
reasonable time.

Thus, we prepared a library of theories and respective completed versions
thereof which turned out to work well in practice. It is this “know-how” which
is thus made available to uninformed users by the SCAN-IT utility. As a fur-
ther advantage, runs of LC — which are quite often time-consuming — can
be saved if a completed version of a theory was established beforehand. Cur-
rently, the library for SCAN-IT is moderately complete. It includes equality
according to Section 5.7.1, several kinds of orderings (strict orders, preorders,
see Section 5.7.2), associative theories and group theory. It identifies theories
by the structure of their axioms. Thus, orderings of literals and the names
given to the function and predicate symbols do not matter. This flexibility
turned out to be quite useful and necessary in practice. If desired, SCAN-IT
invokes LC on the Horn subset of the input file if no matching theory has
been found. In the future it is planned to make this selection more intelligent.

6.0.5 LC

A student has implemented the linearizing completion calculus as described
in Chapter 5. It runs either interactively as a shell or in a fully automatic
setting. Several flags control features concerning termination (i.e. aborting),
resources allocated for redundancy tests, profiling, etc.

Fairness is guaranteed by a level-saturation strategy as employed in res-
olution calculi (see [Chang and Lee, 1973]). The optional application of the
Contra transformation rule is controlled by heuristics. The most valuable
heuristics is to apply the Contra rule? only if it enables proof of two or more
already present inference rules as redundant for completion.

The attachments of weights to inference rules was also done heuristically
as follows: the weight of every inference rule in the initial system is set at 0.
This value was chosen heuristically. In general, lower values for weights imply
that it is less likely that the rule will be detected as redundant for comple-
tion, while it is more likely that the rule is used in the redundancy proof of a
different rule. Higher values imply the opposite behavior. The weights of the
generated inference rules were determined heuristically: when generated, an
inference rule becomes the highest admissible weight such that any redun-
dancy proof employing it still succeeds. Using this highest possible weight
increases the chances that it will become redundant later, as the generation
of new rules proceeds. An exception to this heuristics are inference rules of

2 This rule adds a contrapositive of a rule to the database.

6.1 PROTEIN 195

the form -A — F, which are always given a high weight. This facilitates
proofs of redundancy for derivations for these rules, which are carried out at
the end of a run.

It should be noted that these heuristics are implemented, and no user
assignment of weights is necessary. The comments in the completed inference
system in the modal logic example of Section 5.7.3 give an impression of the
trace output of LC.

6.1 PROTEIN

Efficiency is not such a concern for LC, because it is run at “compile time”, or
even before. The SCAN-IT is uncritical in this respect because the deductive
tasks are not very deep and can be controlled quite well. Clearly the most
critical component in this chain is PROTEIN.

6.1.1 High Inference Rate Based Theorem Proving

As exemplified by the METEOR [Astrachan and Stickel, 1992] and SETHEO
[Letz et al., 1992] systems, high inference rates still seem to be impor-
tant for model elimination-based theorem provers. The “cheapest” way to
achieve high inference rates is to use the PT'TP (Prolog Technology Theorem
Proving) implementation technique [Stickel, 1988; Stickel, 1989]. In the
PTTP approach Prolog is viewed as an “almost complete” theorem prover,
which has to be extended by only a few ingredients in order to handle the
non-Horn case. By this technique, the benefits of optimizing Prolog compilers
are accessible to theorem proving.

However, arguing for high inference rates alone easily results in a too op-
timistic assessment of the power of PTTP provers. Stickel points out [Stickel,
1990a): “the high inference rate can be overwhelmed by its exponential search
space”. As a consequence, PTTP, at least in its original formulation, is often
better suited for problems having a moderate search space, e.g. those with a
tree-shaped dependency graph.

This observation was taken advantage of in [Tarver, 1990]. There, a heuris-
tic decomposition of the problem in question is proposed. Decomposition is
pattern-driven and employs tuples of the form (method, goal, context). If the
goal expression matches the current goal to be proven in context context,
then the method is invoked. For example, in set theory context, the goal
X =Y could be rewritten towards the two proof obligations X C Y and
Y C X. Now, these rewritten goals hopefully enjoy a moderate search space
and can be proved by a PTTP prover. The potential of this approach was
demonstrated in [Tarver, 1990] using set theory domain.

Other approaches are in a sense complementary in that they improve
on the calculi/proof procedures proper. For instance, it was suggested us-
ing Caching and Lemmaizing [Astrachan and Stickel, 1992], Anti-lemmata

196 6. Implementation

combined with Folding-up/Folding-Down [Christoph Goller and Schumann,
1994], several ancestor refinements [Plaisted, 1990], addition of unit lemmas
derived by unit-resulting resolution [Schumann, 1994, database unification
[Bibel et al., 1994], Link Deletion [Mayr, 1995] and subsumption techniques
[Baumgartner and Briining, 1997]. Although most of these refinements slow
down the inference rates to a certain degree, it could be shown experimen-
tally that in total they pay off quite well. Nevertheless, all these provers are
still based on high inference rates inference engines.

In sum, PTTP should thus be seen as a kernel technique which needs
some improvements to reduce the search space. Accepting this theorem-
proving philosophy, the challenge for us therefore was to generalize the PTTP
technique towards the theory case. More specifically, we had to deal with
the question how to implement the comparatively complex PTME-I-Ext and
PRTME-I-Ext inference rules for partial (restart) theory model elimination,
where the theory is given by a completed theory inference system. Further, in
order not to lose the search space advantages achievable by theory reasoning
due to a poor implementation, PTTP’s high inference had to be preserved
as much as possible. In order to achieve this, the theory inference systems
are compiled to Prolog code much like the foreground clauses. However, we
were faced with the difficulty that Prolog’s depth-first computation rule had
to be overcome in order to achieve execution according to the definition of
the theory extension step. In the sequel, I will therefore first briefly review
the standard PTTP approach, and then describe the tricks necessary for the
theory extension.

6.1.2 The PTTP Implementation Technique

As mentioned, the PTTP-approach transforms a given clause set into a Prolog
program. The transformed Prolog program must execute the clauses accord-
ing to some complete proof procedure. Model elimination turns out to be
particularly useful for this, since it is, like Prolog, an input proof procedure.
In particular, the transformation from the input clauses to Prolog works as
follows (more details can be found in [Stickel, 1988], except for the “restart”
and “theory reasoning” items, which are original):

Contrapositives. An input clause such as
CVD <+ ANB

is transformed into a Prolog clause

(1) c :- not_d, a, b.
This example also shows how negation is treated, namely by making it part
of the predicate name. The order of the body literals is determined during
compile time. The underlying justification for completeness is nothing but
the “independence of the computation rule” (cf. Section 3.3).

6.1 PROTEIN 197

In restart model elimination with selection function (Section 4.6.1) it is
sufficient to generate one such contrapositive. In this example we would have
a selection function f which selects only {C}. If f selects {C, D} then the
contrapositive

(2) d :- not_c, a, b.
would have to be added. In the non-restart variants of model elimination,
every literal in a clause can serve as an entry point into the clause. Thus, all
contrapositives are needed. In this case these are additionally

(3) not_a :- mot_c, not_d, b.

(4) not_b :- not_c, not_d, a.

In PROTEIN it is up to the user to declare some clauses as query clauses
which are used as top clauses for the tableau construction. A query clause,
say < E N —F, is transformed into

(Q) query :- e, not_f.
The new query literal is the same for all query clauses. In order to start the
search, the Prolog goal
7- query.
is invoked.

Sound unification. Prolog’s unsound unification has to be replaced by a sound
unification algorithm. This can either be done by directly building-in sound
unification into the Prolog implementation (as is available in ECL!PS®) , or
by reprogramming sound unification in Prolog and calling this code instead
of Prolog’s unsound unification.

Search strategy. A complete search strategy is needed. Usually depth-bounded
iterative deepening is used. The strategy can be compiled into the prolog
program by additional parameters, being used as “current depth” and “limit
depth”. The cost of an extension step can be uniformly 1 (depth-bounded
search), or can be proportional to the length of the input clause (inference-
bounded search). In PROTEIN, the depth-bounded search proved to be su-
perior in most cases.

Reduction steps. The model elimination reduction operation has to be im-
plemented. This can be realized by memorizing the subgoals solved so far
(the A-literals) as a list in an additional argument, and by Prolog code that
checks a goal for a complementary member of that list. Of course, this check
has to be carried out with sound unification.
The Prolog clause (1) from above then looks like

(1) c(Anc) :- not_d([d|Anc]l), a([-alAnc]), b([-blAnc]).
where Anc is a Prolog list which contains the ancestor literals (called A-
literals in Loveland’s model elimination (cf. Note 3.2.1) [Loveland, 1968));
the query clauses from above becomes

(Q) query(Anc) :- e(Anc), not_f(Anc).

198 6. Implementation

and the Prolog goal becomes 7- query([]1) .. The code for reduction steps

then looks like3
(Red-c) c(Anc) :- member(c, Anc).

(Red-not_c) mnot_c(Anc) :- member(-c, Anc).
Thus, the reduction step code has to be generated for each predicate symbol.

Restart Model Elimination. The modification to obtain (strict) restart model
elimination (Section 4.6) is minimal: one only has to replace the code for
reduction steps at positive literals, i.e. (Red-not_c), by the following call to
the query clauses:

(Restart- not_c(Anc) :- query(Anc).

not_c)

Recall that the query procedure accesses all clauses declared as “query”.

Hence, in order to obtain a complete calculus (Theorem 4.5.3), every negative
clause has to be declared this way.

Theory Reasoning. Theory reasoning has to be incorporated. We are primar-
ily interested in partial theory model elimination calculi, where the theory
inferences are described by theory inference systems (Sections 4.5 and 4.6).
The necessary adaptions for the PTTP approach are described in the follow-
ing.

We concentrate on the translation of a typical inference rule. Hence let

-E, C, F = —G.

be given. We recall from Definition 4.5.4 and the subsequent discussion the
operational semantics of inference rules: for the stated rule, a PTME-I-Ext step
consists of extending a leaf literal =F by -G in presence of the extending
literals C' and F', which in turn are taken from the ancestor context of the
leaf —F, or from extending clauses. Of course, since the PTME-I-Ext rule is
symmetrical wrt. the premise literals of the used inference rules, two more
possibilities exist. In the sequel we will describe the first possibility only.

A first idea would be to transform the given inference rule into the prolog
clause (ancestor lists left away, for simplicity):

(R) e :- not_c, not_f, g.

However, this approach would not work for two reasons: first, the solution of
not_c includes the possibility to call Prolog procedures stemming from other
inference rules, for instance C' — F. This, however, is not in accordance
with the semantics of inference rules, which requires the literals C' and F
to be resolved away against ancestor literals or extending literals from input
clauses.

A second problem is the order of execution of the subgoals of (R). In the
current translation the body of (R) is solved in the following order:

% The membership predicate member is defined “as usual”:
member (X, [X|Rest]) .
member (X, [YIRest]) :- member (X,Rest).

6.1 PROTEIN 199

1. solve the goal not_c.
2. solve the goal not_f.
3. solve the goal g.

The problem is the recursive solving in step 1 before step 2. If, for instance,
not_c is solved by the Prolog procedure corresponding to input clause C' < G,
the body G would be solved before the not_f goal is solved. Thus, the PTME-
I-Ext inference rule would not be implemented correctly (while this might not
be considered an issue for ground problems, but it certainly is when variables
are present). In other words, the usual depth-first left-to-right Prolog strategy
has to be circumvented.

A correct respective translation of the investigated inference rule is as
follows (this time ancestor lists included):

(R) e(Anc) :- theory([c,f], Anc), g([-elAncl).

The theory procedure has to collect the passed literals from either (1)
ancestor literals or (2) from input clauses. Notice that due to the result on
the “order of extending clauses” on page 91 only one single permutation of
the argument list to the theory call suffices.

To realize case (1) one single Prolog clause suffices:
(Th-Anc) theory([Lit|RestLits], Anc) :-
member (Lit, Anc),
theory(RestLits, Anc).

For case (2) the condition that the rest literals of the extending clauses are
not solved during theory extension has to be obeyed. This is achieved by
additionally transforming every input clause, say C'V D < AA B from above,

into the form:
(Th-1%) theory([c|RestLits], Anc) :-

theory(RestLits, Anc),
not_d([d|Anc]l), a([-alAnc]l), b([-blAncl).
Notice that the call to the rest literals of the input clause is postponed until
all theory literals are resolved away.
Finally, the search for theory literals has to be terminated:
(Th-End) theory([], _Anc).
In sum, the modified transformation lets (R’) behave as follows:

1. get a literal c either from the ancestor list or an input clause. In the
latter case let R, be the subgoals stemming from the rest clause.

2. get a literal £ either from the ancestor list or an input clause. In the
latter case let R; be the subgoals stemming from the rest clause.

3. Solve the subgoals R;.

4. Solve the subgoals R..

5. solve the goal g.

This behavior is in accordance with the operational semantics of the PTME-
[-Ext inference rule.

This concludes the description of the PTTP transformation as is real-
ized in our PROTEIN prover. Further modifications, such as the extraction

200 6. Implementation

of answers (Def. 3.2.5), regularity (Def. 3.3.2), factorization (Section 3.3.3),
ground reduction steps (Section 3.3.4) and the combined connection calcu-
lus - model elimination calculus (Note 4.3.2) are straightforward, and hence
omitted.

Finally, I want to refer to the work of [Neugebauer and Petermann, 1995]
where a language is proposed to specify inference rules (e.g. extension, reduc-
tion, factorization, equality handling etc.) for model elimination-based theo-
rem proving. By this, the translation process just explained can be described
in a more declarative way, which facilitates the construction of respective
provers.

6.2 Practical Experiments

Running practical experiments and comparing runtime results is a widely
used technique to evaluate the power of theorem proving systems. Our in-
vestigations are biased towards assessing the potential of theory reasoning
according to the linearizing completion approach. I will first describe the
general setup taken for all experiments, and then comment on the results.

As the theory reasoning prover we used PROTEIN as described above. In
order to see the relative advantages of theory reasoning vs. non-theory rea-
soning PROTEIN was run in the following calculi settings: model elimination
(ME, Def. 3.2.3), restart model elimination (RME, Def. 4.6.3 and Note 4.6.4),
partial theory model elimination (PTME-I, Def. 4.5.4) and partial restart the-
ory model elimination (PRTME-I, Def. 4.6.3). Further, to get an impression
of the difficulty of the investigated problems we also run SETHEOQ (version
3.2.5) and OTTER (version 3.0.4). All provers were run in the default mode.

PROTEIN in its default mode employs regularity (cf. Def. 3.3.2 for
PTME-TI and Section 4.6.3 PRTME-I) and the ground version of factorization
(Section 3.3.3).

SETHEO is a highly developed model elimination prover, featuring in
its default mode subgoal reordering, purity deletion, anti-lemmas, folding-
up, regularity, tautology and subsumption constraints (in [Letz et al., 1994;
Christoph Goller and Schumann, 1994] some of these are described).

OTTER is a state-of-the-art resolution prover. Its numerous flags are set
automatically in the “autonomous mode” according to built-in heuristics. In
the experiments below OTTER chooses hyper resolution as the primary infer-
ence rule, possibly augmented by special inference rules for equality handling
such as paramodulation and demodulation.

The columns in Tables 6.2, 6.2 and 6.3 below are labeled with these provers
respectively. The entries are to be read as follows: the timing results are given
in seconds and are obtained on a SUN SPARCstation 20/712 (2 SuperSparc
processores, 70 Mhz, with 1 MB cache, Solaris 2.5.).

The entries “#Inf.” give the total number of inferences carried out in the
proof search of the model elimination based provers. Since both PROTEIN

6.2 Practical Experiments 201

and SETHEO enumerate derivations via an iterative deepening backtracking
regime these numbers can easily get quite high. When comparing the values
of PROTEIN to the values of SETHEOQO, one should keep in mind that the
theory versions of PROTEIN employ more complex inference steps due to
the underlying multiset unification problems (recall from Def. 4.5.4 that the
task in each PTME-I-Ext step is to simultaneously resolve away all premise
literals of the chosen theory inference rule). Our implementation of this search
problem is straightforward and is of complexity O((|b|+|L|)"~!), where |b| is
the length of the branch to be extended, L is the number of literal occurrences
in the input clause set, and n is the number of premise literals of the inference
rule in question.

In the examples below, this value for n is one or two in most cases, three
in few cases, and four and greater very rarely.

The entries “#FE + R + F” for ME denote the number of extension, re-
duction and factorisation steps, respectively, in the refutation. Similarly, for
the other calculi, r and T mean restart steps and theory steps different to
those which are also ordinary ME extension and reduction steps.

The TPTP library (version 1.2.0) [Sutcliffe et al., 1994] contains thou-
sands of problems for automated theory reasoning from various problem do-
mains. In our selection we concentrate on some of them which are moder-
ately difficult for at least one of PROTEIN in non-theory version, OTTER or
SETHEQ, and which can be solved better using theory reasoning. Of course,
there are numerous problems not mentioned here which are very easy for all
provers, or where theory reasoning does not help very much, or which are
easy for resolution provers but hard for model elimination based provers (or
vice versa).

In the TPTP library the input clauses are classified as being either an az-
iom, a hypothesis or a theorem clause. This suggests the assumption (which
is in fact wrong occasionally) that the axiom plus hypothesis together con-
stitute a satisfiable set, i.e. a program. But if so, it suffices according to our
completeness result for PTME-I (Theorem 4.5.3) to consider only the theo-
rem clauses as queries (Def. 3.2.5) for the proof search (for the restart variant
we addionally need to have that the theorem clauses are negative, which is
the case for most examples). This restriction is attractive as it cuts down the
search space. However, in the experiments we did not do so and allowed any
negative clause as query. We did this to ensure completeness, and to make
our results comparable to SETHEO which uses the same policy.

For the theory versions of PROTEIN (PTME-I and PRTME-I) we relied
on the SCAN-IT program (see above) to select an appropriate Horn-subset
of the input clause set and to replace it by a previously completed theory.
Typically, the completed inference system consisted of 3-50 rules.

202 6. Implementation

The example referred to as Non-obvious* in Table 6.2 is taken from the
October 1986 Newsletter of the Association of Automated Reasoning. The
selected theory here consists of a transitive and symmetric relation p and a
transitive relation ¢, and the completed system is finite. All other examples in
Figure 6.2 employ equality. For the SYN examples the completion is finite, as
no function symbols are present. For the other PUZ and GEO examples a finite
approximation of the infinite completed system was used (in Section 5.7.1 it
was explained how equality is treated by linearizing completion).

The Wos examples (GRP) in Table 6.2 are from group theory. Notably, it
suffices to use the same theory to prove all examples. Here we took equality
and the associativity of the group operation. The BO0O examples are from the
boolean algebra domain. Here, equality again is the selected theory.

In Section 5.7.3 the application of linearizing completion to a background
theory stemming from the semi-functional translation of S4 is described. Fig-
ure 6.3 reports about results.

We interpret the results in Tables 6.2, 6.2 and 6.3 as follows: when com-
paring ME to RME there are examples where either one of these is better
suited. However, ME finds quite often a refutation where RME cannot. In
sum, ME seems to be the better “default” calculus. This observation carries
over to the theory case, i.e. when comparing PTME-I to PRTME-I: PTME-I
wins in allmost all cases significantly.

On the other hand, PROTEIN currently does not take full advantage of
the potential of restart ME, namely the partial proof confluence (cf. Sec-
tion 4.6.3). It is conceivable that PROTEIN can substantially be improved
in this way.

When comparing ME to its theory version PTME-I it is apparent that in
almost all examples theory reasoning yields substantial improvements, and it
is counterproductive only occasionally. Quite often, theory reasoning enables
PROTEIN to find a proof at all. The same holds when relating RME to its
theory version PRTME-I. I regard these observations as a strong support for
the usefulness of the chosen approach.

Although a prototypical implementation, PROTEIN can even compete
with SETHEO and OTTER. On some examples, PROTEIN equipped with
theories performs significantly better than SETHEO and/or OTTER. The
good results for OTTER (e.g. for the Wos examples) are partially explained
by its demodulation based equality handling, which is not developed that far
for model elimination.

We note again that SETHEOQ features numerous calculus improvements
(mentioned above) which are not built into PROTEIN, but which are the
source for SETHEQ’s power. For instance, for the modal logics examples
SETHEO has no problems at all, quite unlike PROTEIN in ME setting. It
can be expected that many of these improvements, such as anti-lemmata and

4 Entries such as MSC006-1 refer to the respective TPTP-names [Sutcliffe et al.,
1994].

® I posIew suo[qoid

*

‘stsotpjuered ur o1e s9nsar1 Aorod prepuelg ‘sotronb se posn ore

PROTEIN SETHEO OTTER
ME RME PTME-I PRTME-I ME auto
Time(sec.) Time(sec.) Time(sec.) Time(sec.) Time(sec.) | Time(sec.)
#Inf. #Inf. #Inf. #Inf. #Inf.
Example #E+R+F | #E+r+R+F || #E+R+F+T | #E+r+R+F+T || #E+R+F
Non-obvious <1 <1 <1 <1 <1 1.2
MSC006-1 1495 2885 1947 2589 4349
24+64+0 294+8+104+0 3+54+0+11 5+7+5+0+4+38 16+2+1
Pelletier 48 <1 <1 <1 <1 <1 <1
SYNO71-1 2678 8309 2233 2172 5102
23+5+4+3 18+3+5+3 3+24+0+8 24+4+6+0+15 124241
Pelletier 49 > 1h > 1h 1.5 <1 3.1 4.2
SYNO72-1 12185 2219 152499
3+3+0+12 5+6+2+0+11 324642
Pelletier 55 25 337 10 167 15 <1
PUZ001-2 39290 4286026 67060 1127314 631703
35+4+2+3 23+2+40+0 11+0+0+5 8+6+3+2+4 234+2+40
MarsVenusl-1 > 1h > 1h 48 > 1h 4.3 <1
PUZ006-1 468940 138037
31+34+0+4+3 23+1+4
MarsVenus2-1* | > 1h (> 1h) > 1h (> 1h) 7.2 (26) > 1h (> 1h) (3.0) <1
PUZ007-1 58001 151517
32+4+4+24+3 26+2+4
BtwnSymm-1~ 44 (> 1h) 478 (> 1h) <1(98) <1(11) (> 1h) 14
GE0001-1 606340 6396470 3174 1165
134040 13404040 10+04+0+1 10+0+04+0+4+1
BtwnSymm-3° | > 1k (> 17) > 1k (> 1h) 7 (> 1h) 35 (> 1) > 1h) 21
GE0001-3 228531 38587
6+0+0+1 64+04+0+0+1

uy ‘sweqoid JI,JJ1 Po399[es uo s1vAoxd SNOLIeA I0J sjnsel swjuny I°9 =an3rg

Areiql JIAI, Y} Ul ,WSIOSY), S PO[IeU Sosne[d A[uo

sjuowtrddxy [ed130RId g9

€02

‘TWN[0D IX0U 97J Ul S 9IRS 9Y) oI SI[NSoI 977 20U pue

PROTEIN SETHEO OTTER

ME RME PTME-I PRTME-I ME auto

Time(sec.) Time(sec.) Time(sec.) Time(sec.) Time(sec.) | Time(sec.)
#Inf. #Inf. #Inf. #Inf. #Inf.
Example #E+R+F | #E+r+R+F || #E+R+F+T | #E+r+ R+ F+T #E+ R+ F

Wos 4 5.2 3.9 <1 <1 <1 > 1h
GRP008-1 83866 69626 400 214 350
9+4+0 8+0+2+1 2+2+1+2 3+0+4+0+2 9+4+0

Wos 10 == 11 == 1.9 273 <1
GRP0OO1-1 12331 10741 1355089
194+0+0 2404+0+047 144+0+4+0

Wos 11 B 3.2 = <1 <1 <1
GRP013-1 40594 2268 18040
114+0+04+0 24+04+0+04+2 114+0+0

Wos 15 = 131 = 18 3.0 <1
GRP035-3 1644878 120053 104817
16+0+0+0 10+0+0+0+2 16+0+0

Wos 16 = 116 = <1 24 <1
GRP036-3 1554761 31 113524
7+0+0 5+0+0+0+1 7+0+0

Wos 17 = > 1h = <1 5.6 <1
GRP037-3 857 154570
6+0+0+0+1 94+0+0

MultIdem-4 = 73 = <1 17 80
B00003-4 932647 2999 1109319
174+040 1+04+04+0+45 134040

AddIdem-2 = > 1h = 5.7 271 > 1h
B00004-2 12858 19194615
1+04040+45 13+0+0

AddIdem-4 = 81 = <1 24 > 1h
BOD004-4 1186132 2445 1597936
174+0+0 1+04+04+0+5 134+0+0

‘ur0f] ore sojdurexo 9s9Y} JRY) SUBIW <— AIJUd 9Y], "eIqad[e uea[ooq pue AIOdT)
dnoid uo swo[qoid JIJJ U0 S1oA0Id SNOLIRA I0J SINSOI owWNUNY °g 9 °anSiqg

¥0¢

uoryejuswoidwy 9

"SUWIOI09} §S 10§ SI9A0Id SNOLIRA IO} S}NSAI dWUNY *¢'9 2InSi g

PROTEIN SETHEO OTTER

ME RME PTME-I PRTME-I ME auto

Time(sec.) Time(sec.) Time(sec.) Time(sec.) Time(sec.) | Time(sec.)
#Inf. #Inf. #Inf. #Inf. #Inf.
Example #E+R+F | #E+r+R+F || #E+R+F+T | #E+r+R+F+T || #E+R+F

O-p < (O(p — q) <1 <1 <1 <1 <1 <1
AD(p — —q)) 187 332 268 265 183
35+18+6 20+6+2446 15+ 18 +6 + 20 94+6+244+6+20 16+6+3

S0p o o000p 6.7 178 17 35 <1 2.3
14435 896969 27121 62695 615
314+2+0 334+24+440 6+2+0+21 64+2+44+0+27 314242

(OpV Oq) <1 4 <1 <1 <1 4.3
O(Op Vv Oq) 816 9503 218 906 1117
61 +1042 624441242 104+10+4+2+425 8+4+12+12+ 38 284+7+6

<0O(Cp «» OOp) <1 1.2 <1 <1 <1 1
410 2184 71 166 1148
284240 26+2+4+0 44+24+04+13 24+24+4+0+13 214143

<o0O(Op + ©0p) <1 <1 <1 <1 <1 <1
770 229 31 31 1410
244+240 24404240 24+24+0+8 240424248 294+24+5

SH(OG Vg 118 S T1h <1 6.3 <1 355
« (Op Vv Og)) 762705 1203 10709 12153
78 +13+42 941142+ 30 6+4+18+0+36 29+4+14

SO0V g 18 2942 72 74 6.5 i3
< (@OpV ©q)) 32536 5721417 34446 124411 35947
57+6+0 95+6+16+4 1941440454 6+6+164+4+38 314+447

SOO(p V Og) 75 2.0 <1 <1 <T 12
o (OpV o)) 5630 3667 126 308 543
294+6+7 234+6+1247 8+6+7+20 2+6+124+7+20 25+4+4

Sa(O(p vV Og) 398 55 87 471 <1 30
© (OpV Og)) 824206 9420 147965 764535 601
364644 324+44+10+4 6+6+4+16 2+44+10+4+16 28+3+8

sjuowtrddxy [ed130RId g9

S02

206 6. Implementation

folding-up, can be adapted towards PTME-I without great problems. It will
be exciting® to investigate into such combinations!

5 At least for me.

7. Conclusions

Summary

In Chapter 4 various theory connection calculi were described and related
to each other. This comparison was concluded with the partial theory model
elimination version and its restart variant as the most restricted versions.
These calculi then were combined with the framework of theory inference
rules. An abstract completeness criterion for theory inference rules was for-
mulated, such that the combination with the foreground calculi is complete.
Moreover, answer completeness result were obtained. Answer completeness
generalises refutational completeness and is relevant for problem solving ap-
plications and, in the case of the restart variant, for disjunctive logic pro-
gramming purposes. I consider these completeness results as the main results
for Chapter 4.

In order to make the chosen framework applicable in practice, the back-
ground theory has to be instantiated with a set of theory inference rules
satisfying the completenes criterion. However, it is by no means clear or triv-
ial how this can be achieved for a given theory. Therefore, in Chapter 5 a
rather general technique — linearizing completion — was presented which
fills this gap. As a sample application the combined theory of equality and
strict orderings was used. The resulting inference system acts in conjunction
with theory model elimination much like a generalization of the well-known
paramodulation inference rule towards strict orderings.

Technically, linearising completion allows for the combination of the linear
and unit-resulting restrictions. The central operation is to add new inference
rules that detour violations of the linearity restrictions in unit-resulting refu-
tations. A redundancy criterion allows deletion of many of the thus added
inference rules, which makes the resulting inference systems quite compact.

Two completeness results were given. The one guarantees the intended
application as partial background reasoners within theory model elimination;
the other is a “stand-alone” first-order completeness result and shows that
linearizing completion alone can be used as a complete calculus for Horn
clause logic. This result also allows one to use linearizing completion within
other calculi for theory reasoning, say theory resolution.

Linearizing completion is fully implemented and runs in cooperation with
the theory model elimination theorem prover PROTEIN. On numerous ex-

208 7. Conclusions

amples drastic speedups were obtained. Notably, the method works well not
only for single selected examples, but also for whole classes of examples. We
demonstrated this by completion of a subset of group theory, which resulted
in a significant speedup for the Wos examples, and by a successful application
in the context of modal logic.

Further work

As always, a calculus can be further improved and fine-tuned. One promising
way for our theory ME calculi is to adapt the subsumption techniques in
[Baumgartner and Briining, 1997] towards theory reasoning. As was argued
for in [Baumgartner and Briining, 1997], this is in particular promising for
equational problems. In [Baumgartner and Briining, 1997], however, we used
the trivial treatment of equality by using the equality axioms. It can be
expected that the more refined equality treatment by linearizing completion
(Section 5.7.1) can be improved significantly if subsumption is employed.

Another improvement concerns regularity. Currently, regularity (Def. 3.3.2)
is defined purely syntactically. It should be possible to define a theory-version
of regularity instead. That is, a branch would violate the “T-regularity” re-
striction if one of its literals is a 7T -consequence of its ancestor literals.

Now we turn to linearizing completion. Currently, linearising completion
is limited to Horn theories. It might be worthwhile designing an extension
towards general, non-Horn theories. This would probably result in inference
rules with non-unit conclusions. From the technical point of view, the problem
is that unit-resulting resolution is not complete for this case. Hence we get
a gap in the completeness proof. It is conceivable that splitting into Horn
theories helps here. As an alternative, a modification of the linked inference
principle might also work (cf. Section 5.1.5).

Even for the Horn case it might be interesting to allow non-unit conclu-
sions in inference rules. I expect that this gives the possibility to obtain finite
systems more often, at the the cost of additional branching in the constructed
tableaux.

The presentation of linearizing completion was general enough to allow
for instantiation with an ordering criteria different from the chosen one; for
example one might think of term-ordering restrictions as applied in the term-
rewriting paradigm, or the combination of term-ordering restrictions and lin-
earity restrictions. Of course, different restrictions require different transfor-
mation systems, but many of the concepts and claims not related to a specific
restrictions can be kept.

The availability of unification algorithms for dedicated theories motivates
us to extend the method towards “completion modulo a built-in theory” E.
By this, the combined theory consisting of the Horn theory and E would be
subject to theory reasoning. In order to do so, one has to use E-unification
instead of syntactic unification during the completion phase and in inferences
using the completed system.

7. Conclusions 209

The open problem stated in Section 4.3.1 concerning the compatibility of
the total theory connection calculus with link condition, TTCC-Link, should
be solved.

A higher priority task, however, is to go to practice. PROTEIN is stable
enough now, and supporting tools to ease theory handling by the linearizing
completion technique are available as well. It would be most interesting (at
least for me) to embed PROTEIN into an interactive software verification
system like KIV [Reif, 1992] and let it relieve the software engineer from
boring proofs.

210 7. Conclusions

A. Appendix: Proofs

This appendix contains the missing proofs from the main part of this paper.
Also, if an additional lemma is needed solely for a proof and has no further
relevance outside the scope of the proof, it is given here.

A.1 Proofs for Chapter 4 — Theory Reasoning

Lemma 4.2.1. Let M be a clause set and ([p], Q) be a branch set.

1. If M =7 Y([p], Q) then M =7 ¥([p] o C, Q) for every variant C of a
clause C' € M.

2. If M =7 V([p], Q) then M =7 V(([p], Q)o), for any substitution o.

3. If M =7 V([p]x, Q) then M =1 V(Q), where [p]x is a closed branch.

Proof. 1. Suppose, to the contrary, that M =7 V([p], Q) but M 7 VY(po
C, Q). Thus, there is a T-model Z for M such that Z (&1 V([p] o C, Q). That
is, for some assignment v we have Z,([p] o C, Q) = false. According to the
definition of “Sem”, then Z,([p] o C) = false (*) and Z,(Q) = false (**).

On the other hand, from given M =7 V([p], Q) we conclude that Z,([p]) =
true or T,(Q) = true. Thus, together with (**), Z,([p]) = true (***).

Now, since 7 is given as a T-model for M, we know in particular Z |7
VC'. We must further have Z,(C) = true, because otherwise we would find
an assignment falsifying C', which would be a witness such that Z 7 VC'
would not hold. But then Z,(L) = true for some L € C. With (***) thus
Z,(p- L) = true, which implies Z,([p] o C) = true. This, however, plainly
contradicts (*). Hence, the assumption must be wrong and the lemma holds.

2. Apply Lemma 2.5.3.

3. Asin 1, suppose, to the contrary, that M 7 V([p]x, Q) but M 1 V(Q).
Thus, there is a T-model Z for M such that Z &7 V(Q). That is, for some
assignment v we have Z,(Q) = false (*).

Now, by definition of the TTCC-Ext inference rule, the branch [p] =
[L1,...,Ly] is marked as closed only if it is T-complementary. By defini-
tion of T-complementarity, (L1 A --- A L) is T-unsatisfiable. That, is, for

212 A. Appendix: Proofs

every T-interpretation J and every assignment w for the variables of [p],
Jw(L1 A -+ A L) = false (¥%).

Now let v’ be the assignment for the variables of [p] which is obtained from
v by extending v with arbitrary assignments to the variables of [p] which do
not occur in Q. By (**) thus Z,,(Ly A --- A L,) = false, but still (by (*))
T, (Q) = false. In sum, Z,/([p]x, Q) = false, which contradicts the given
assumption M =1 V([p]x, Q).

Proposition 4.3.1. Let T be definite theory. Then any minimal T -comple-
mentary literal set (or multiset) contains exactly one negative literal.

Proof. Let M = {Li,...,L,} be a minimal T-complementary literal set.
Following the reasoning in Note 4.2.3, this is equivalent to saying that {L] A
--- AL} U Az is unsatisfiable, where Az is a set of axioms (definite clauses)
for 7, and Ly A--- A L}, is a Skolem form for 3(Ly A - -+ A Ly,). By definition
of satisfiability, we have equivalently that M' U Az is unsatisfiable, where
M'={Lj,...,L)}. Now suppose, to the contrary, that the proposition does
not hold. This gives rise to the following case analysis:

Case 1: M contains no negative literals. Thus M’ contains no negative
clauses, either. But then, with Ax being a set of definite clauses we find
that every element from M'U Az contains (exactly) one positive literal. But
then M'U Az is satisfiable (take the interpretation that assigns true to every
positive literal), which is a contradiction.

Case 2: M contains more than one negative literal. M’ will contain the same
number of negative literals. It is well-known that for Horn sets, as M'U Az is
one, one single negative clause suffices for unsatisfiability. More precisely, if a
Horn set M is unsatisfiable then all but one negative clauses can be deleted
and the resulting set is still unsatisfiable. This follows e.g. from inspection of
the Hyper resolution proof of M which uses precisely one negative clause at
the very last step.

Hence by soundness of Hyper resolution a subset N’ C M’ exists such
that N’ U Az is unsatisfiable. But then by finding a corresponding subset
N C M such that N' is the Skolem form of N we learn that N alone is
T-complementary. This plainly contradicts the minimality assumption about
M.

Proposition 4.4.1 (Context Extension of 7-MGRs). Let ¢' be a T-
refuter for M, and let W be a set of variables. Then substitutions o €
MSRr (M) with o < o' [Var(M)] and § with o' = 6 [W] exist.

Proof. The proof is quite technical, and so we will illustrate the idea before.
Consider e.g. o' = {z « f(u), u + g(z)}, Var(M) = {2z}, W = {z,u}.
Note that ¢’ is not idempotent. The idea is to first split ¢’ into two parts,
oy = {z < f(w)} and 0%, = {u « g(z)}. Then, we will find a most

A.1 Proofs for Chapter 4 — Theory Reasoning 213

general substitution ¢ and a § such o}, = o6’ [Var(M)]. Next, we would
like to replace o', by ¢d' and define 6 = ¢’_¢'. However, ¢’ is possibly not
idempotent, and so neither o' = o,07- [Dom(c")] nor (as a consequence)
o' = oogp0' [Dom(o’)] holds. One problem is that ¢’ might act on the vari-
ables of VCod(o%) (composing in any other way results in similar problems).
Hence we will change o7~ such that VCod(o%;) contains only new variables.
Let ¢/ be the thus obtained substitution. In order to simulate o, we have
to find a (renaming) substltutlon p such that oL = aMp [Dom(al)%)] In the
example we will have o7 = {u < g(z')} and p = {z" + z}. If additionally
possible conflicts between the newly introduced variables are avoided, then
finally defining 6 = 07 d'p works.

In the example we will have e.g. ¢ = {z + u'}, §' = {u' « f(w)}. This
gives us

0379’0 = {u + gz) Hu' + fu)H{z' z}
={u+ g(z), v + f(u), ' <z} .

It is easy to see that the claim of the proposition holds in this example.
Now for the proof proper. Split ¢’ as follows:

Vm = Var(M) oy =0 |V (A.1)
Var := Dom(o’) \ Var(M) oy =0'Var - (A.2)

Hence, o' is the part of o' acting on Var(M) and 0% is the part not acting
on Var(M). Note that trivially o', is still a T-refuter for M.

As mentioned above, we would ideally like o7 to be away from Var(M),
i.e. VCod(o%;) N Var(M) = 0. However, since this cannot be assumed, we
have to find an “equivalent” substitution satisfying this property. We will
even have to go further and demand that this substitution is away from
X=Ww U Var(M)U VCod(o'); we claim that there is a substitution o7~ with
VCod(o%) N X = 0 and a renaming substitution p such that

0% = 057p [Dom(a%7)] - (A.3)
The construction is as follows: initially let o7~ = 07, and let C' = VCod(07)N
X be the set of common variables. Starting with p = (), Equation A.3
holds trivially. Now, every variable y1,...,yn € C can be eliminated from
VCod) by repeated application of the the following procedure (i =

1,... ,nﬁw let z; be a new variable such that z; ¢ X and z; # z; for i # j.
Replace every binding z <t € o3 by @ « t', where ¢' is obtained from ¢ by
replacing every occurrence of y; by z;, and extend p to pU{z; < y;}. Clearly,
this preserves the property (A.3), and also p remains a renaming substitution.
Thus, at the end we will further have VCod(07)NX = () as desired. Note fur-
ther that Dom(o%;) = Dom(o3;). Let {z1,... ,2,} = Dom(p) C VCod(o3;)

1%
be the “new” introduced varlables

214 A. Appendix: Proofs

Next we will find a suitable most general substitution o to “replace” o¥,.
Care has to be taken that o does not introduce variables used elsewhere.
Hence let

V =W\ Var(M) U Vz; U VCod (o) \ Var(M) (A.4)

be the set of variables to be protected. It is easily verified that V N Var(M) =
0. Thus, by this, and the fact that of, is a T-refuter for M, and by
Definitions 4.4.2 and 4.4.1 (in particular, completeness) a most general
o € MSR1(M)[V] exists and there is a substitution ¢’ with

o8 = oy [Var(M)] . (A.5)

Using the definition of o}, above we have 0§’ = ¢’ [Var(M)], or, equivalently,
o < o' [Var(M)] as desired. Following Convention 4.4.1 it holds that even
o € MSR+(M); it remains to show the existence of a substitution § with
o' =0od [W].

Below we will have to assume that Dom(d’) C Var(M) U VCod (o). This
can safely be assumed, since for any = € Var(M) we have either zo =z €
Var(M) or otherwise Var(xzo) C VCod(o).

In order to obtain the desired substitution & we define

d=05:0'p . (A.6)

The claim of the proposition, namely o' = ¢ [W], is obtained by proving
the equivalent statement

zo' = oo :d'p (forx e W) . (A7)

Hence let z € W. We carry out a case analysis:

1. z € Var(M): We need first that o' = zo'p. Proof: either x = zo’, and
so zo' € Var(M). However, Dom(p) N Var(M) = () by construction (because
Dom(p) C VCod(o;) and o is away from X O Var(M)). Otherwise z #
zo’ and thus Var(zo') C VCod(c'). However, also Dom(p) N VCod(c') = §
by construction. Hence we continue

A.
zo' =z0'p @€ Var(M) o p L5 ros! p © x003:0'p

It remains to prove (x). For this is suffices to show zo = zooy::

1.1. z € Dom(o): Hence, Var(ma) C VCod(o). By construction, o is
away from V7, i.e. VCod (o) N = . On the other hand, Dom(o%) =
Dom(o’=) C Vyz. Thus, VCod()ﬂ Dom(o2) = @, and with Var(zo) C
VCod(c) even Var(mo) N Dom(o%) = B, and so zo = zoo}-

1.2. 2 ¢ Dom(o): So ¢ = zo and zo € Var(M). By definition of V3,
Var(M)N Vg = 0. This can be rephrased as Var(zo)NVyz = 0. On the other

A.1 Proofs for Chapter 4 — Theory Reasoning 215

hand, as in case 1.1 we know that Dom(o%-) C V37. Thus even Var(zo) N
Dom(035) = (). Hence, also in this case zo = TOOL.

2. z ¢ Var(M): Again two cases apply.

2.1. z € Dom(c'): With Dom(c') C Vy; it follows z € V7 and thus zo' =
z0%:. Thus with = € Dom(o”) also # € Dom(o%;). We carry on
(A-3) (*_*) "5

! ! by
To =xog = p Togp

It remains to show (xx): For this it suffices to prove

rog = xog 0 . (A.8)

From z ¢ Var(M) and x € Dom(o') we conclude z € Dom(c') \ Var(M).
Hence z € V47 and again with z € Dom(o') we find z € Dom(o%;). From
the construction of ¢’ we know Dom(o%;) = Dom(o%;). Hence also z €
Dom(o3;)- In other words, o~ acts on z, and so (A.8) is equivalent to show
that y = yd' for any y € VCod(0%;). This shall be done next.

Recall from above that we can assume Dom(d') C Var(M) U VCod(o).
Hence in order to show y = yd' it suffices to show that y ¢ Var(M) and
y ¢ VCod(0): by construction, o7~ is away from Var(M), i.e. VCod(o%-) N
Var(M) = (), which shows y ¢ Var(M). We know that o is away from
VCod(o3;)\ Var(M), i.e. VCod(o)N VCod(o3;)\ Var(M) = 0. Since we know
already VCod(o) N Var(M) =0 we must even have VCod(o2)\ Var(M) =
VCod(o%;). Thus also VCod(o)N VCod(o7;) = 0 which gives us y ¢ VCod(o)
as desired. Thus the proof for y = yd’ and so for (xx*) is completed.

2.2. z ¢ Dom(c'): hence zo' = z. We show several identities:

1. z = zo, because Dom(o) C Var(M) by property of T-MGRs and z ¢
Var(M)

2.z = xoﬁ because Dom(o%;) = Dom(o%;) C Dom(o”) an.d z ¢ Dom.(a’).

3. z = 20’ because Dom(d') C Var(M) U VCod(o) as previously obtained,
and z ¢ Var(M) and z ¢ VCod(o) by the following line of reasoning:
z ¢ Var(M) is given. This implies € W'\ Var(M). On the other side, we
know that o is away from W \ Var(M), i.e. VCod(c)NW \ Var(M) = 0.
Hence z ¢ VCod (o). Thus, in sum, z = z4.

4. z = zp because Dom(p) C VCod(o;) and VCod(o7:) N W = 0 by
construction (recall that z € W).

Putting these identities together, we easily obtain zc' = :caa '_§'p which is
just Equation A.7.

A.1.1 Completeness of TTME-MSR

The proof of the completeness result for TTME-MSR requires considerable
efforts. Here, we will prove the open issues in the proof in Section 4.4.3. This

216 A. Appendix: Proofs

concerns ground completeness, lifting and the independence of the computa-
tion rule.

We will heavily use the “branch set” view of tableaux (Section 3.2.2) and
thus consider a tableau as a multiset of branches (including closed branches),
which in turn are sequences of literals.

Ground Completeness Notice that in the ground case the notions “T-
complementary” and “T-unsatisfiable” coincide (cf. Def. 4.2.1) and hence
can be used interchangeable here.

As was announced in Section 3.2.2 we will identify the tableaux of our
calculi with multisets of branches, where a branch is a sequence of literals.

Lemma A.1.2 (Ground completeness of Regular Total TME). Let 7T
be a theory and let M be a T -unsatisfiable ground clause set. Let G € M be
such that G is contained in some minimal T -unsatisfiable subset of M. Then
a reqular TTME-MSR refutation of M with start clause G exists.

The invariant in the ground proof is to show that any open tableau derived
so far can be transformed by an application of a TTME-MSR-Ext step into
a tableau which is strictly smaller wrt. some well-founded ordering (to be
defined). Another idea would be to directly apply the well-known k-literal
parameter induction ([Anderson and Bledsoe, 1970], but see also [Weiden-
bach, 1994] for a more recent exposition of the power of this technique). This
approach allows for a more compact proof and was used in [Baumgartner,
1992a). Unfortunately, it seems that completeness with regularity needs the
further refinements developed in the proof below.

Definition A.1.1 (Definitions Related to Completeness Proof).
A path through a clause set {C1, ... ,Cp} is a multiset of literals {L1, ... , Ly}
such that L; € C; for i =1...n. A literal multiset q is called o partial path
through M iff ¢ C p for some path p through M.

A T -unsatisfiable clause set M is called minimal T -unsatisfiable wrt. a
clause C € M iff M \ {C} is T -satisfiable.

A continuation of a branch [Ly---L,] (n > 1) wrt. a ground clause set
M is a possibly empty clause set N C M such that Lit([Ly--- Ly]) UN s
minimal T -unsatisfiable wrt. L,,. We usually write Ny to indicate that N,
is a continuation of branch [p] wrt. some clause set M given from the context.

Recall that [Ly - -- Ly,] denotes an open branch. Intentionally, continua-
tions need to be defined for this case only. Extending to branch sets, a con-
tinuation Cp of a branch set P wrt. a ground clause set M is a multiset

Cp = {Npp | Ny is a continuation of (open) branch [p| wrt. M, [p] € P} .

Notice that {} is a continuation of a closed tableau, whereas {0} is a con-
tinuation of some tableau with one single branch, which is T unsatisfiable by
itself, e.g. “la < a)”.

A.1 Proofs for Chapter 4 — Theory Reasoning 217

As a measure for the complexity of clause sets, let k(M) denote the num-
ber of occurrences of literals in M minus the number of clauses in M (k(M)
is called the excess literal parameter in [Anderson and Bledsoe, 1970]). Below
we will make use of the fact that N C M implies k(N) < k(M).

The complexity measure k is homomorphically extended to multisets of
continuations, i.e. if Cp is a continuation of a given branch set then

k(Cp) = {k(c) | ceCp} .

Note that complezity of continuations of branch sets are multisets over non-
negative integers. Hence we can use the multiset-extension - of the usual
“>7 ordering (denoted by “»> 7 in the sequel for simplicity). It is well-known
that %~ is a well-founded ordering (cf. Section 2.1).

Intuitively, a continuation of a branch [L; - - - L,,] can be seen as the “ressources”
to complete the proof of [L; - - - L,]. Notice that if Lit([Ly --- L,—1]) alone is
T-unsatisfiable, then, by definition, a continuation does not exist. Below we
will show at the heart of the completeness argument that extension steps go
along with strictly decreasing k-values of accompanying continuations.
Since we will have that no literal from a branch [p] need occur in its
continuation N, and that it suffices to take clauses for extension steps
from N, the regularity restriction follows easily. A proof without regularity
would be considerably simpler; it was given in [Baumgartner, 1992a]. The
proof below first appeared in [Baumgartner, 1993]. A proof which employs a
similar idea to ours was described for the non-theory case in [Letz, 1993].

Lemma A.1.3. Suppose a ground clause set M is minimal T -unsatisfiable
wrt. C =11V ...V L, € M. Then for every i = 1...n, the clause set

M; = (M\{C}) U{L:}
is minimal T -unsatisfiable wrt. L;.

Proof. First, M; is unsatisfiable because otherwise a model for M; would be a
model for M. Second, M; is minimal unsatisfiable wrt. L; because otherwise
Mi\{L;} = M\{C} would be unsatisfiable, which contradicts the minimality
assumption about C'.

Lemma A.1.4. Let M = {Lq,... ,L,}UN be a ground clause set containing
unit clauses L,... ,L,, and suppose M is minimal T -unsatisfiable wrt. L.,.
Then a set N' C N exists such that (1) M' = {L;,... ,L,} UN' is minimal
T -unsatisfiable wrt. L, and M' is minimal T -unsatisfiable wrt. every clause
in N', and (2) no literal in {L1,..., Ly} occurs in N'.

Proof. First, obtain N” from N by deleting every clause containing a literal in
{L1,...,L,}. This preserves T-unsatisfiability, i.e. M" = {L;,...,L,}UN"
is T-unsatisfiable (because otherwise a model for M"” would be a model for
M). Next minimize on N", i.e. find a minimal set N' C N” such that M' =

218 A. Appendix: Proofs

{L1,...,L,} UN'is T-unsatisfiable. M’ is trivially minimal 7-unsatisfiable
wrt. every clause in N'. M’ is also minimal T -unsatisfiable wrt. L,,. Proof:
Suppose, to the contrary, that

({L1,..., L, UNY\{L,} ={L1,... ,L, 1} UN'
is T-unsatisfiable. But then with N’ C N it follows that
{L17... ;Lnfl}UN = M\{Ln}

is T-unsatisfiable. This contradicts the given assumption that M is minimal
T-unsatisfiable wrt. L,,.

Thus claim (1) is proven. With claim (2) holding for N" it holds with
N' C N" also for N'.

The following lemma is central for all connection methods:

Lemma A.1.5 ([Bibel, 1987]). A (finite) set M of ground clauses is T -
unsatisfiable if and only if every path through M is T -unsatisfiable.

Proof. For the easy proof recall that a clause set is a conjunction of disjunc-
tion of literals. The lemma then is an immediate consequence of properties
of boolean algebra.

More precisely (“if”-direction): Assume that every path through M is T-
unsatisfiable, but, to the contrary, that M is T -satisfiable. Hence let Z be a
T-model for M,ie. Z =1 C;,forevery C; € M (i =1,... ,n, with |M| = n),
ie. T 7 Ly for some Ly € C;. Thus, T =7 {Ls),---,Lsm)} which
means that a 7 -satisfiable path through M exists. Contradiction.

For the “only-if” direction notice that for given T-unsatisfiable clause set
M the existence of a T-satisfiable path would immediately give us a 7-model
for M, which is a contradiction.

Lemma A.1.6. Suppose a ground clause set M is minimal T -unsatisfiable
wrt. some unit clause L € M. Then a partial path p through M exists such
that p is minimal T -unsatisfiable and L € p.

Proof. First, T-satisfiable path ¢ through M \ {L} exists. Proof: suppose,
to the contrary, that every path ¢ through M \ {L} is T-unsatisfiable. Then
by lemma A.1.5 M \ {L} is also T-unsatisfiable. Hence M is not minimal
T-unsatisfiable wrt. L. Contradiction.

However gU {L} is T-unsatisfiable, because otherwise a model for U {L}
would be a model for M. Next minimize on ¢ U {L}, i.e. find a minimal 7-
unsatisfiable subset p C gU{L}. This is the claimed path. Furthermore, with
p\ {L} C g and q being T -satisfiable (as derived above) it holds L € p.

The following lemma is crucial for the inductive argument of the completeness
proof:

Lemma A.1.7 (Extension Decreases Complexity). Let C(jq,0) # {l}
be a continuation of a regular' branch set ([q], Q) wrt. a given ground clause

L Cf. Def. 3.3.2.

A.1 Proofs for Chapter 4 — Theory Reasoning 219

set M. Then there is a TTME-MSR-Ext inference (Def. 4.4.3)

€, 2 G - Cn
Q, Q

TTME-MSR-Ext

such that

1. C1,...,C, € M, and
2. (Q', Q) is a regular branch set, and
3. there is a continuation C(g gy of (Q',Q) wrt. M with k(C([q],Q)) >

k(Cio,0))-

Proof. The given branch [g] can be written as [q] = [K --- Kp,]. Let Ny €
C([q),0) be a continuation of [g]. By definition of continuation, C,],) is mini-
mal T -unsatisfiable wrt. K,,,. By Lemma A.1.4 there is a set N[’ 4 € Vg such
that (1) Lit([q]) U N[’q] is minimal 7 -unsatisfiable wrt. K, and every clause
from Ny, (*), and (2) no literal from Lit([q]) occurs in N, (**).

By lemma A.1.6 there is a minimal 7 -unsatisfiable partial path p through
Lit([q]) U N} with Ky, € p. p consists of literals from Lit([q]) and of literals
from clauses in N,. In other words p is of the form

p:{[Kz'l,... ;Kikme;Lly--- ,Ln]} ,

for some literals K;; € {K1,...,Kn_1}, 1 <i; < m—1 and some clauses
L;VR; € Njy1<i<n.

Since p is minimal 7-unsatisfiable and p is ground this is trivially the same
as saying that p is minimal 7-complementary. Thus the following TTME-
MSR-Ext inference exists, using the empty substitution and key set p (In
terms of Definition 4.4.3 set B = {K;,,... ,K;.}} and K = Kp,):

lq], @ LiVR, --- LpVR,
Q,Q

where

QI: [q]x lfRIVVRn:D7
[qJo(RiV---VRy) else,

Next we turn to the claims 1-3 of the lemma, showing that this inference has
the desired properties.

With L; V R; € Njgj € M (by property of continuation) the claim (1) is
trivial.
Since the literals in Ry V---V R, all stem from clauses in N['q], by (**) above
the given regularity of [g] carries over to [g]o (Ry V- --V Ry,), and this suffices
to show regularity of (Q', Q).

220 A. Appendix: Proofs

Concerning (3), the given continuation Cpg},g is of the form {Ng} U Co
where Cg is a continuation of Q. We will construct the desired continuation
as

Cia,0) ={Njg] | Nigq is a continuation of [¢'] wrt. M, and
n) < ,for |g'| € eing an open branc
k(Nign) < k(Niq), fi "1 € Q' bei branch
UCg .

Since C(gr,g) is obtained from C([4},0) by replacing Ny, by the finitely many
elements N, with k(Npg) < k(INg) as indicated, it holds

k(C(q,9) » k(C(0,0)) -

Now for the construction of Coryg: if @' = ([g]x) (that is, all rest clauses
are empty and thus [g] gets closed) then trivially Cqr = {}. Hence with N,
being a continuation of [g] and {Nj,} » {}, condition (3) is immediately
obtained by

Cig,0 #» Co =Cio,0) -

Otherwise let [¢'] € Q'. [¢] is of the form [¢- K] where K € R; V...V R,,.
Now let K € R;, fori € {j | j € {1,...,n} and R; # {}}. K stems from
an extending clause L; V R; € N}, which contains at least 2 literals. By (*)
above it holds that Lit([g]) U N[’q] is minimal 7T -unsatisfiable wrt. L; V R;.
Then by Lemma A.1.6 the set

((Lit([g]) U N[y \ {Li V R;i}) U{K}
is minimal 7 -unsatisfiable wrt. K. This set is the same set as
Lit([q - K]) U (N \ {L: V R:})

With [¢- K] = [¢'] recognize that Ny = N, [’q] \{L;VR;} is thus a continuation

of [¢'].

It remains to show the ordering property k(Ny) < k(Npg)). This follows
immediately from the fact that we deleted a clause with at least 2 literals.
More precisely Njg1 = Ni; \ {Li V Ri} C Nj; € Ny implies

F(Niyp) = RVl \ {Ls V Ri}) < (Nly) < k(Ngy)

This lemma can be iterated:

Lemma A.1.8. Let M be a T -unsatisfiable ground clause set, Q be a tableau
and Cg be a continuation of Q wrt. M. Then there is a finite sequence

(Q=Q1)FQbF---F0Q,

ending in a closed tableau Q,, and there is a finite chain of respective con-
tinuations wrt. M,

A.1 Proofs for Chapter 4 — Theory Reasoning 221

(Co=Ci)»Com - (Cn={}) ,

such that every Q;y1 is obtained from Q; (1 <i <n —1) and some clauses
from M by application of a TTME-MSR-Ext inference step, and every C; is a
continuation of Q;.

Proof. By well-founded induction on the ordering »: if Cg = {} then Q
must trivially be a closed tableau. Otherwise a branch ¢ € Q exists. Next
apply lemma A.1.7 to obtain a branch set Q' with continuation Cg such that
Cg % Cgr. Now apply the induction hypothesis to Q' and Co'.

Now we are ready for the proof of the ground completeness lemma:

Proof. (Lemma A.1.2) Without loss of generality assume that M is already
a minimal 7T -unsatisfiable set containing G (otherwise we are given that an
appropriate subset exists). Clearly, M is minimal 7 -unsatisfiable wrt. G.

The given start clause can be written as G = L;V---VL,,. By Lemma A.1.3
every set M; = (M \ {L1V---V L,}) U{L;} (1 < i < n) is minimal 7-
unsatisfiable wrt. L;. In other words M] = M; \ {L;} is a continuation for
[L;]. Thus, C; = {M],..., M/} is a continuation for the branch set Q; =
{[L1),--- ,[Ln]}- Next apply Lemma A.1.8, which shows that a TTME-MSR
refutation with start clause G exists.

Lifting Lemma for Theory Model Elimination The completeness proofs
for our model elimination calculi all work by assuming the existence of a refu-
tation on the ground level, which is then “simulated” by a refutation on the
first-order technique. This widely used technique is known as the lifting tech-
nique. It is applicable for a wide spectrum of calculi, including resolution (see
e.g. [Chang and Lee, 1973]) and first-order tableaux with free variables (see
e.g. [Fitting, 1990]).

I feel the strong need for proofs at a detailed level, because, at least in
my experience, statements like “lifting works as usual” can easily go wrong.

Convention A.1.1 (Conventions for Lifting Proof). Our two most ad-
vanced versions of theory model elimination are the total TTME-MSR ver-
sion (Def. 4.4.3) and the partial PTME-I version (Def. 4.5.4). The proofs of
the respective lifting lemmas share the same argumentation and structure.
Hence we will not repeat ourselves, and supply only one lemma, with one
single unified proof, which makes a case analyses wrt. the applied inference
rules TTME-MSR-Ext, respectively PTME-I-Ext. As a further notational sim-
plification we define

) Inlx if C =0,
[p]oxC—{[p]oC else .

This will keep some case analyses required for the TTME-MSR-Ext and
PTME-I-Ext inference rules implicit in the “o,” operator.

222 A. Appendix: Proofs

Recall from Definition 4.5.4 that PTME-I-Ext inferences are written as (we
will quite often omit the theory inference rule subscript) P k-, x (z. oy, P'- In
order to avoid repetition we will allow this notation also for TTME-MSR-Ext
inferences by setting R = O and meaning that ¢ is a minimal 7-MGR for I,
as required. This is consistent with the Definition of TTME-MSR-Ext.

Lemma A.1.9 (Lifting lemma for TTME-MSR and PTME-I). Let M
be a clause set. For PTME-I, let ' be an inference system consisting of (not
necessarily ground) instances of inference rules from the inference system I.

Suppose a PTME-T' derivation exists, respectively a TTME-MSR deriva-
tion

' ' ' '
Dy = (@1 Pyt (Ry.on.m Q2 Qior Fipp_ 1k (R oty), €1

from a set M' of (not necessarily ground) instances of clauses from M.
Then there also exists a PTME-T derivation, respectively a TTME-MSR
derivation

Dy = (Q1 Fpylks,(Rusor) B Q27 Qi1 Py ki s (Ric 1,001), By Q1)

from M such that for some substitution d;
Q= Q8% (A.9)

and, for j=1,...,1 -1,

]C;U;----O';_l ZICjUj'--O'l_l(Sl, and (A.lO)
E;O'j"'0271 :Ejal---al_ldl . (A].].)

Furthermore, (1) stability wrt. minimality is preserved (that is, if D' is stable
wrt. minimality, then so is D, cf. Def. 4.5.7 for PTME-I and Def. 4.4.4 for
TTME-MSR), and, (2) regularity is preserved (that is, if D' is regular, then
so is D, c¢f. Def. 3.3.2).

The property A.9 is needed for refutational completeness: if Q)] is closed then
@; must be closed, too. Property A.10 is needed for the preservation of stabil-
ity wrt. minimality, and property A.11 is used for the answer completeness.
Before we can turn to the proof of this lifting lemma for derivations, we need
a further lifting lemma for single PTME-I-Ext inferences; such a lemma is
not needed for TTME-MSR-Ext inferences, because the respective property is
given as a property of CSRs.

Lemma A.1.10 (Lifting Lemma for PTME-I-Ext inferences). Let P' —
C' be an instance of an inference rule P%*¢ — C%%¢ and let W be a set of
variables. Suppose that

K =pisor, o R’

A.1 Proofs for Chapter 4 — Theory Reasoning 223

and that Var(P%¥¢ — C*%¢) N Var(K) = 0.

Then, for any variant P — C of P%%¢ — (C%¢ such that Var(P —
OYN(W U Var(K)) = 0 there is a multiset-MGU o and a substitution § such
that the following holds:

K=p,c s Ro (theory inference exists)
R'c' = Rod (residue lifts)
o =ad [W] (most generality and context extension)

Proof. Let ' be the substitution such that P' — C' = (P%s¢ — Cbese)y,
Let p be the renaming substitution for P — C, i.e. P — C = (Pbes¢ —
C"%s¢)p. From this conclude

P - (C'=(P—C)y wherey=p'y|Var(P - O) . (A.12)

First, we need to know that X = K~v: the given assumption Var(P — C) N
(W U Var(K)) = 0 implies in particular Var(P — C) N Var(K) = 0. By
definition of v, Dom(y) C Var(P — C). Hence also Dom(y) N Var(K) = 0.
Therefore, K = K.

Using this fact and Equation A.12 we can rewrite the given theory infer-
ence as

}C’Y ﬁ(P%C)'y,a-’ RIO'I .

By definition of theory inference, o' thus is a multiset unifier for some ampli-
fication (Kv)' of K~y and Pr; also, by definition, K-yo' contains no duplicates.

Let K' = {K | Kv € (Kv)'}. Notice that K’ is an amplification of K; K
will just be the premise of the theory inference in the lemma statement.

Using this reformulation we find that o' is a (not necessarily most
general) multiset unifier for K’ and P, that is K'yo' = Pyo'. By virtue
of well-known unification algorithms® a most general multiset unifier o for
K' and P exists. Stated differently, yo' is a T-refuter for {K' # P}, and
o € MSRr{K' # P}, where T is the theory of multisets. Using Proposi-
tion 4.4.1, we can assume that ¢ < yo' [Var{K' # P}] (*) and that there is
a substitution § such that

vo' = o6 [W U Var(C)] . (A.13)

We must insist on the context Var(C') here because C' might contain extra
variables not touched by o.

From (*) we conclude in particular o < vo' [Var(K')], and since Var(K) =
Var(K') even o < o' [Var(K)]. Hence, with Ko’ containing no duplicates,

8 See e.g. [Biittner, 1986] for a multiset unification algorithm. A simple algorithm
for multiset unification (without tail!) is to read X' and P as lists, and to collect
the (syntactical) MGUs of K and all permutations of P.

224 A. Appendix: Proofs

Ko does not contain duplicates either. Next define R = 0if C' = C = F and
R = C otherwise. In the former case, R'o’ = Rod holds trivially, and in the
latter case we have

oo=Co = yo' = 00 =Roo . 1
R'o' C//(A-12)C /(A-13)C(5 RoS A4

From this we learn that the theory inference as claimed in the lemma state-
ment exists (it uses the amplification X' of X and multiset unifier o). Further,
Equation A.14 is also a proof of the nontrivial case of the “residue lifts” prop-
erty.

It remains to show o' = ¢ [W]. From (A.13) we can trivially obtain
vo! = oé [W]. The given assumption Var(P — C)N (W U Var(K)) = 0
implies in particular Var(P — C) N W = (. By definition of v, Dom(y) C
Var(P — C). Hence also Dom(y)NW = (. Therefore, zy = z for any z € W,
and thus more generally vo' = ¢’ [W]. Thus with yo' = od [W] conclude
o' = g6 [W], which completes the proof.

Proof. (Lemma A.1.9) We need the following fact: Suppose C' is a variant of
a clause from M’. Then a clause C'%**¢ € M exists such that for any variant C
of Cs¢ 3 substitution v with Dom(y) = Var(C) exists such that Cy = C".

Proof of fact: Let p be the renaming substitution by which C' was obtained
from a clause in M'. That means C'p~! € M'. Now, every clause in M’ is
an instance of a clause from M. That is, for some C?*¢ € M and some
6 we have C%5¢9 = C'p~!. Applying p to both sides yields C***¢4p = C'.
Any variant C' of C%*¢ is obtained by means of a renaming substitution (cf.
[Lloyd, 1987]), say pc. In other words, C' = C%¢pc. Using Cpy' = Cbese
we have Cp_'0p = C'. Now setting v = p(;'8p| Var(C) proves the fact. The
proof of the lemma proper is by induction on the length [of the derivation.

Induction start (I = 1): Here, Q)] is a branch set for the start clause C] €
M'. By the fact there is a clause C; € M (which is also a variant of itself)
and a substitution ¢§; with C16; = C]. Thus the branch set @, for the start
clause C; constitutes a proof of (A.9). Further, since no inference steps are
carried out, both stability wrt. minimality and regularity trivially hold. Also,
properties A.10 and A.11 hold trivially.

Induction step: (I — [+ 1): As the induction hypothesis suppose that
properties A.9, A.10 and A.11 hold for [, and let the given derivation Dj
now be

Diy1 = (D) bkt (myoy B Qi) -
We will show how to extend the derivation D; towards

D1 = (Di Fipkn, (i, By Qirt)
such that Properties A.9, A.10 and A.11 hold for [+ 1.

A.1 Proofs for Chapter 4 — Theory Reasoning 225

Suppose E; = {L} V Ri,... L,V R,,} are the new variants of clauses
from M' used as extending clauses in the concluding step of D;,; with £’ =
{L},- .., L, } being the extending literals. Suppose K] = B'U{Leaf ([p;]) }UL’,
for some B' C [pi] \ {Leaf([p}])}- This setup can be taken for both calculus
variants. However, there are some differences in further argumentation.

In case of TTME-MSR, by definition, Kjo; is minimal 7 -complementary
(we need not insist that o} is a T-MGR).

In case of PTME-Z', the PTME-I-Ext step is based on the theory inference

Ki = pici, o Raor (A.15)

for some new variant P/ — C] of a rule from 7'. In both versions the resulting
branch set @, can be written as

Qp1 = (Pl ox (R vV By V-V Ry U(Q \ {lpilD)or

where for TTME-MSR we set R; = .

By the induction hypothesis A.9 there is in particular (both versions) a
branch [p;] € @Q; with [p]6; = [p;].- Thus also a subsetB C [p;] \ {Leaf ([p1])}
with Bé; = B’ exists.

Next we are going to set up a corresponding set Ej of extending clauses.
By the fact we can find for every clause (L, V R}) € E] (i = 1,...,n) a
new variant L; V R; of a clause from M and a substitution 7yr,vg; such
that (L; V Ri)yL,vr; = L}V Rj. Hence let E; = {L1 V Ry,...,L, V R,},
L = {L1,...,L,} and define the key set to be used in the lifted inference
as K; = BU {Leaf ([p])} U L. We have to show that E; and K; are suitably
defined.

All the clauses L; V R; are new variants, and hence are variable disjoint.
So without loss of generality we can assume that vy, g, acts on the variables
of L; V R; only, that is Dom(vr,vr;) C Var(L; V R;). But then we can define
Yi = YLiVR; ***YL,VvR, and it holds

(L,’ \Y Rz‘)’)/l = L; \% R; R (A.lﬁ)
which implies
Ly =L". (A.17)

Since E; consists of new variants we can assume that §; does not act on the
variables of L; V R;. Hence

L;VR; = (L,’ \Y R,’)(Sl, (A.IS)
which implies

L£="Co . (A.19)

226 A. Appendix: Proofs

Recall that v; acts on the variables of E; only. But with Ej consisting of new
variants we find that Ej is variable disjoint from @;d;, and hence

Qi = Qudiv - (A.20)
We continue
Ko,
= (B'U{Leaf ([p}])} U L")o;
= (B(Sl U {[Leaf([pl])dl]} @] Ew)a;
(by (A.9) for [and (A.17))
= (Bay U {Leaf ([p])dim} U Lav)o;
(by (A.19) and (A.20))

= (BU{Leaf ([p1]))} U £)dim0
= IClémal’ .

(A.21)

This setup holds for both variants.

Now we have to distinguish. In case of TTME-sem, (A.21) tells us that
dio] is a, although minimal, not necessarily most general 7 -refuter for ;.
We conclude with Proposition 4.4.1 that there is a T-MGR o; € M SR (K;)
and a substitution §;;1 such that

51’}’[0; = 0"1(51+1 [W], where
!
W = U(Var(Qjaj ceeopoq) U Var(}Cjaj ceeopoq) U Var(Ejaj ceeop)) -

j=1
(A.22)

By construction of K; it holds that Var(K;) C Var(Q;)U Var(E;), and hence
the Var(K;) term could be omitted in the definition of W.

By Proposition 4.2.1.2 we have that if §;;07 is a minimal 7-refuter, then
so must be o;. Hence, a TTME-MSR-Ext step based on ¢; and using extending
clauses E; and key set K; can be carried out to Q.

For PTME-Z' we need the following reasoning: recall that we demand that
the used theory inference rule (in Dj ;) P' — C" is a new variant. Hence
neither §; nor ; will act on P! — C' and we will thus have

(PI — C”)(Sm =P =C'. (A.23)

But then, using this fact and Equation A.21, the theory inference A.15) is
the same as

Ki = -0y, 6imo; Ri0iM07 - (A.24)

1

With A.23 it trivially follows that &;y; does not affect R;. Hence

A.1 Proofs for Chapter 4 — Theory Reasoning 227

R;éma; = R;U; . (A.25)

This trivially also holds for the TTME-MSR-Ext case, where R; = O.

The inference rule (P] =+ C}) € 7' must be a new variant of some instance
of some inference rule (P%%¢ — C%¢) € 7. Let P, — C) be any new variant
of Pbs¢ — CYs¢ and consider the set W from A.22. With P, — C; being a
new variant, it will clearly hold Var(P, — C;)N(W U Var(K;)) = 0. Thus we
can apply Lemma A.1.10, which gives us the following theory inference step
with multiset-MGU o7y:

Ki = p—cy, o Rior - (A.26)

Hence, a PTME-I-Ext step based on K;, P, — Cj, o; and extending clauses
E,, yielding residue (R, 0;) can be carried out to Q.
Further, Lemma A.1.10 also gives us a substitution §;; such that

(sl’le; = Ul(sl—i-l [W] (A27)
Ridivio; = Rioidiyr - (A.28)
This will be needed below.

In both cases (TTME-MSR and PTME-Z), the resulting branch set Q41
is

Qi1 = ([p] ox (RiV RV ---V Rp) U(Q \ {[m]D)or - (A.29)

In order to prove Equation A.9 for [+ 1 we have to show Q;,; = Qi410141:

Qi1 = (] ox Ry V Ry vV ---V Rp) U(Q \ {[pi]}) oy
= ([mdi] ox (RyV Ry V ---V Ryy) U (Qi0r \ {[pedi]})) oy
(by A.9 for [and (A.16))
= ([pdiv] ox (RyV Ry V -+ V Rudyyi) U (Qudiyi \ {[pedivi]}))o;
(by (A.18) and (A.20))
= [pléma;] Ox (R;(Smal’ \Y Rlémaf V---V Rnémaf)
U (Qidirniop \ lpdimor]})
(by distributing o; and (A.25))
= [Po10i41] ox (Rio10141 V R1010141 V -+ -V Rp0y6i41)

U (1010141 \ {[p1o161411})
(by (A.22) (TTME-MSR), resp.
by (A.27) and (A.28) (PTME-T))

= Q1641 by (A.29)

We have to prove Equation A.10 for [+ 1, i.e. for j =1,... L

228 A. Appendix: Proofs

K;U}---a;,la; :Kjaj---al,lalélﬂ. (A.30)

We distinguish two cases:

. A.21 A.22,A.27

] = l: /C;U; (=) IC[(Sl’le'll (=) ’Clo'l(sl-i-l-

1 < j <1l-—1: By construction, ; acts on the new variants Ej only, and
hence does not affect ’C;-O’; ---0]_;. Thus

(Kol -0y 1)o; = (Kol ---07_1m)0y
(A.10)
=" (Kjoj---01-1)0imoy

(A.22,A.27)
=" (Kjoj---01-1)016141 = Kjoj - - 016141

Thus, in both cases, A.10 holds for [+ 1. The proof of property A.11 for [+ 1
is analogue and hence is omitted.

It remains to prove preservation of stability wrt. minimality and preser-
vation of regularity. Concerning the stability wrt. minimality we use the
just derived result, Equation A.10, and conclude with the given minimal
T-complementarity of Ko’ - -- 07 and Proposition 4.2.1.2 that K;o; --- 0y is
minimal 7 -complementary as well.

Concerning regularity, we have to show that every occurrence of a branch
[p] € Q41 is regular. From Q) ; = Q41041 it follows that there is a cor-
responding occurrence of branch [p'] € @}, such that [p'] = [pd;11]. Now,
regularity of [p] holds by Proposition 3.3.1 and regularity of [p'], which holds
if D' is given as regular.

Independence of the Computation Rule The “next” subgoal to be pro-
cessed in model elimination derivations may be chosen in a don’t-care nonde-
terministical way. This result is known as the “independence of the compu-
tation rule” (cf. also Section 3.3). The proof works by developing a switching
lemma which says that two subsequent selected subgoals may be extended in
exchanged order. When applied repeatedly, this shows us that any refutation
can be reordered until it is in accordance with a given computation rule.

There are basically two approaches: the easier approach operates on the
ground-level (recall that we use a ground-proof-and-lifting technique). This,
however, has the disadvantage that the computation rule must be demanded
to be “stable under lifting”, i.e. that if a computation rule selects a literal
L~ within a clause C7, then it has to selected L in C.

Since such a restriction would be poorly motivated, and is not even neces-
sary, we will develop the result directly on the first-order level. The same ap-
proach was taken in [Lloyd, 1987] for SLD-resolution. However, a non-trivial
complication comes in by the “stability wrt. minimality” (cf. Definitions 4.4.4
and 4.5.7) which trivially holds in the non-theory case.

The “independence of the computation rule” holds for both, TTME-MSR,
and PTME-I. Since the argumentation of the proof has much in common with

A.1 Proofs for Chapter 4 — Theory Reasoning 229

the preceding lifting lemma, we will adopt the conventions A.1.1 here, too.
The key to the desired result is the following lemma:

Lemma A.1.11 (Switching Lemma). Suppose a refutation D, stable wrt.
minimality,
D= Qi k--FQiy
F [pi]a [pi-f-l]a Q = Qz
Flpiljco, PiosCiy(Riyoi), Ei (Pis [pise], Q)oi =: Qiy1
|_[pi+10i],’Ci+1,Pi+1—>Ci+1,(Ri+1,0i+1),Ei+1 (Pi77)i+17 Q)Uiai+1 = Qi"t‘2
FQiysh -k Q)
with answer substitution o1 ---0;_10;---0;_1 as given, where
E;={L{VRi,..., L\, VR }
P; =[pi]ox (RiVRIV---V R)
Eipr = {ILiﬂ v Rf+1,... ,Litl v Ritl

mit1 Mit1
Pit1 = [pir1] ox (Ripn VRIT V- VRIFL)

Then also a refutation D' of the same clause set exists, with the same start
clause, stable wrt. minimality, where the extension steps yielding Q; 11 and
Qiva are swapped. More precisely, D' takes the form

D= QiF--FQiy
F[pil; [pi1], ©
"[p,-+1],lq,P,-+1—>Ci+1,(Ri+1,a;),E,-+1 ([pi]; Pita, Q)Ué = 2+1
Flpioil, K1, P Ci(Risaty), Bi (Pis Pit1, Q07071 = Qity
- Qs Feek Q)

with computed substitution o1---o;_10}--- (Tll_l, and there is a substitution
d; such that

Q1 = Q0, (A.31)
E;joj -+ 0i105 011 = Ejo; -+ 0i_10) -0l _1 6]
(for j=1,...,i—1, with E; as extending clauses)
Eioi---01-1 = Eioj 1 ---0,_10; (A.32)
Eit10i41-+-01-1 = Eiy10} - 01_16; ’
Ejoj---01-1 = Ejo} -0, 16,

(for j =i+2,...,l -1, with E; as extending clauses)

Furthermore, regularity is preserved (that is, if D is regular, then so is D').

230 A. Appendix: Proofs

Both the statement and the proof of the lemma are an extension towards
theory-reasoning of the respective lemma for SLD-resolution in [Lloyd, 1987],
with the additional complication that stability wrt. minimality is invariant.
Interestingly, the proof will not go through if stability wrt. minimality would
not hold for the given derivation.

Proof. Let L£; = {Li,...,Li]} denote the extending literals of the “first
given” extension step. That is, K; = B; U {Leaf([pi])} U L;, for some
B; C pi \ {Leaf([p:i])}. Analogously, let Liy1 = {Li*',...,LiL | de-
note the extending literals of the “second given” extension step. That is,
Kit1 = Biv10:U{Leaf ([pi+10:])}ULi1, for some Bi1 C piy1\{Leaf ([pit1])}-

We note that since £;;1 stems from new variants we can assume that o;
does not act on L;41, i.e.

[,z'_;,_l = [fz'-l,-lUi . (A.33)
For both calculi variants this gives us

Kiv10iy1 = Biy10i0i41 U {Leaf ([piv10i0i11])} U Liy10i41

A.33
“2Y B r10i0i41 U {Leaf ([pi+10i0it1])} U Lit10i0i11 (A.34)

= (Biy1 U{Leaf ([pir1])} U Liv1)oioips -

~~

::’C;

We will swap the given two extension steps now, starting with the PTME-I
version. The second given extension step is based on the theory inference

’Ci-i-l = Pi11—Cit1,0i41 Riv10i41 . (A'35)

Since always new variants of inference rules are used, o; will not act on the
new variant P;1; — Cjy1 used in the given second step (and hence trivially
does not act on R;41). In other words, Pir1 — Ciy1 = (Pig1 = Ciy1)0;-
Together with A.34 the theory inference A.35 can be reformulated as follows:

!
}Cz'ai =>(P,'+1—)C1‘+1)0'i,0'i+1 Ri+1aia’i+1 .
This, however, is the same inference as

!
’Ci :>Pi+1—>ci+1, 0041 Ri+lai0i+1 -

Now let
i—1
X = U(Var(IC]O—] .- 'Ui—l) U Var(E]o—] .. 'Ui—l))
j=1

W; = Var(p;) U Var(pir1) U Var(E;) U Var(E;11) U Var(Q) U
Var(R;) UX

A.1 Proofs for Chapter 4 — Theory Reasoning 231

and apply Lemma A.1.10 (it is easily verified that the preconditions are met).
It gives us the theory inference

K:; = Pit1—Ciy1, 7} Ri+10'£
with multiset-MGU o}, and a substitution v, such that

0i0it1 = 07y; [Wi (A.36)
Ri—i—laiai—i—l = 'R,i_,_laé'yz{. (A37)

Hence, a PTME-I-Ext step can be carried out to Q;, yielding Q;11, as sug-
gested.

In case of TTME-MSR, by definition of TTME-MSR-Ext, 041 is a minimal
T-MGR for K;y1. From A.34 we learn that ;0,41 is a, although minimal,
not necessarily most general 7-refuter for). However, with Proposition 4.4.1
we conclude that there is a T-MGR o € MSRy(K}), and that there is a
substitution ~y} such that

0i0i41 = 0'2’71{ [Wz] . (A.38)

By Proposition 4.2.1.2 we know that with o;0;41 being a minimal 7-MGR,
the more general o} is a minimal 7-MGR for K}, too. Hence, a TTME-MSR-
Ext step can be carried to Q;, yielding Q;11 as suggested.

For both variants recall that the extending clauses always are new vari-
ants; hence we clearly have Var(E;) N Var(K}) = 0. For TTME-MSR, by
definition of M SRt we know that Dom(o}) C Var(K}). Thus, Dom(c}) N
Var(E;) = 0, and in particular, o} will not act on the variables of £;. For
PTME-I, we can assume that Dom(o}) C Var(K})U Var(P;4+1 — Ciy1). With
P11 — Cit1 being a new variant, we can further assume that o} does not
act on the variables of £;, and that o} will not act on the variables of the
new variant P; — C;. The latter fact implies in particular

Ri= ’R,z'Ug . (A.39)
For both variants, let

W1 = Var(pio}) U Var(piy10}) U Var(E;o}) U Var(E;;10})
U Var(Qo;) U Var(Riy10;) U Var(Xo3}).

Next we will show how to append the given first inference step to Qj,;.
Again, we start with PTME-I: the given first PTME-I-Ext step is based on
the following theory inference:

}C’i i1%'—)6',',0’,’ Rzaz .

Clearly, we can instantiate with o;41, yielding

232 A. Appendix: Proofs

K; =P, —C;,0i0i41 Rici0i+1 - (A.40)

We know by minimality requirement of theory inferences that K;o; contains
no duplicates. By the given stability wrt. minimality of D, it holds even the
stronger result that X;0;0;41 contains no duplicates. Thus A.40 is a minimal
theory inference (although ¢;0;4+1 need not be a multiset-MGU).

Recall from above that o} will not act on the variables of £;. Hence we
have
(A.36)

=" Kioiyi

= (Bi U{Leaf ([pi)} U Li)oi;
= (Bioj U {Leaf ([pioi])} U Li)7; -

~~

=Kl

Kioioi41

Recall further from above that o] will not act on the variables of P; — C;.
Hence we have

(P = C3)oi0i41 (429 (P = Ci)oyy; = (P = Co)v; -

Altogether, A.40 can be rewritten to the minimal theory inference
}C;'.H = P,—Ci, 7} Ri’)’z{ -

Now we can apply Lemma A.1.10 (again, it is easily verified that the precon-
ditions are met), which gives us the theory inference

! !
Kiv1 =Pisciol,, Rioig

with multiset-MGU o}, , and a substitution 7;,, such that

’Yz{ = ‘7§+1%{+1 (Wig] (A.41)
Ri%{ = Ri‘7£+1%{+1 . (A.42)

Hence, a PTME-I-Ext step can be carried out to Q;,,, yielding Qj ,, as
suggested.

Now we turn to TTME-MSR. From the given first extension step we know
that K;0; is minimal 7-complementary. By Proposition 4.2.1.1 we know that
Kio;0541 also is T-complementary. We need the stronger result that o;0;1
is even a minimal T-refuter for K;, which holds because D is given as stable
wrt. minimality. Thus

Kioioit1 429 Kioivi
is minimal 7 -complementary. Recall from above that o; will not act on the
variables of £;. Hence we continue

A.1 Proofs for Chapter 4 — Theory Reasoning 233

Kioiv; = (Bi U{Leaf ([pi])} U Li)oiy; = (Bioi U {Leaf

\

—~~

[pioi))} U Li)v; -

i1

<

a

-

Hence, with o;0;41 being a minimal 7 -refuter for K;, ~; is also a minimal
T-refuter for K, ;. By Proposition 4.4.1 we conclude that a 7-MGR o}, €
MSR7(K},) exists, and that a substitution v;, ; exists such that

Y= 0l Vi W] - (A.43)
By Proposition 4.2.1.2 we know that with ~} being a minimal 7-MGR for
i+1, the more general o}, also is a minimal 7-MGR for K}, ;. Hence, a
TTME-MSR-Ext step can be carried to Q},, yielding Q}, , as suggested.
This shows us that the first and second extension step can be swapped.
We are going to show now Qiys = Qf 7/, ,*. As an abbreviation we use
R'=RiV---VRL:
Qite = (Pi, Piy1, Q)oioin1
= ([pi] ox (Ri V R), [pis1] ox (Riyr V R, Qo041
= ([pi] ox (Ri V RY), [pis1] ox (Riy1 V R, Q)aly;
(by A.36 and A.37 (PTME-I),
by A.38 (TTME-MSR))
= ([pi] ox (Ri V R), [pis1] ox (Rig1 V R™Y), Q)alot, 1 vipy
(by A.41, A.42 (PTME-I),
by A.43 (TTME-MSR))
= (Pi, Piy1, Q)0i051%i41
= Q2+2’Yz{+1 .
Hence we can write the rest of the given derivation D as
Dg = Q;+27z{+1 FQiysk--FQp .

We wish to lift Dg to a derivation D} starting with Q}, ,, which would yield
the tail of the desired refutation D’. This requires a slight generalization
of the lifting lemma (Lemma A.1.9) by allowing to start derivations with
any instantiated branch set, instead of a branch set corresponding to a start
clause. In this case, Qj, 7, will be lifted to a refutation

DhZQ;’H"Q;H"“"'QIn .

Further, this lifting preserves regularity which implies the regularity of D',
provided that D is regular.

4 Tt can even be shown that for some 7;41 it holds Qito = Qiyavit1. Thatis, Qj
and Q;4» are variants. However, as the further proof shows, this argumentation
is not necessary.

234 A. Appendix: Proofs

We still have to show that in D’ is stable wrt. minimality. By the identities
derived so far we can obtain the following (j =1,... ,i—1):

Kjoj- - 0i10i01 1% = Kjoj -+ 0i-10i0541
IC;U;U;'H%H = Kit10i11
(by A.34, A.36 and A.41 (PTME-I),
by A.34, A.38 and A.43 (TTME-MSR))
Ki10i41%i41 = Kioioi
(by Def. of i, and A.41 (PTME-I),
resp. A.43 (TTME-MSR)) .

In words, the left sides of the equations are just the key sets in D' up to Qj .,
instantiated by the computed answer substitution derived so far and v, ;.

Now consider, for instance, Kjojo,,v;,, (for the other listed key sets
the following argumentation is the same). In Dg, this set is further instanti-
ated towards Kjo;oj, 17V 10it2 - - 01—1. Again slightly generalizing the lifting
lemma, the computed answer in DYy, say o;, - --0;_;, leaves us more general
key sets. The lifting lemma also gives us a substitution J; such that

[! ! 1 _ gl ! .
Ki0i0i110is -~ - 01101 = Ki030i17i 11042 - - 011
= Kit10i410542 - 011 .

Now, the given stability wrt. minimality of D means in particular that
Kiy10i410i42--- 071 contains no duplicates. But then Kiojo}, 0}, 5 0;_;
trivially cannot contain duplicates either. Using this argumentation for all
the key sets listed above convinces us that D’ is stable wrt. minimality, too.

For the other properties A.31 and A.32 the same argumentation as for
the key sets applies and hence is omitted.

Proposition A.1.3 (Independence of the Computation Rule). Let P
be a program, < Q be a query (cf. Def. 3.2.5) and D be a PTME-T refuta-
tion (resp. TTME-MSR refutation) of P and + @ with computed answer
{Q1,-..,Qi}. Assume that D is stable wrt. minimality (Def. 4.5.7, resp.
Def. 4.4.4).

Then, for any computation rule ¢, a PTME-T refutation (resp. TTME-
MSR refutation) D' of P and < Q exists with computed answer {Q},... ,Q;}
via ¢, and, for some substitution &', it holds that {Q1, ... ,Q;}0' = {Q1,... ,Qi}.

Furthermore, reqularity is preserved. That is, if D is strictly reqular, then
so is D',

Proof. Let
D=1k - FQi1FQik---F(O0=0)

be the given refutation, and suppose that D is in accordance with ¢ up to
inclusive i — 1. That is, ¢ selects a branch [p;] € Q; different from the actual

A.1 Proofs for Chapter 4 — Theory Reasoning 235

selected branch in D in Q;. Since D is a refutation, at some stage j > i
the instance [p;o; - --0;—1] must be selected in D, where o;---0;_1 are the
substitutions used in the intermediate inferences. By applying the Switching
Lemma (Lemma A.1.11) j — i times, the branch [p;o; - - - 0j_1] can stepwisely
be moved backwards until it is selected as [p;] in Q;.

Concerning the stated property of the computed answer recall that the
members of the computed answer consists of (1) the literals of the start
clause and (2) of the literals of the query used as extending clauses. Now,
the switching lemma gives us a ¢’ such that Q;¢' = Q;, where Q] is the
concluding (closed) tableau in the switched refutation, say D'. Hence, in
particular Q}8' = Q1 where Q1 (resp. @ is (without loss of generality) the
start clause in D (resp. D'). Concerning the usage of + @ as extending
clauses we also learn from the switching lemma that the extending clauses in
D' are the same as those of D, and their final instantiations along D’ can be
mapped by § into the respective final instantiations in D (in fact, these are
variants). Hence, in particular {Q1,...,Q;}0' = {Q1,... ,Q:}.

Notice that D' is one more step in accordance with ¢ as D. Further, since
the Switching Lemma preserves the length of derivations, repeated applica-
tion of this procedure terminates and finally results in the desired refutation
wrt. c.

A.1.2 Ground Completeness of PTME-I

This section is devoted to the critical lemma in the proof of Theorem 4.5.3.
The crucial point is how to transform a single TTME-MSR-Ext step into a
sequence of PTME-I steps.

Lemma A.1.12. Let T be a ground complete inference system wrt. a theory
T (cf. Def. 4.5.6). Suppose a ground TTME-MSR-Ext inference

P l_[Q]vK:{[Ch--- ’O’n]} PI

as given, where P and P' are ground branch sets and C1,...,Cy, are ground
clauses from M. Furthermore suppose there are continuations (cf. Def. A.1.1)
Cp and Cp: wrt. M of P and P’, respectively, with Cp % Cp:.

Then there is a sequence (Po = P) b --- Py of ground branch sets such
that for j = 1...1, P; is obtained by a PTME-Z9 step from P;_1, where 19
consists of all ground instances of all inference rules in I.

The extending clauses in these steps are all taken from {Cy,... ,Cy}, and
furthermore there is a continuation Cp, of P; with Cp » Cp, = Cp:.

It is possible that the branch set P; consists of more branches than the
corresponding P’, but every branch in P’ is contained with possibly some
extra branch literals in P;.

236 A. Appendix: Proofs

Proof. Assume that C; = L;VR; (fori =1,... ,n) and K = BU{Leaf ([¢])} U
L, where £L = {Lq,..., Ly} and for some B C g\ {Leaf ([¢])}. Further, P and
P’ are of the form

P=14,Q
P'=Q,Q where Q =[q]ox (R1V---VR,).

By definition of TTME-MSR-Ext the key set K is minimal 7 -unsatisfiable
(recall that since everything is ground, no substitution is needed and T-
complementarity coincides with 7 -unsatisfiability).

Since Z is given as ground complete, there is a background refutation R
of K with top literal Leaf ([q]). It is of the form

(Ro = Leaf ([q])) 2R 22 Ry - - Ry_1 220

where the side literals M; (1 < j <) are taken from K.

In order to transform this background refutation into a model elimination
refutation starting from the branch [g], we have to split the M;’s into two
parts: let

Bj:MjﬂB,
[,jZMjﬁ,C .

Intuitively, B; is the subset of M; which stems from the ancestor context of
the key set K of the TTME-MSR-Ext step, and £; is the subset of M; which
stems from the extending literals of the TTME-MSR-Ext step; £; consists of
literals from £ and can be written as

L;=A{L],... , Li}. (A.44)
Let

& ={L{VR],...,Li VR]

be the corresponding clauses from {C4, ... ,Cp}. Using these definitions and
rewriting [¢] as [g] = [p- Ro], we can define the claimed sequence
[p- Rol, Q (=Po=P)
Fip-Rol, k1, Re, B [P Ro - Ra), Q1, @ =P

Flp-RoR1l,Ka,Ro,Es [P Ro - R1 - Ra], @2, Q1, Q =Ps

l_[17'720"-'721—2]JC1—1,'Rz—l,E't—1 [p “Ro--- Rl—l]a Ql—h ' Q2> Ql: Q =P
|_[p-7?—0---7'\’—z_1]JC1,7?—1,E1 [p . R() . -Rl_l]x, Ql, ey QQ, Ql, Q =P

A.1 Proofs for Chapter 4 — Theory Reasoning 237

where

Qj=[p'Ro'R1"'Rj—1]0(R{V-"VR£j)
/Cj ZBjU{[Rj_ll}‘Uﬁj .

That is, the j-th PTME-ZY step is based on the theory inference
Bj U {]ijﬂ} U ﬁj = Rj s

which, using the identity M; = B; U £}, exists according to the background
refutation R.

It remains to prove the stated ordering property Cp » Cp, »= Cp:. Note
that the given continuations are of the form

Cp = {NghuCo
Cpr = Cgo UCqg
according to the structure of P and P’, where Cg is a continuation of Q.

Since Cp % Cpr we have by multiset ordering and the fact that {Ng} is a
singleton

for every Njgj € Cor: Nigp % Nig- (A.45)

Now consider a branch [q-Ri---Rj_1 - K] € Qj, where K € RIV.---v
R{lj. K stems from the Rest R; of some given clause L; V R; € M. For the
given TTME-MSR-Ext step we know [¢ - K| € Q' and there is a respective
continuation N, k] € Cor- Now define

N[q.’Rl---’Rj_l'K] = N[Q'K]

as a continuation of [¢-R1 - -- Rj_1- K] wrt. M (the additional residue literals
do not violate the continuation property). Note that with A.45 it holds that

N[q] > N[Q'Rl“'Rj_l'K] . (A46)

Since no special assumptions about Q; were made we can generalize and find
for every branch in (Qy,..., Q1) a continuation in this way. Let C(q,, .., 0;)
be the thus existing continuation of the branch set (Qy,..., Q1) consisting
of elements from Cor.

With (A.46) it follows N, » N for every N € C(qg,,...,q,), and by prop-
erty of multiset orderings thus ({Npg} is a singleton)

{Ngh > Ca,... 00 -

Finally define Cp, = C(q,,...,0,) UCg as the desired continuation of P;. Also
by property of multiset orderings it follows

Cp = {NighUCg % Cq,,...,0,) UCgo =Cp, .

238 A. Appendix: Proofs

In order to see the other stated ordering property observe that every clause
L; V R; must be used at least once in the constructed partial derivation,
because otherwise the key set K of the given TTME-MSR-Ext step would be
not minimal T-valid. Hence R; is used in the construction of at least one Q;.
Thus every element in Cor occurs at least once in C(g,,...,0,)- From this it
follows

Cp, =Cq,...,01) UCg = Cg UCg =Cpr .

This lemma can be applied to whole derivations:

Lemma A.1.13 (PTME-I simulates TTME-MSR). Let Zr be a ground
complete inference system wrt. a theory T. Let D be a TTME-MSR refu-
tation of a ground clause set M with start clause G € M. Suppose D is
constructed as figured out in the ground completeness proof for TTME-MSR
(Lemma A.1.2). Thus, D is of the form

D=Pi+---+FP,
and there are respective continuations wrt. M
Ci - (Ca={}).
Then there is a PTMFE — Ig- refutation
Dprme—1 =P Py P,
of M, stable wrt. minimality and with start cloause G.

Proof. By definition, every TTME-MSR-Ext step in the refutation D employs
a minimal T-complementary (ground) key set K. By applying Lemma A.1.12
every such step can be replaced by a sequence of PTME-I-Ext extension
steps. However, a little care must be taken for the inductive argument. Since
Lemma A.1.12 possibly increases the number of branches, simple induction
on e.g. the number of occurrences of total extension steps does not work.

The lemma is shown by well-founded induction on the continuation C; of
the first tableau of derivations of the given form, which are compared by the
multiset ordering “s” on complexities of continuations.

The induction start with C; = {} being trivial (take P}, = P; which
must be a closed tableau according to the definition of continuation) we turn
immediately to the induction step: we have Ci1 # {}. Hence at least one
TTME-MSR-Ext step is applied in D. Next we apply Lemma A.1.12 to P;
and P» and replace the underlying TTME-MSR-Ext step by a sequence of
T%-extension steps. Let (Py = P§) + Pi---P] be the resulting sequence.
Notice that Lemma A.1.12 also gives us C; » P] (*). Also by that lemma
there is a continuation Cp; of P/. Hence we can apply Lemma A.1.8 and
obtain a TTME-MSR refutation D' starting with P;.

A.2 Proofs for Chapter 5 — Linearizing Completion 239

D' is of the same form as the given D, in that respective decreasing con-
tinuations corresponding to the tableaux along D" exist. Furthermore since
(*) holds, the induction hypothesis can be applied to D', which yields a
PTME — T refutation D". Now prepend D" with Py I --- + P/_; to obtain
the desired derivation DPTMEfI-

Further, Dprp g is trivially stable wrt. minimality, because every un-
derlying theory inference uses, by definition, key sets without duplicates, and
this status cannot change along the derivation as all key sets are ground.

A.2 Proofs for Chapter 5 — Linearizing Completion

A.2.1 Section 5.2 — Inference Systems

Lemma 5.2.1 (Ground completeness of Zy(7)). Let T be a ground the-
ory (i.e. a theory consisting of ground clauses only) and M be a set of ground
literals. If M is T -unsatisfiable then L é_:*[o(T),MUPunit(Io(T)) F for some

L € (M U Punit(Zo(T))).

Proof. By Proposition 2.5.1.3, equivalence (a)—(e), M is T-unsatisfiable iff
M U T is unsatisfiable, where M is considered as a set of unit clauses. We
apply induction on the size n of the atom set of M U T (the atom set of a
Horn clause set consists of all atoms occurring in clauses in it).

Induction start (n = 1): M U7 must contain a positive literal A and a
purely negative clause -A! V...V ~A¥ with & > 1 occurrences of A (the
superscripts denote the distinct occurrences of the same literal —A).

The literal A and the clause =A' V...V ~A* may be contained in M or
in T, which results in the following cases:

Ifk=1then A €T or -A € M.If -A € T then the same refutation as
in case k > 1 below exists. Therefore suppose now -4 € M. We have A € M
or Ae T.If A€ M then a refutation

-A
A== 4-a-fF

exists. If A € T then by definition of Zg, =A — F € Zo(T). In this case a
refutation

exists.

If k > 1 then ~A'Vv...v—A* € T follows. By definition of Ty A!---A* —
F e Zo(T). We have A € M or A € T. However, since a theory is satisfiable
by definition, A € T is not possible. Hence A € M. Thus a refutation

A?...AF
AIZ> Al ,Ak—)FF

240 A. Appendix: Proofs

from M U Punit(Zo(T)) exists.

Induction step (n > 1): M U T must contain at least one positive unit
clause. (proof: if not, then every clause contains at least one negative literal.
But then an interpretation that assigns trueto every negative literal is a model
for M U T. Contradiction). Thus let A € M UT be a positive unit clause. If
A € M then clearly A € M U Punit(Zo(T)). If A € T then -A — F € Zy(T)
and thus A € Punit(Zo(T')). Thus always A € M U Punit(Zy(T)). This fact
will be used below.

If MUT contains a clause AV ...V A the same argument as for n = 1
applies. This check guarantees that the following processing does not yield
the empty clause.

Let 7', resp. M', be obtained from T, resp. M, by deleting every clause
of the form AV R (R may be empty), and then by replacing every clause of
the form —A!' V...V =A% v R (where =4 does not occur in R, and R cannot
be empty) by R. In 7' U M’ neither A nor —A occurs. Thus the atom size of
M'UT"is n—1. Furthermore M'U7" must be unsatisfiable, because otherwise
a model for M'UT’ can be extended to a model that assigns trueto A, which
would be in turn a model for MUT, and thus M would be T -satisfiable. Hence
we can apply the induction hypothesis and assume that a Zo(7")-refutation
of M' U Punit(Zo(T")) exists. Let D' be that refutation. We show how to
transform D' into a Zo(T)-refutation of M U Punit(Zo(T)). For this, every
inference step involving a positive literal B € M' U Punit(Zo(T")) which is
not contained in M U Punit(Zo(7T)) has to be eliminated from D' (subcase 1),
and every inference step involving an inference rule P — C' € Zy(T") which
is not contained in Zo(7) has to be eliminated from D' (subcase 1)5.
Subcase 1: We conclude from M' C M that B ¢ Punit(Zo(T)). From B €
Punit(Zo(T")) it follows B € T"'. Since B ¢ Punit(Zo(T)) it follows B ¢ T.
Hence B € T is obtained from —A' V...V -A4¥ v B € T by the replacement
operation described above. With A € M U Punit(Zo(T)) and A;,... , A —
B € Ty(T) a Zo(T)-derivation

2 k
Dg = (Al% A,...,A,—BDB)

of B from M U Punit(Zo(T)) exists. Hence a Zo(T"')-derivation B from M'U
Punit(Zo(T")) occurring in D' can be replaced by the Zy(7T)-derivation Dy
from M U Punit(Zo(T)).

Subcase 2: We have P — C € Zo(T') but P — C ¢ Zo(T). Here we dis-
tinguish two cases: in the first case, P — C' is of the form =B — F. Thus
B € T' was obtained from —A' v ...V =4¥ v B € T by the replacement
operation above. Hence A!,... A¥ — B € Zo(T) and we can again find the
To(T)-derivation Dp of B from M U Punit(Zo(T)). D' is of the form

D' = (1125 .. Ln=2 5 ~BS g eF) .

5 To be completely formal, this requires induction on the number of applications
of the rule P — C and the literal B in D’

A.2 Proofs for Chapter 5 — Linearizing Completion 241

Now replace the last inference with =B — F by an inference with =B, B —
F € Zo(T) to obtain the refutation

D D, D
L1:l> Ri- L= R"—LB:B> —|B,B—>FF .

In the second case P — C' is not of the form -B — F. By definition of 7y,
P — C then must be of the form By,... ,B; — C, where the B;s are positive
literals and C is either a positive literal or F. Thus 7' contains a clause =B V
...VaBVC or =By V...V-By, respectively. The further argumentation holds
for both cases. Let us therefore consider only the first case. =By V...V=B;VC
is obtained from the clause ~A' V... ~A¥* v -B;V...VaB; VC € T by the
replacement operation above. So A',... , A¥ By,... ,B; — C € To(T). Since
A € M U Punit(Zo(T)) every inference step

Ds---Dy
B1:> Bi,... ,Bl—)CC

in D' with By,...,B; = C € Zo(T") can be replaced by an inference with
Al L ,Ak,Bl,. .., By = C € Zp(T) to obtain

Al...A*D,...D,;
B——— Al A* By,... ,Bz—)CC .

A.2.2 Section 5.3 — Orderings and Redundancy
Proposition 5.3.2. The relation =i, is a monotonic derivation ordering.

Proof. By definition D >, E iff compl(D) % nayw compl(E). By Proposi-
tion 5.3.1, »npw is a simplification ordering and hence by Theorem 2.1.1
well-founded.

Monotonicity is proven by simple structural induction on the derivation,
using in the induction step the fact that » ysw is monotonic. More formally,
let D be a derivation and suppose D|,; ; = G, F is a derivation which agrees
with G on top literal and derived literal and G >, F. We have to show
D >rin D[F]p’i,]‘.

Induction start: if p = X then D = D, is of the form

D D; Dj_ D; D_
D= (L1:1>L2 A Li=>L,'+1 A Lj_lilij :J>Lj+1 A Ln_1:1>Ln) ,

=G

where 1 < i < j < n (the case i = j is impossible since then G would be
a trivial derivation, whose complexity is a bottom element wrt. > r,,). The
complexities of G and D can be written as

compl(G) = {0} U Rg, where
Rg = {compl(D;)w;, - - - ycompl(Dj_1)w,_,}} (A.47)
compl(D) = {0,compl(D1)w,,--- ,compl(D;_1)u,_,}} URg

U{compl(D;)w;, - - - ,compl(Dy_1)w,_,} - (A.48)

242 A. Appendix: Proofs

Concerning the derivation F', compl(F') can be written as
compl(F) = {0} URFp . (A.49)

By definition, G' > rin F iff compl(G) % nvw compl(F). But then it follows
with (A.47) and (A.49) by monotonicity property (Theorem 2.1.1) of % narw
(deleting identical elements does not change the relationship among multisets
with weights) Rg =~nuw Rr (¥)-
Now consider the derivation D[F, ;,;; its complexity is
compl(D[Fx,i;) = {0,compl(D1)w,,-.. ,compl(D;_1)w;,_,} U
Rp U{compl(Dj)y;, - - ,compl(Dy_1)w,_,} -
From (*) it follows again by monotonicity property of »nyw (replacing
a subset by a smaller set makes the whole set smaller) compl(D) % Nuw
compl(D[F)y,; ;) and thus also D >, D[F]x; ;.
Induction step: p is of the form k.l.r and thus D is of the form®

D = (InELo.. L2 L. Ly1=251,), where

D, = Dj---Di---D* .
Hence compl(D) is of the form
compl(D) = {0,compl(D1),...,compl(Dy_1),
compl(Dy) U - -+ U compl(DL) U -+ - U compl(D*),
compl(Djyy1), ... ,compl(Dp)} ,

with Dy, = D}. In order to build D[F]..r;; we have to replace D} by
D! [F],. This means for the complexity of the new derivation

compl(D[Flgi.rij;) = {0,compl(Dy),...,compl(Dy_1),
compl(D3) U -+ - U compl(D4[F],)U---U
compl(D*),

compl(Dyy1), ... ,compl(Dy)}

By the induction hypothesis D > 1;, DL[F],.

Thus by definition compl (ch) s>Nmw compl (D%[F]r) Thus by monotonic-
ity of nuw compl(D) >=nuw compl(D[Flg.i.r,,;) and hence D >,
D[F).1.r,j-

The following lemma is needed in the proof of Proposition 5.3.3:

Lemma A.2.2 (Instantiation Lemma for Linear Derivations). Suppose
a linear Z-derivation

D, _1

D = (1251, ... Ly 1=—=51,)

6 Weights omitted.

A.2 Proofs for Chapter 5 — Linearizing Completion 243

as given, and let v be a ground substitution for Ly, M and L,,. Then a linear
ground 79 -derivation

D D, _
Ll’y:YY}LQ’YQ . Ln_l’yn_lzl’)/?Ln’y

exists, where each ~y; is some ground substitution for L;.

Thus, derivations may be ground instantiated; the additional (ground) sub-
stitutions 7; come in due to extra variables in the conclusion of inference
rules, and these variables have to be grounded in order to match the ground
literal in the premise of the subsequent inference step.

Proof. Induction on the length n of the derivation.
Induction start (n = 1) trivial, simply take Ly as the desired derivation.

Induction step (n — 1 — n): assume n > 1 and assume the result holds
for derivations of length n — 1. The concluding inference step of the given
derivation D is more precisely

Dy, _1
Ln,1:> Pn_l—)C,,_l,a'n_1Ln y

where {an_ll} U Dn—l = Pn_lon_l (*) and Cn_lon_l = Ln

Next consider the prefix ngLQ ... Ln_szn_l of D. Let 4’ be a
ground substitution for L,_17.vy" a ground substitution for Ly, M and L,,_1
(because v alone is a ground substitution, as given). Hence, by the induction
hypothesis exists a Z9-derivation

D' = Liyy2Loy,.. -Ln—2’Yn—2£L2—W>Ln—1’Y’YI .
Since Ly being ground it follows Liy = L;~y+'. Similarly, since My is ground
and all literals in the sequence Dy are taken from M it follows that Dy~ is
also ground. But then Dyy = Dyyy'. By these considerations D’ is a 79-
derivation of L, _1vyy' from M+~ with top literal L;+.

With P,_10p—1 = {Lp—1} UD,,_1, as given, it follows that D’ can be ex-
tended by means of the substitution ' with one inference step to a deriva-
tion

D" = (D' Lyt V2L (hy_yom o150 —10mo)ry Cr10mo177)) -
By the same arguments as for Dy above it holds D,_1y = D,_17v%'; fur-
thermore, with L,v being ground and with L, = C,_j0 it follows that
L,y =Cph_10v = Cp_10vy'. Thus D" is a derivation of L,y from M.

We have to show that D" is ¢ Z9-derivation, i.e. that the used inference
rule in the last step is contained in Z9. Since D,,_1+ is ground (as concluded
above) and L,,_17yy' is ground (by definition of 4') and C,,—10yy' is ground
(because Cp_10vy' = L,7) it follows with (*) that (P — C)yy' is also
ground. Hence from P — C € Z it follows (P — C)yy' € Z9, and so D" is a
79-derivation. Setting 7,1 = 7' shows that D' is the desired derivation.

244 A. Appendix: Proofs

Proposition 5.3.3 (Sufficient >.;,-Redundancy Criterion). Let Z be
an inference system and P —,, C be an inference rule. Suppose that for
every L € P there is a linear T \ {P —,, C}-derivation from P

(L=
D D, Drn_1
L)= poy, 0 La= byl Ln 1= p,_, 5, _ Coes(Ln = C)

with n > 1 and such that for i = 1,... ,n —1 4t holds (P \ {L},w) »uw
(Di,w;) In this comparison the sequence D; of literals is to be read as a
multiset. Then P —,, C is > i -redundant in T for derivations.

Proof. By contradiction. Hence suppose the assumptions of the proposition
hold and P — C is not >r;,-d-redundant in Z. Then for some inference
system J D Z, some ground literal L;, some ground literal set M and some
ground literal L,, a derivation D = (L, :>Z‘JU (PO, M L,) exists but a
derivation D~ = (L, =>{I\(PoCPo M L,) with D~ <p; D (*) does not
exist.

We are given that at least one ground instance of P —,, C is used in some
inference step G = D|pi,i+1 in D. W.l.o.g assume that no further ground
instance of P —,, C is used in G (by tracing into D and its subderivations
such a “bottommost” derivation can always be located).

We will show that a (J \ {P — C})?-derivation F' with F' <, G
which can replace G in D, i.e. we build D~ = D[F],;iy1. Since >y is
monotonic (Proposition 5.3.2) it then holds D~ <, D. Since F' does not
use a ground instance of P —,, C' the number of usages of ground instances
of P —, C in D™ is 1 less than in D. Hence repeated application of this
procedure terminates and thus yields a (J \ {P — C})9-derivation. But
then by transitivity of =, we obtain a contradiction to (*).

G D’,,:,, %

v yo

Replace

DI’Y % Doy :
L % Dn—l’YZY

A —— 0
Tl /—/— m¢

Figure A.1l. Tllustration of proof of Proposition 5.3.3.

A.2 Proofs for Chapter 5 — Linearizing Completion 245

Now for the construction of F' (cf. Figure A.1): the inference step G can
be written as

G=(I'% (L.N—c)yC")

where P = {L}UN, 7 is a ground substitution, L' = Ly, C' = Cy and D' is
a sequence of derivations of N+; the complexity is

compl(G) = {0, compl(D")} .

From the assumption of the proposition we learn that a Z \ {P —,, C}-
derivation

Fl'=(L=L)2.. 25, =0))

exists such that (D;, w;) <pw (N, w) (for 1 < i < n), where w; is the weight
of the inference rule used in the i-th inference step.

Applying the instantiation lemma to v and F' (Lemma A.2.2) yields a
(Z\ {P — C})%-derivation

F' = (I = Ih7) 2 2, =01

Note that with Z C J it holds that F" is a (J \ {P — C})9-derivation as
well.
From (D;,w;) <pw (N,w) it follows

(Divswi) <mw (Nv,w) . (A.50)

Since D’ is a sequence of derivations of N+ we can find for every sequence
D,y C N a sequence D; C D' such that D} is a sequence of derivations of
D;~. But then we can replace every side derivation D;vy in F" by Dj, yielding
still a (J \ {P — C})9-derivation (recall that we assume that no ground
instance of P —,, C is used in G)

F=('2.. 250
with complexity
Compl(F) = ‘{[07 (Compl(Dll)7wl)7 LR (Compl(D;z—l)a wnfl)]} .

Now consider (A.50) again: either it holds D; C N which implies by con-
struction D} C D', which in turn implies (D}, w;) «*nmw (D', w); or else it
holds D; = N and w; < w, which implies by construction D} = D' and hence
also (D}, w;) ’*nmw (D', w). It follows in any case F' < LinG which was to
be shown.

246 A. Appendix: Proofs

A.2.3 Section 5.4 — Transformation Systems

Lemma 5.4.1. Let S be a transformation system with derivation ordering
>. Suppose P — C is »=-c-redundant in some I, and suppose that T ks J.
Then P — C is also =—-c-redundant in J.

Proof. J is obtained from Z by deletion of a >=-c-redundant rule (case 1),
or by adding a new rule (case 2). We know that P — C is not of the form
-A—F.

Case 1: We have J = T\ {P' - C'} for some rule P! — C' € T to be
deleted. By definition of c-redundancy we have to show that whenever
D = (L1 = {2\ {pr—cryyuip—c}ys,m Ln) (A.51)

and P — C is used in D, then a

D' = (L1 ={(z\(pr>crp\ip—Chys,m Ln) (A.52)
exists such that D' < D.

From 7\ {P' = C"} C 7 and (A.51) it follows D = (L1 ={7,(p_,cy)o,m
L,). We are given that P — C is >-c-redundant in Z. Hence a derivation
D' = (L1 ={p\(p—cyye,m Ln) exists such that D' < D. Now, if no ground
instance of P' — C’ is used in D' then D' is also a ((Z\ {P' — C'}) \{P —

C'})9-derivation, which proves (A.52). Otherwise, application of Lemma A.2.4
below to D' also proves (A.52).

Case 2: We have J = ZU {P' — C'} for some new rule P’ — C'. By
definition of c-redundancy we have to show that whenever
D = (L1 ={zuip—crhuip—cyys,m Ln) (A.53)

and P — C is used in that derivation then a derivation

D' = (L1 ={(zu{pr—cry\{P—cpyo,m Ln) (A.54)

exists such that D' < D. Setting J = ZU {P' — C'} in the definition of
c-redundancy (Def. 5.3.3) renders this case trivial.

The following lemma is needed in the proof of Lemma 5.4.3.
Lemma A.2.4. If

1. D = (L :>’("I>{P_}C})g L"), where P — C is a >-c-redundant inference
rule in T, an

2. if in D some ground instance of P' — C' is used, and

3. if TEI\{P' = C'} =: J by deletion

A.2 Proofs for Chapter 5 — Linearizing Completion 247

then a derivation

exists with D' < D.

Proof. Informally: if P’ — C" is deleted in 7 then it must be c-redundant in
7. By redundancy, the use of P’ — C" in any derivation D' can be simulated
by the remaining rules of Z. However, that simulating derivation, say D"
might use P — C, which should not be used according to the lemma. On
the other hand, P — C itself is given as c-redundant in 7 and hence can be
simulated by the remaining rules. However, that derivation, say D"’ possibly
contains usages of P’ — C' again. Continuing this process will not fall into
a loop due to strictly reduced complexity (D" < D" < D') in every new
derivation and well-foundedness of .

Now the formal proof: if P — C ¢ T then the lemma holds trivially by
the definition of >-c-redundancy.

Otherwise we apply well-founded induction on derivation orderings.

With Z\ {P' — C'} C T it follows D = (L =%, L'). With P —» '
being deleted from Z, P! — C' must have been »-c-redundant in Z. We are
given that a ground instance of P' — C" is used in D. Hence by definition of
>-c-redundancy a derivation

D' = (L ={p\(pr—cyys L) (A.55)

exists with D' < D. Now we distinguish two cases:

Case 1: No ground instance of P — C is used in D’. But then by the
exi§tence of D' we find with (A.55) that D' = (L ={(7\ (p.cy\(procrpye L)
which proves the lemma.

Case 2: A ground instance of P — C is used in D’. First note that from
I\ {P' — C'} CZ by (A.55) it follows D' = (L =%, L'). We are given that
P — (' is »-c-redundant in Z. By definition of >-c-redundancy we conclude
that a derivation D" = (L ={7\ ;p_,cy)s L') exists such that D" < D'(< D).
Now apply the induction hypothesis to D" and conclude the result from
transitivity of >.

Lemma 5.4.3. Let S be a transformation system with derivation ordering
—. LetTo b1y & --- be a S-deduction. If for some k, P — C is »-c-redundant
in Iy then P — C is >=-c-redundant in T,.

Proof. In order to prove the lemma suppose that

D =(L={;_upscho,m L) (A.56)

which uses a ground instance of P — C. We have to show that a derivation

248 A. Appendix: Proofs

D' = (L ={z \tpscyyom L) (A.57)

exists with D' < D. As a consequence of Proposition 5.4.1 some Z,, (m > 0)
contains (at least) all those inference rules from 7, the ground instances of
which are used in D. That is

D = (L ={z,.uip>cyyo,m L. (A.58)
We distinguish two cases:

Case 1: m > k. We are given that P — C'is »-c-redundant in 7. Applying
Lemma 5.4.1 m —k times we conclude that P — C is >=-c-redundant in Z,,, as
well. Hence by definition of »-c-redundancy we find with (A.58) a derivation

Dm = (L :>2<Im\{P—>C})9,M LI) (A59)
with D, < D.

Case 2: m < k. By Lemma 5.4.2 every inference rule in Z,, is also con-
tained in Z;. Thus with (A.58) D is also (Zx U {P — C})J-derivation.
We are given that P — C is >-c-redundant in Zj. Hence a derivation
Dy = (L =L \(P—C})s, M L' with Dy, < D).

By taking n = maxz(m, k) in both cases a derivation

Dp = (L ={z,\{p>cpsm L)

exists with D,, < D.

We claim that for some I > n a derivation D; = (L ={7,\(p_,cyyo,m L')
exists with D; < D,,, and the inference rules whose ground instances are used
in Dy are never deleted afterwards, i.e. if (P' - C')y e (L\{P - C})? isa
ground instance used in D; then P’ — C' € Z; \ {P — C} for every j > 1.

This claim then proves (A.57) and thus the lemma by transitivity of >
and by the following line of reasoning: suppose P’ — C' € Z; \ {P — C} for
every j > [then

P5Ce(\Z\{P->C}H) = ([\T)\{P—C}
Jj>l §>1
c UNzm\{p-cy
1>05>1
= I \{P—>C} .

Hence if (P' — C")y € (I; \ {P — C})9 is a used ground instance in D; then
also (P' = C")y € (Zoo \ {P — C})?. Thus (A.57) follows.

It remains to prove the above claim. Starting with D,, we construct a
sequence

Dn:Dn-}—l:Dn-i-Z:---

A.2 Proofs for Chapter 5 — Linearizing Completion 249

of derivations, where for i > n we define

(D} if 7,4 is obtained from Z; by deletion of an inference
rule P" — C", ground instances of which are used in
D;, where D; = (L ={z,, \(pcys,u L') and Dj <
D,;. Such a derivation D} exists because with P — C
Dit1 = 1 being >--c-redundant in Z, it follows by Lemma, 5.4.1
that P — C is >-c-redundant in Z,,,Z,y1,... ,Z;.
Now apply Lemma A.2.4.

D; else.

\

Note that in this sequence, deleting an inference rule P — C", ground
instances of which are used, results in a strictly smaller derivation D} < D;.
Since > is a derivation ordering and hence well-founded, we arrive at the
chain D,,, D 41,... , Dy, Dy, Dy, Thus deletion of used inferences will not
be continued infinitely. Stated positively, every inference system Z;,Z; 11, Z; 42
contains every inference rule, ground instances of which are used in D;. Thus
the claim above is proved, which concludes the proof of the lemma.

Lemma 5.4.5. Let S be a transformation system with derivation ordering
—. Let Tg - Z; & - - - be an S-deduction. If there is a derivation

D = (L =75 pupunit(z?) L'
then there is also a derivation

D'=(L =79 MUPunit(1%) L)
with D' < D.

Proof. The proof is similar to that of Lemma 5.4.3 above. As a consequence
of Lemma 5.4.4 every input literal from M U Punit(Z]) is also contained in
M U Punit(Z4,). Thus from the assumption of the lemma it follows D =
(L é;:g,MuPunit(Igo) L"). For ease of notation define N = M U Punit(ZZ).

We claim that for some ! > k a D; = (L :%lg’N L") with D; <X D exists,
and the inference rules whose ground instances are used in D; are never
deleted afterwards, i.e. if (P’ — C")y € I} is a ground instance used in D;
then P' — C' € Z; for every j > 1.

This claim then proves the lemma by the following line of reasoning:
suppose P' — C' € Z; for every j > [then

PosceNLcUNT =T -

>l 1>0 j>1

Hence if (P' — C")y € 7 is a used ground instance in D; then also (P' —
C")y € Z¢,. Thus the lemma follows.

250 A. Appendix: Proofs

It remains to prove the above claim. Starting with Dy = D we construct
a sequence Dy, D1, Dgyo,... of derivations, where for ¢ > k we define

(D) if 7,4, is obtained from Z; by deletion of an inference
rule P" — C", ground instances of which are used
in D;, where D = (L =%, ,, L') and D; < D;.
Djiq = { L : it .
i+l Such a derivation exists by definition of the deletion
operation.

| D; else.

The rest of the proof is literally the same as in the proof of the previous
Lemma 5.4.3, and hence is omitted.

A.2.4 Section 5.5 — Complexity-Reducing Transformation
Systems

Proposition 5.5.1. The transformation system Lin is order-normalizing
wrt. LinG.

Proof. Let 7 be an inference system and D be a ground 79 refutation of M
which is not linear, i.e. D ¢ LinG. We have to show that a (Z')9-derivation
D' <pin D of M exists, where 7' = T or 7' is obtained from 7 by application
of some mandatory transformation rule.

Since D is given as a non-linear derivation at least one side derivation is
not a sequence of trivial derivations. Thus D can be written as

D D;_ D; D; D, _
D=(I1=L,.. = Li=Li,, —=>...L,_1=—==1L,) ,
————

=:D"

where D; is that critical side derivation and D" = D| ; ;+1. More precisely,
the subderivation D" is of the form
D¥vpM~y

D" = (Li=—= (1. k,M—L")yLi+1) ,
where L; = Ly, D; = DXKYDM"Y DX7 is a non-trivial derivation of K+,
DM7 is a sequence of derivations of M~y and (L,K,M — L')y € 79 is a
ground instance of L, K, M — L' € T (cf. Figure A.2). We will show that
a (Z')9-derivation D" <, D" exists, where Z' = T or T’ is obtained from
7 by application of a mandatory transformation rule from Lin. Then we
define D' = D[D"'] ;i+1. By monotonicity of >, (Proposition 5.3.2) then
it follows D' <, D, which was to be shown.

In general, the derivation D" is of the form

B Ns
DEY = (Jléjz...Jm_1:—1>J@£——> (J,N—)J’)éjl(s))

~-
=:D7J$

A.2 Proofs for Chapter 5 — Linearizing Completion 251

J _ J's
m Ry

D: %
Y K,Y _ _
L; Ro O Ly

R : a2 - —=
Replace| Rs: H -~-\#---—= 01
Deduce
R 7. m H H---— 0O

v e e

© L

R: DLH_I

N

Figure A.2. Illustration of proof of Proposition 5.5.1 (ground case).

252 A. Appendix: Proofs

where m > 1, J,,, = J&, DV is a (possibly empty) sequence of derivations of
Né, J'§ = Ky and (J,N — J')é € 79 is a ground instance of JJN — J' € 7.
Without loss of generality suppose that J, N — J' is variable disjoint from
L,K,M — L'. Consequently we may assume that the domains of § and
are disjoint, too. Hence (J,N — J)dy = (J,N — J)é and (L,K,M —
Loy = (L,K,M — L')y. Together with with J'§ = K+ it follows that
J'6y = Kdv. In other words, §v is a unifier. Hence a MGU ¢ exists and
a substitution ¢ such that §yv = o¢. By the existence of this MGU, the
mandatory Deduce transformation rule can be applied to L, K, M — L' and
J,N — J' by unifying J' and K with o. The result is the inference rule
R=(L,J,N,M — L')o.

Now either a variant of R is already contained in Z, and in this case
define 7' = Z. Otherwise define 7' = Z U {R}. Since R¢ is ground and D79,
DN% and DM7 are appropriate ground Z9-derivations (and hence also (Z')9-
derivations) the (Z')?9-derivation

D" = (Li% roLis1)
exists. Note that D" and D" coincide in top and derived literals. Hence the
replacement as suggested above can be done. It remains to show D" <p;,
D". By definition of >p;, this is the same as to show compl(D"") <nuw
compl(D"); for this proof the weights of the involved inference rules can
be neglected, since decreasingness follows alone from properties of multiset
orderings:

compl(D")

{0, compl ({D¥7} U DM7)}
= {0, compl(D%") U compl(DM7)}
= {0,{0,compl(E}), ... ,compl(Ey_1),compl(DN7)}
Ucompl(DM)}
= {0, compl(D”®) U {compl (D7)} U compl (D7)}
=nmw {0, compl(D??) U compl(DNY) U compl(DM7)}
= {0, compl(D7° DN DM)}
= compl(D"")
The transition =xprw is justified by property of nested multiset ordering

(replacing a multiset by true subsets is decreasing). Since this remained to
be shown the proof is done.

Proposition 5.5.3. The transformation system Lin is Punit-normalizing
wrt. LinG.

Proof. Let 7 be an inference system and let

D=MZTy. . T,25T, 25T,)

A.2 Proofs for Chapter 5 — Linearizing Completion 253

be the given non-trivial linear ground Z9 derivation from M U Punit(Z9)
such that Used(D) N Punit(Z9) # (. We have to show that a (Z')9-derivation
D' <pin D of M U Punit((Z')9) exists, where Z' = 7 or 7’ is obtained from
7 by application of some mandatory transformation rule, and the top literal
of D' is Ty or a literal from M U Punit((Z')?). Since D is given as non-trivial
it holds n > 0.

Let Ly € Used(D) N Punit(Z9) where L~ is a ground instance of a literal
L € Punit(Z). Two cases apply: (1) Ly occurs in some D; (i € {1...n+1})
or (2) Ly="T.

Case 1: (cf. Figure A.3) D contains an inference step of the form

D" = D|xii+1 = (T; Py (T{,L’,E{,...,E;ni—>0)7’c7l) (%)

where (T}, L', E{,... ,E;,. — C)y' € 19 is a ground instance of the rule

T, L'\Ey,...,E,, - C € I, T}y =T, L'Y = Ly, Eiy' = Ej (for
j=1...m;) and Cv' = T;41 or Cv' = F. The further reasoning holds
for both cases. We will show how to deduce a new inference rule by which
the application of Ly in D" can be omitted.

L~y
H -4
D: o T % Ti+1
TU\sed inference rule
H---O-—
Replace m - F

Unit2
v g —

Used inference rule

’T’ ﬁTqH_l

Figure A.3. A case in the proof of Proposition 5.5.3 (ground case).

We will show that there is a (Z')9-derivation D" <, D", where ' =
7 or T' is obtained from 7 by application of a mandatory transformation
rule from Lin. Then we define D' = D[D""], ; i+1. By monotonicity of > L
(Proposition 5.3.2) then it follows D' <, D, which was to be shown.

Since L € Punit(T) by definition L — F € Z. Let L" — F be a new variant,
variable disjoint from the premise {7}, L', E1,... , E],]} of the applied infer-

254 A. Appendix: Proofs

ence rule. Since Ly = L'y" and L" is a variant of L a ground substitution ~"
exists with L"y" = L'4'. Since L" is a new variant, 7' can be supposed not to
act upon the variables of L". Hence L"y'v" = L'y'~". Since 'v" is a unifier
for L" and L' a most general unifier ¢ for L' and L' exists and substitution
0 such that 0§ = v'+" (**). By the existence of this MGU, the mandatory
Unit2 transformation rule can be applied to T}, L', Ej, ... ,E;,. = C € T and

L' — F € Z. The result is the new inference rule
R = (I,E,,... ,E\, —C)o .

Now either a variant of R already is contained in 7, and in this case define
7' = T. Otherwise define 7' = Z U {R}.

Let &' be the restriction of 4’ to the domain Var({T}, Ei,... ,E,,.,C}) \
Var(L'). Together with (**) it follows

{7}, E;,... ,E,,,,C}odd' ={T},E;,... ,E,, ,Chy'y" =
{1}, E,... ,E,,,,CH .

By these equalities we can build the desired derivation

Ei--Ep,
DI” = (Tz:> R&;/C’yl)

with rule RS’ € 79.

Note that D' and D" coincide in top and derived literals. Hence the
replacement as suggested above can be done. It remains to show D" <p;,
D". By definition of >, this is the same as to show compl(D"") <nmw
compl(D"); for this proof the weights of the involved inference rules can
be neglected, since decreasingness follows alone from properties of multiset
orderings:

compl(D") = {0, compl(LYE; - - - Ep,)|}
= {0,{0} U compl(E; - - - Epn,)}
=~muw {0,compl(Ey --- Ep,)}
= compl(D"")

Case 2: (Ly = T1). We distinguish the cases (2.1) Dy # ¢ (i.e. D; is not
the empty sequence of derivations) and (2.2) Dy =e¢.

Case 2.1: D begins with the inference step

KE;-Enm,

D" = (Ly (K',L'\E},... ,E;ni—>0)»y'07l) (*)

where (L', K', EY,... ,E;)y — Cv' € 19 is a ground instance of the rule
L',K'.E},... ,El,, = C eI, Ly =Ly, K'Y = K, Ely = Ej (for j =
1...m;) and Cv' = Ty or Cv' = F. The further reasoning holds for both

cases. It is in close analogy to the case Ly € D;.

A.2 Proofs for Chapter 5 — Linearizing Completion 255

We will show that there is a (Z')9-derivation D" <, D", where ' =
7 or 7' is obtained from 7 by application of a mandatory transformation
rule from Lin. Then we define D' = D[D"]5 1,2. By monotonicity of >,
(Proposition 5.3.2) then it follows D' <14, D, which was to be shown.

Since I € Punit(Z) by definition L — F € Z. Let L" — F be a new
variant. As in case 1, the mandatory Unit2 transformation rule can be applied
toL” - Fand L',K',E},... B, — C € I, yielding

R = (K',E,... ,E., = C)o ,

where o is the MGU for L" and L' used in that deduction step. Now either
a variant of R already is contained in Z, and in this case define 7' = Z.
Otherwise define 7' = Z U {R}.

As in case 1 there are ground substitutions 86’, 4’ and 4" such that

{K'.E,,... B, C}oss' ={K',E,,... ,E. Chy'y"
= {K',E,,... ,E.,,,C}

By these equalities we can build the desired derivation

Ey--Epn.
D" = (K== gss: CY')

with rule R§' € 79.

Note that D' and D" coincide in top and derived literals. Hence the
replacement as suggested above can be done. It remains to show D"’ <1, D".
This proof is literally the same as the corresponding proof in case 1 above,
except that L+ is to be replaced by K. This completes the proof for the case
D1 # E.

Case 2.2: (D; = ¢). It holds that n > 0. Proof: Suppose, to the contrary that
n = 0. Then the refutation consists of a single inference step with the rule
Ty — F € 79. On the other hand from Ty € Punit(Z9) it follows T} — F € 79.
But then 7 would be unsatisfiable, since no interpretation can satisfy both,
T, and T;. By this we would arrive at a contradiction to the satisfiability of
the underlying theory 7 where Z stems from.

The given derivation D can be written more specifically as (n > 0, cf.
Figure A .4) :

£ D, D,
D = (L’)/=> (L’—)Té)'y’TQ .. .Tn:>Tn+1 :_H>Tn+2) (*)

where Ty # F, (L' — T3)v' € 79 is a ground instance of the rule L' — T € Z,
L'y = Ly and T4y’ = Ts.

Since L € Punit(Z) by definition L — F € Z. Let L" — F be a new
variant, variable disjoint from the premise {L'} of the applied inference rule.
Since Ly = L'y’ and L"” is a variant of L there is a ground substitution ~"
with L"4" = L'+'. Since L" is a new variant, 7' can be supposed not to act

256 A. Appendix: Proofs

R
D: Ly H éT2:>DT3
@ference rule
H —
T - F
Unitl
Shorte n
— F
K\:ew top literal
R
T2 :> DTS

Figure A.4. A case in the proof of Lemma 5.5.3 (ground case)

upon the variables of L". Hence L"~'y" = L'y'~4". Since v'y" is a unifier for
L" and L' there is a most general unifier o for L" and L' and substitution §
such that od = 494" (**). By the existence of this MGU, the mandatory
Unitl transformation rule can be applied to L' — Ty € Z and L" — F € T.
The result is the new inference rule

R =Tyo' = F.

Now either a variant of R is already contained in 7, and in this case define
7' = T. Otherwise define Z' = 7 U {R}.

Now let &' be the restriction of ' to the domain Var(T;) \ Var(L'). To-
gether with (**) it follows

Tjodd = Ty (= Ty = Ts) (x %)

Thus with R € 7' it follows Ty € Punit((Z')?). By this fact we can cut off
the first inference step in D, yielding

D' =Dlsyye = (T ... T2 T 1 =25 1)

which is a derivation from M U Punit((Z')?) as desired.

It remains to prove D' <r;, D. By definition of >r;, this is the same
as to show compl(D') <nuw compl(D); for this proof the weights of the
involved inference rules can be neglected, since decreasingness follows alone
from properties of multiset orderings:

A.2 Proofs for Chapter 5 — Linearizing Completion 257

compl(D) = {0, compl(e), compl(D>), ... ,compl(Dp11)}
= {0,0, compl(D>), ... ,compl(D,1)}
=~uw {0,compl(D2), ... ,compl(Dpy1)}
= compl(D")

By concluding this final case the lemma is proven.

Proposition 5.5.4. Let S be a Punit-normalizing transformation system
wrt. N, and let T be a completed inference system wrt. S. Whenever there
is a ground derwvation D = (L =7, v pynirzsy L') with D € N then there
is also a ground derivation D' = (K =7, , L') with D' < D, D' € N and
some K € M U{L}.

Proof. By well-founded induction on derivations wrt. the well-founded deriva-
tion ordering associated to S. If Used(D)N Punit(79) = () then no literal from
Punit(Z9) is used in D then D is also a derivation from M alone. Hence we
take D' = D.

Otherwise, by definition of Punit-normalizing transformation systems
there is a derivation D" = (L =715y punit((zys) L) With D" < D, where
(1)Z" =T or (2) T s ZU{P — C} = I" by some mandatory transformation
rule from S.

In case 1 D" is also a Z9-derivation of M U Punit(Z9); now consider case 2:
since Z is completed it holds by Definition 5.4.3 P - C € Zor (2.2) P — C'is
>=-c-redundant in Z. In case 2.1 Z" = 7 and hence D" is also a Z9-derivation
of M U Punit(Z?). In case 2.2 P — C is not of the form —-A — F (such
rules are by definition never c-redundant). Hence Punit(Z") = Punit(Z). If
no ground instance of P — C is used in D" then D" is also a Z9-derivation
of M U Punit(Z9), otherwise by definition of c-redundancy there is a ground
derivation D" = (L =7, p(punit((z)s) L') With D" < D" (note that this
is a Z9-derivation). From D"" < D" < D it follows by downward closure of
N also D" € N and D"' € N. Thus, in any case there is a Z9-derivation of
M U Punit(Z9) which is contained in A" and which is strictly smaller wrt. >
than the given derivation.

Now apply the induction hypothesis to that derivation.

A.2.5 Section 5.6 — Completeness

Lemma 5.6.1 (Top Literal Lemma). LetZ be a completed inference sys-
tem wrt. the transformation system Lin. Suppose there is a linear ground
derivation D = (L4 :>§Q’M L)) with Ly € M. Let T € M such that
T € Used(D). Then there is a linear ground derivation D' = (T =7, 1 Ly).

Proof. Let the given derivation be

M My, 1 T M My 41, My 1
D= (I 21, 2= LM o L=t L, =251

(A.60)

258 A. Appendix: Proofs

where n > 1 (otherwise the claim is trivial), & € {1...n} and Ry is a
ground instance of Ry = L}, T', My — Lj ., € T, Ly = Lim, T = T'm,
My, = M~y and Lgyy = Ly

We do induction on the top distance k of the inference step using 7.

Induction start (k = 1): The first inference step is L= Rim Li2. By

swapping T and L, it can be replaced by the inference step (TN Rimi Lo
which yields the desired linear derivation.

Induction step (kK — 1 — k): See Figure A.5 on Page 259 for illustration.
Suppose k£ > 1, and as the induction hypothesis assume the claim to hold for
derivations with top distance strictly smaller than k. D then can be written
as

Do

M, M;,— i M1 T M, A M)c+ My 1
L1:>L2 .. 'ﬁLk—l —= R272Lk:k> Rl’Yl{’k"r ﬁ ———->_L75 R

-~

D1 DS
(A.61)

where n > 3 and Ry, is a ground instance of Ry = L}, ,,M; |, - L} €T,
Ly 1= Ly_yve, M1 = My_ v, and Ly = Lj».

Without loss of generality suppose that R; is variable disjoint from R,.
Consequently, we may assume that the domains of 7, and 7, are disjoint, too.
Hence R17v172 = Riy1 and Ry7y1v2 = Ryy2. Together with Ljy; = Ly = L%
it follows that Ljy1y2 = Lr = Lj/y17y2. In other words, 7172 is a unifier.
Hence there is a MGU o and a substitution d such that 1y, = 0d. By the
existence of this MGU, the Deduce transformation rule can be applied to Ry
and Ry by unifying L} and L} with o. The result is the inference rule R =
(T', Ly _y, My_y, M}, — Lj,)o. Since Deduce is a mandatory transformation
rule and 7 is completed (1) R € Z or (2) R is > 4p-c-redundant in Z. In case
(1) the derivation D3 in (A.61) can be replaced by the one step derivation

T My_1 My
Lk71:> (T’7L;c—1’Mi—l’ML—}L;e+1)76Lk+l

using RJ. Since § is a ground substitution R§ € Z9 and the replacement
results in a Z9 derivation with same structure. Furthermore, its top distance
is k — 1. Hence we can apply the induction hypothesis to obtain the desired
derivation.

In case (2) things are more complicated. First consider the (Z U {R})?-
derivation

Ly_1 My_1 My
T RJLk-l—l .

Since R is > pip-c-redundant in 7 there is a linear Z9-derivation

Dy = (T =70 my_sumpuiLe_ry Let1) -

A.2 Proofs for Chapter 5 — Linearizing Completion 259

Lyya

T
L Ly H Ly U N Lit1
- w
Replace:
Ry R
S Deduce
Ly Ly
] :> (0
T H 0 N Lgy1
7, 3%
R
R is deleted and
Tt TTTTTTTTTo | replaced by derivation
: Ly Ly |
P [D !
= > |
_ |
|
|
|
|
|
|
|
|

N+

Liys

X ! &

Figure A.5. Illustration of proof of Lemma 5.6.1 (ground case).

260 A. Appendix: Proofs

Note that My_1, My C M. Now concatenate to D5 = D, - D3 and obtain a
linear derivation of the form

D5 =(T :>§'9,MU{L;¢_1} Ln)

Next the applications of the literal {Ly_1} in D5 have to be eliminated. This
can be done one at another by the procedure described below. Once this is
done we obtain the desired linear derivation of the form T' =7, 1/ L.

If Lj_1 is not used in Dy we are done. Otherwise let

Lix_1 N

D¢ = Ds|x 1,041 = (K R Kiy1)

be such an inference step using Ly_;. Swapping K; and L;_; implies the
existence of the 79-derivation

K, N,
D7 = (Lg-1===> g, »Ki11)

Now concatenate D1 - D7 to obtain the Z9-derivation

M- My — K; N,
Dg = (Li=>Ly... ==Ly 1—==% g, ,Ki11) .

The top distance of K; in Dg is k — 1 hence we can apply the induction
hypothesis to Dg and obtain a linear 79-derivation

Dg = (Kl :>§'Q7M Kl+1) .

Next build D10 = D3[Dg]x 41, i-e. replace the inference step using Lj_q
by a derivation not using Ly ;. Hence the number of applications of the
literal Ly _; has decreased by 1, which guarantees the termination of the
just described procedure when applied repeatedly in order to eliminate all
applications of Lj_;. Hence the desired derivation exists.

Lifting Lemma for Background Refutations. In order to prove a lifting
lemma for background refutations we need one preliminary result:

Lemma A.2.8. Let a, B be substitutions and M be a literal set. Then
a(B|Var(Ma)) = af [Var(M)]

Proof. Let = be a variable. It suffices to show that both substitutions yield
the same result when applied to z. We distinguish two disjoint cases.

1. = ¢ Var(M). Trivial, since both substitutions yield z.
2. z € Var(M). By definition of restriction of substitution it suffices to show

zaB| Var(Ma)) = zaf .
From z € Var(M) it follows Var(za) C Var(Ma) (*). Now we compute

zaf = za(B| Var(za)) © za(f| Var(Ma))

which was to be shown.

A.2 Proofs for Chapter 5 — Linearizing Completion 261

Lemma A.2.9 (Lifting Lemma for Background Refutations). Let M
be a literal set, L1 € M be literal, and v be a ground substitution for M. For
every ground background refutation L1y =7, pp., O there is a first-order back-
ground refutation L1 =% pr , O such that o <~ [Var(M)].

Proof. Let the given refutation be

My, Moy, Mo,
D = (Ll"y:l (L’I,M{AL’Q)W’LZ——Q—>L3 ...L,=—=0) .

The proof is by induction on the length n of the derivation.

Induction start (n = 1): Define 4" = 4'. We can safely assume that all
inference rules instances of which are used in D are all “new” variants. As a
consequence we get that the domains of v and ' are disjoint. Hence it holds
that

L1} U My)*y" = (L1} U My)y",

where ({L1]}}UM;)® is suitable amplification of {L; |} U My. Thus there is also
a multiset MGU o7 and a substitution d; such that o16; = 4" (*). Using this
MGU we can build the first-order refutation

! M,
D' = (1= ry,m}—1},0,0)

with amplification ({L;} U M;)® and answer substitution o;. It remains to
show that o satisfies the claimed property. From (*) and 4" = v+' it follows
0161 = " = vy = 7 [Dom(y)]. The last identity holds because v is a
ground substitution. Since v acts on every variable in M and in L; it holds
Dom(vy) 2 Var(M), and thus in particular o161 = v [Var(M)]. This is the
same as 01 <~ [Var(M)] which was to be shown.

Induction step (n—1 — n): Suppose n > 1 and as the induction hypothesis
assume the result to hold for derivations with length < n. Consider the first
inference step in D. Define o1 and §; in the same way as in the induction start,
ie. 0101 = vy (*) and 0161 = v [Var(M)]. Further it holds Lyy' = Liyy'
due to the new variant used in the first step. Thus, with (*) we have Liy' =
Ly016;. Further, with the identity Ly = L}vy' and with ¢16; = v [Var(M)]
we can delete the first inference step from D and arrive at the refutation

M. J Mpo10
Lho 6, =215 ... L,—=250 .

By the induction hypothesis we can lift this (still linear) refutation to a
(linear) refutation

Moo Mno102--0n—1

Ll20'1:> R2,02L3 .. L?'L: Rn,O'nD

with answer substitution

262 A. Appendix: Proofs

0203 -0, <01 [Var(Moy)]

i.e. for some 6, o903 - - - 0,0 = §; [Var(Moy)] (*¥*). Since o7 is an appropriate
unifier (as in the induction start) we can prepend this derivation with the

. M .
first-order inference step L1 —> L, M| > L},01 Loy to obtain

M, ' M: Mo102:0n—1
L]_:} L’I,M{—)L’Z,UIL201£ R2,0'2L3 Ln:> Rn,o'"l:‘ s

which is a linear first-order refutation of L as desired with answer substitu-
tion o10903 - - -0,. It remains to show that the answer substitution satisfies
the claimed property. Hence we compute

010203 - 00| Var(M) = o1(0203 - - - 0,,0| Var(Moy))| Var (M)
(by Lemma A.2.8)
= 01(0:1| Var(Ma1))|Var(M) (by (*¥))
= 0101| Var(M) (by Lemma A.2.8)
= | Var(M) (see induction start).

But then by definition oy <+ [Var(M)] which was to be shown.

B. What is Where?

Notation

All chapters
-,A,V,—,+ Connectives

v, 3 Quantifiers

X Signature

PF(X) The set of all formulas of signature X'

CPF(X) The set of all closed formulas (i.e. sentences) of signature
X

T Theory

VF, 3F Universal and existential closure of formula F’

a,b,... Constant symbol

9, Function symbol

s, t,u,... Term

T,Y, 2, .. (First-order) variable

A,B,C,... Atom

C,D,... Clause

PQ,... Predicate symbol or literal

K,L,... Literal

Q, /87 65

O, 7,0, T, 4 Substitutions

€ Empty substitution

- (Partial Strict) Ordering

= -U=

> Extension of > to multisets

264 B. What is Where?

Chapter 2
F, P, X Set of function symbols, predicate symbols, variables.
Term(F) The set of (ground) terms with function symbols from F

Term(F,X) The set of terms with function symbols from F and vari-
ables from X

e Formula

S Sentence

M Set of sentences

S Structure

u Universe, as component of structure S also denoted by |S]|
Vx Assignment for variables X

T Interpretation, its universe denoted by |Z|

(Z,vx) Interpretation plus assignment (extended interpretation)
Ly (X) Value of X in (Z,vx)

Us Herbrand universe of X

HB(X) Herbrand base of X

Hsx Herbrand interpretation

Th(I) The theory of interpretation Z

Cons(X) The theory of axiom set X

Chapter 3 +4 + 5

c computation rule

D Foreground calculi derivation

D, E Linearizing completion derivation

7,J Inference system

K Key set (of theory inference)

M,N Clause set, literal set

D, q Branch, read as a multiset

[p], [q] Branch, read as a sequence

[Ly---Lg) Branch, labeled with literals Li,... , Ly
P, Q Branch set

P Premise part of inference rule

C Conclusion of inference rule

S Transformation system

R Residue (in partial theory inference)

€ Empty Z-derivation (Chapter 5)

MW Ordering on multisets with weight
S—NMW Ordering on nested multisets with weight

Note that some symbols are overloaded, e.g. C' can be an atom or a clause.
Confusion is less likely in these cases as the meaning can always be detected
from the context. Where appropriate, sub- and superscripts will be used to
enlarge the repository of symbols.

Table of Foreground Calculi

B. What is Where? 265

The following foreground calculi are treated in this text:
Definition

Abbreviation

Name, Inference Rules

ME

CC

TTCC

TTCC-Link

TME-Sem

TTME-MSR

PTME-I

PRTME-I

Model elimination
ME-Ext, Red

Connection calculus
CC-Ext, Red

Total theory connection calculus
TTCC-Ext

Total theory connection calculus
with link condition
TTCC-Link-Ext

Theory Model elimination —
semantical version
TME-Sem-Ext (TTME-Sem-Ext,
PTME-Sem-Ext)

Total Theory Model elimination — Def.

MSR version
TTME-MSR-Ext

Partial theory model elimination,
inference system version
PTME-I-Ext

Partial restart theory model
elimination, inference system
version

PDTME-I-Ext, Restart

Def.

Def.

Def.

Def.

Def.

Def.

Def.

3.2.3, page 53
3.2.3, page 53
4.2.3, page 85

4.2.4, page 87

4.3.2, page 93

4.4.3, page 106

4.5.4, page 120

4.6.3, page 131

266 B. What is Where?

Inferences and Derivation Relations

Notation Description

Definition

P l_[1)],<T,E P’

Inference in Foreground Calculus:
derive branch set P’ from P, with
selected branch [p], substitution ¢ and
extending clauses E.

Extended Notations:

([p]a Q) |_[p],IC,<T,E' (Qla Q)U
TTCC-Link-Ext inference with key set /C
and minimal 7 -refuter o

([pl, Q) Fppi,r0y.E (2, Q)0

TME-Sem-Ext inference with key set I
and minimal 7T -residue (R, o)

([P], Q) I_[I)]JC,U,E (Q,Q)o

TTME-MSR-Ext inference with key set
K and minimal most general 7 -refuter
o € MSR1(K)

([P]a Q) "[p],/c,P—>c,(R,a),E (Qla Q)U

PTME-Z-Ext inference with key set IC,
new variant P — C of an inference rule
from 7 and T-residue (R, o)

(], Q) F -+ Q,

Derivation in foreground calculus,
possibly subscribed by selected branch
etc.

K :>P—>C’, o Ro

Minimal first-order theory inference
with rule P —» C

Ly = a1 Lt

Background derivation of L1 from M
with top literal L; and substitution o

P =p,,csC'

Matching theory inference with rule
P —,, C with weight w

Iobshts-kFsiylbs---

Deduction in transformation system S

Def. 3.2.4, page 55

Def. 4.2.4, page 87

Def. 4.3.2, page 93

Def. 4.4.3, page 106

Def 4.5.4, page 120

Def. 3.2.4, page 55

Def. 4.5.2, page 118

Def. 4.5.5, page 123

Def. 5.2.2, page 158

Def. 5.4.1,page 171

List of Figures

1.1
1.2

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

5.1
5.2

5.3
5.4
5.5

5.6
5.7
5.8

5.9
5.10

Principle of Theory Reasoning oo, 2
A toy knowledge base. 3
Relationships among theories. 44
A closed model elimination tableau.............. ..., 51
A ME refutation corresponding to the tableau in Figure 3.1. 56
Mapping of chains to literal trees. 59
“Weaker-than” relation between the calculi of Chapter 4 66
A total theory extension step in the theory connection calculus. .. 69
A partial theory extension step in the theory connection calculus. 71
A Classification of Theory Reasoning. 72
Total theory extension step in the theory connection calculus. 85
Two inference steps of TTCC-Link.oooa... 94
A partial theory model elimination extension step............... 94
A snapshot from the refutation constructed in the proof of Theo-

rem 4.3 0. .. e 98
A PTME-I derivation. Missing key set literals are annotated at

the edges.ot 124
A PRTME-T derivation.oiiiienniii i, 134
A problem-solving application of linearizing completion. 144
Summary of Relationships between Knuth-Bendix completion and

linearizing completion. i 148
A non-linear unit-resulting refutation of {A,C}US. 150
A linear unit-resulting refutation, using the new rule B,C — F. .. 151
The theory £S of equality and strict orderings with unary function

SYmboOl f. e 161
The inference system Zo(ES). - .o ov it 161
The transformation rules of the transformation system Lin. 172
The theory of equality in a language with a 2-ary predicate symbol

P 186

A completed inference system for equality without function symbols.187
A completed inference system for the theory ES 189

268

6.1
6.2

6.3

Al
A2
A3
A4
AL

List of Figures

Runtime results for various provers on selected TPTP problems. .. 203
Runtime results for various provers on TPTP problems on group

theory and boolean algebra. 204
Runtime results for various provers for S4 theorems. 205
Tlustration of proof of Proposition 5.3.3....................... 244
Illustration of proof of Proposition 5.5.1 (ground case). 251
A case in the proof of Proposition 5.5.3 (ground case)........... 253
A case in the proof of Lemma 5.5.3 (ground case) 256

Hlustration of proof of Lemma 5.6.1 (ground case). 259

Bibliography

[Ait-Kaci and Nasr, 1986] H. Ait-Kaci and R. Nasr. LOGIN: A Logic Programming
Language with Built-in Inheritance. Journal of Logic Programming, 3:293-345,
1986.

[Anderson and Bledsoe, 1970] R. Anderson and W. Bledsoe. A linear format for
resolution with merging and a new technique for establishing completeness. J.
of the ACM, 17:525-534, 1970.

[Andrews, 1976] Peter B. Andrews. Refutations by Matings. IEEE Transactions
on Computers, C-25:193-214, 1976.

[Antoniou and Langetepe, 1994] G. Antoniou and E. Langetepe. Applying SLD-
Resolution to a Class of Non-Horn Logic Programs. Bulletin of the IGPL,
2(2):231-243, 1994.

[Apt and van Emden, 1982] K.R. Apt and M.H. van Emden. Contributions to the
Theory of Logic Programming. Journal of the Association for Computing Ma-
chinery, 29(3):841-862, 1982.

[Astrachan and Stickel, 1992] Owen L. Astrachan and Mark E. Stickel. Caching
and Lemmaizing in Model Elimination Theorem Provers. In Kapur [1992],
pages 224-238.

[Bachmair and Ganzinger, 1990] L. Bachmair and H. Ganzinger. On Restrictions
of Ordered Paramodulation with Simplification. In Stickel [1990b], pages 427
441.

[Bachmair and Ganzinger, 1994] L. Bachmair and H. Ganzinger. Rewrite tech-
niques for transitive relations. In Proc. 9th IEEE Symposium on Logic in Com-
puter Science, pages 384-393. IEEE Computer Society Press, 1994.

[Bachmair and Ganzinger, 1998a] Leo Bachmair and Harald Ganzinger. Elimina-
tion of equality via transformation with ordering constraints. In Claude Kirch-
ner and Héleéne Kirchner, editors, Automated Deduction — CADE 15, LNAI
1421, Lindau, Germany, July 1998. Springer-Verlag.

[Bachmair and Ganzinger, 1998b] Leo Bachmair and Harald Ganzinger. Ordered
chaining calculi for first-order theories of tranmsitive relations. Journal of the
Association for Computing Machinery, 1998. Revised Version of MPI-I-95-2-
009. To appear.

[Bachmair et al., 1986] Leo Bachmair, Nachum Dershowitz, and Jieh Hsiang. Or-
derings for equational proofs. IEEE, pages 346-357, 1986.

[Bachmair et al., 1989] L. Bachmair, N. Dershowitz, and D. Plaisted. Completion
without failure. In H. Ait-Kaci and M. Nivat, editors, Resolution of Equations in
Algebraic Structures 2: Rewrite Techniques, pages 1-30. Academic Press, 1989.

[Bachmair et al., 1992] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Ba-
sic Paramodulation and Superposition. In Kapur [1992], pages 462-476.

[Bachmair, 1987] Leo Bachmair. Proof Methods for Equational Theories. PhD
thesis, University of Illinois at Urbana, U.S.A., 1987.

270 Bibliography

[Bachmair, 1991] L. Bachmair. Canonical Equational Proofs. Progress in Theoret-
ical Computer Science. Birkhduser, 1991.

[Baumgartner and Briining, 1997] Peter Baumgartner and Stefan Briining. A Dis-
junctive Positive Refinement of Model Elimination and its Application to Sub-
sumption Deletion. Journal of Automated Reasoning, 19(2):205-262, 1997.

[Baumgartner and Furbach, 1993] P. Baumgartner and U. Furbach. Consolution
as a Framework for Comparing Calculi. Journal of Symbolic Computation,
16(5):445-477, 1993. Academic Press.

[Baumgartner and Furbach, 1994a] P. Baumgartner and U. Furbach. Model Elim-
ination without Contrapositives and its Application to PTTP. Journal of Auto-
mated Reasoning, 13:339-359, 1994. Short version in: Proceedings of CADE-12,
Springer LNAI 814, 1994, pp 87-101.

[Baumgartner and Furbach, 1994b] P. Baumgartner and U. Furbach. Model Elim-
ination without Contrapositives. In A. Bundy, editor, ’Automated Deduction —
CADE-12’, volume 814 of LNAI, pages 87-101. Springer, 1994.

[Baumgartner and Furbach, 1994c] P. Baumgartner and U. Furbach. = PRO-
TEIN: A PROver with a Theory Extension Interface. In A. Bundy,
editor, Automated Deduction - CADE-12, volume 814 of LNAI
pages 769-773. Springer, 1994. Available in the WWW, URL:
http://www.uni-koblenz.de/ag-ki/Systems/PROTEIN/.

[Baumgartner and Petermann, 1998] Peter Baumgartner and Uwe Petermann.
Theory Reasoning. In Bibel and Schmitt [1998].

[Baumgartner and Stolzenburg, 1995] P. Baumgartner and F. Stolzenburg. Con-
straint Model Elimination and a PTTP-Implementation. In R. Hihnle P. Baum-
gartner and J. Posegga, editors, Theorem Proving with Analytic Tableauz and
Related Methods, volume 918 of Lecture Notes in Artificial Intelligence, pages
201-216, 1995.

[Baumgartner et al., 1992] P. Baumgartner, U. Furbach, and U. Petermann. A
Unified Approach to Theory Reasoning. Research Report 15/92, University of
Koblenz, 1992.

[Baumgartner et al., 1995] P. Baumgartner, U. Furbach, and F. Stolzenburg.
Model Elimination, Logic Programming and Computing Answers. In 14th In-
ternational Joint Conference on Artificial Intelligence (IJCAI 95), volume 1,
1995.

[Baumgartner et al., 1996] P. Baumgartner, U. Furbach, and I. Niemeld. Hyper
Tableaux. In Proc. JELIA 96, number 1126 in LNAI. European Workshop on
Logic in AI, Springer, 1996. (Long version in: Fachberichte Informatik, 896,
Universitét Koblenz-Landau).

[Baumgartner et al., 1997] Peter Baumgartner, Peter Frohlich, Ulrich Furbach, and
Wolfgang Nejdl. Semantically Guided Theorem Proving for Diagnosis Applica-
tions. In Proc. of IJCAI ’97. 1JCAI, 1997.

[Baumgartner, 1990] P. Baumgartner. Combining Horn Clause Logic with Rewrite
Rules. In V. Sgurev Ph. Jorrand, editor, Artificial Intelligence IV — Methodology,
Systems, Applications. Norh Holland, 1990.

[Baumgartner, 1991a] P. Baumgartner. A Completeness Proof Technique for Res-
olution with Equality. In Th. Christaller, editor, GWAI ’91 — 15. Fachtagung
fur Kinstliche Intelligenz, pages 12—-22. Springer, 1991. Informatik Fachberichte
285.

[Baumgartner, 1991b] P. Baumgartner. A Model Elimination Calculus with Built-
in Theories. Fachbericht Informatik 7/91, Universitdt Koblenz, 1991.

[Baumgartner, 1992a] P. Baumgartner. A Model Elimination Calculus with Built-
in Theories. In H.-J. Ohlbach, editor, Proceedings of the 16-th German Al-
Conference (GWAI-92), pages 30-42. Springer, 1992. LNAI 671.

Bibliography 271

[Baumgartner, 1992b] P. Baumgartner. An Ordered Theory Resolution Calculus.
In A. Voronkov, editor, Logic Programming and Automated Reasoning (Pro-
ceedings), pages 119-130, St. Petersburg, Russia, July 1992. Springer. LNAI
624.

[Baumgartner, 1993] P. Baumgartner. Refinements of Theory Model Elimination
and a Variant without Contrapositives. Research Report 8/93, University of
Koblenz, 1993. (Short version in Proc. ECAI 94, 1994, Wiley).

[Baumgartner, 1994] P. Baumgartner. Refinements of Theory Model Elimination
and a Variant without Contrapositives. In A.G. Cohn, editor, 11th European
Conference on Artificial Intelligence, ECAI 94. Wiley, 1994.

[Baumgartner, 1996] Peter Baumgartner. Linear and Unit-Resulting Refutations
for Horn Theories. Journal of Automated Reasoning, 16(3):241-319, June 1996.

[Beckert and Hihnle, 1992] B. Beckert and R. Hihnle. An Improved Method for
Adding Equality to Free Variable semantic Tableaux. In D. Kapur, editor, 11th
International Conference on Automated Deduction, volume 607 of LNCS, pages
507-521. Springer, 1992.

[Beckert and Pape, 1996] B. Beckert and C. Pape. Incremental Theory Reasoning
Methods for Semantic Tableaux. In Theorem Proving with Analytic Tableauz
and Related Methods (Tableauzr 96). Springer, 1996.

[Beckert et al., 1996] Bernhard Beckert, Reiner Hihnle, Peter Oel, and Martin
Sulzmann. The tableau-based theorem prover 4P, version 4.0. In M.A.
McRobbie and J.K. Slaney, editors, Automated Deduction — CADE 13, LNAI
1104, pages 303-307, New Brunswick, NJ, USA, July 1996. Springer-Verlag.

[Beckert, 1994] B. Beckert. A completion-based method for mixed universal and
rigid E-unification. In Bundy [1994], pages 678-692.

[Beckert, 1998] Bernhard Beckert. Equality and other theory inferences. In
D’Agostino et al. [1998].

[Benanav, 1990] Dan Benanav. Simultaneous paramodulation. In Stickel [1990b],
pages 442-455.

[Bertling, 1990] Hubert Bertling. Knuth-Bendix Completion of Horn Clause Pro-
grams for Restricted Linear Resolution and Paramodulation. In S. Kaplan and
M. Okada, editors, Proceedings of the 2nd International Workshop on Condi-
tional and Typed Rewriting Systems, pages 181-193. Springer-Verlag, June 1990.
LNCS 516.

[Bibel and Schmitt, 1998] Wolfgang Bibel and Peter H. Schmitt, editors. Auto-
mated Deduction. A basis for applications. Kluwer Academic Publishers, 1998.

[Bibel et al., 1994] Wolfgang Bibel, Stefan Briining, Uwe Egly, and Thomas Rath.
Komet. In Bundy [1994], pages 783-787.

[Bibel, 1981] Wolfgang Bibel. On Matrices with Connections. Journal of the As-
sociation for Computing Machinery, 28:633—645, 1981.

[Bibel, 1982a] W. Bibel. Automated Theorem Proving. Vieweg, 1982.

[Bibel, 1982b] Wolfgang Bibel. A Comparative Study of Several Proof Procedures.
Artificial Intelligence, 18:269-293, 1982.

[Bibel, 1983] Wolfgang Bibel. Matings in Matrices. Communications of the Asso-
ciation for Computing Machinery, 26:844-852, 1983.

[Bibel, 1987] W. Bibel. Automated Theorem Proving. Vieweg, 2nd edition, 1987.

[Bibel, 1992] W. Bibel. Deduktion, volume 6.2 of Handbuch der Informatik. Old-
enburg, 1992.

[Bollinger, 1991] T. Bollinger. A Model Elimination Calculus for Generalized
Clauses. In IJCAT, 1991.

[Bonacina and Hsiang, 1992] Maria Paola Bonacina and Jieh Hsiang. Incomplete-
ness of the RUE/NRF inference systems. Newsletter of the Association for
Automated Reasoning, No. 20, pages 9-12, May 1992.

272 Bibliography

[Bonacina and Hsiang, 1994] Maria Paola Bonacina and Jieh Hsiang. Paralleliza-
tion of deduction strategies: an analytical study. Journal of Automated Reason-
ing, 13:1-33, 1994.

[Bonacina and Hsiang, 1995] Maria Paola Bonacina and Jieh Hsiang. Towards a
foundation of completion procedures as semidecision procedures. Theoretical
Computer Science, 146:199-242, July 1995.

[Brachman and Schmolze, 1985] Ronald J. Brachman and J. G. Schmolze. An
overview of the KL-ONE knowledge representation system. Cognitive Science,
9(2):171-216, 1985.

[Brachmann et al., 1983] R. Brachmann, R. Fikes, and H. Levesque. KRYPTON: a
functional approach to knowledge representation. IEEE Computer, 16(10):67—
73, October 1983.

[Brand, 1975] D. Brand. Proving theorems with the modification method. SIAM
Journal on Computing, 4:412-430, 1975.

[Bronsard and Reddy, 1992] Francois Bronsard and Uday S. Reddy. Reduction
Techniques for First-Order Reasoning. In M. Rusinowitch and J.L. Rémy, ed-
itors, Proceedings of the Third International Workshop on Conditional Term
Rewriting Systems, pages 242-256. Springer-Verlag, July 1992. LNCS 656.

[Brown, 1978] Frank Malloy Brown. Towards the automation of set theory and its
logic. Artificial Intelligence, 10(3):281-316, 1978.

[Briining, 1995] S. Briining. Exploiting Equivalences in Connection Calculi. Jour-
nal of the IGPL, 3(6):857-886, 1995.

[Bundy, 1994] Alan Bundy, editor. Automated Deduction — CADE 12, LNAI 814,
Nancy, France, June 1994. Springer-Verlag.

[Biirckert, 1990] H.J. Biirckert. A Resolution Principle for Clauses with Con-
straints. In Stickel [1990b], pages 178-192.

[Biirckert, 1991] H.-J. Biirckert. A Resolution Principle for Clauses with Restricted
Quantifiers, volume 568 of LNAI Springer, 1991.

[Biittner, 1986] W. Biittner. Unification in the Datastructure Multisets. Journal
of Automated Reasoning, 2:75-88, 1986.

[Chang and Lee, 1973] C. Chang and R. Lee. Symbolic Logic and Mechanical The-
orem Proving. Academic Press, 1973.

[Christoph Goller and Schumann, 1994] Klaus Mayr Christoph Goller, Rein-
hold Letz and Johann Schumann. Setheo v3.2: Recent developments — system
abstract —. In Bundy [1994], pages 778-782.

[Chu and Plaisted, 1994] Heng Chu and David A. Plaisted. Semantically Guided
First-Order Theorem Proving using Hyper-Linking. In Bundy [1994], pages
192-206.

[D’Agostino et al., 1998] Marcello D’Agostino, Dov Gabbay, Reiner Hihnle, and
Joachim Posegga, editors. Handbook of Tableau Methods. Kluwer, Dordrecht,
1998.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A Computing Procedure for
Quantification Theory. Journal of the ACM, 7:201-215, 1960.

[de Kogel, 1995] E. de Kogel. Rigid E-unification simplified. In R. Hihnle P. Baum-
gartner and J. Posegga, editors, Theorem Proving with Analytic Tableaur and
Related Methods, volume 918 of Lecture Notes in Artificial Intelligence, pages
17-30, 1995.

[Degtyarev and Voronkov, 1995a] A. Degtyarev and A. Voronkov. Equality Elimi-
nation for the Inverse Method and Extension Procedures. In C.S. Mellish, editor,
IJCAT 95: 14th International Conference on Artificial Intelligence, 1995.

[Degtyarev and Voronkov, 1995b] A. Degtyarev and A. Voronkov. Simultaneous
Rigid E-unification is undecidable. UPMAIL Technical Report 105, Uppsala
University, 1995.

Bibliography 273

[Dershowitz and Manna, 1979] N. Dershowitz and Z. Manna. Proving Termination
with multiset orderings. Comm. ACM, 22:465-476, 1979.

[Dershowitz and Sivakumar, 1988] Nachum Dershowitz and G. Sivakumar. Goal-
Directed Equation Solving. In Proceedings of the AAAI-88, 1988.

[Dershowitz, 1982] N. Dershowitz. Orderings for Term-Rewriting Systems. Theo-
retical Computer Science, 17:279-301, 1982.

[Dershowitz, 1985] N. Dershowitz. Computing with Rewrite Systems. Information
and Control, 65:122 — 157, 1985.

[Dershowitz, 1987] Nachum Dershowitz. Termination of Rewriting. Journal of
Symbolic Computation, 3(1&2):69-116, February/April 1987.

[Dershowitz, 1990] Nachum Dershowitz. A Maximal-Literal Unit Strategy for Horn
Clauses. In S. Kaplan and M. Okada, editors, Proceedings of the 2nd Interna-
tional Workshop on Conditional and Typed Rewriting Systems, pages 14-25.
Springer-Verlag, June 1990. LNCS 516.

[Dershowitz, 1991a] N. Dershowitz. Ordering-Based Strategies for Horn Clauses.
In Proc. IJCAI 1991.

[Dershowitz, 1991b] Nachum Dershowitz. Canonical Sets of Horn Clauses. In J.
Leach Albert, B. Monien, and M. Rodriguez Artalejo, editors, Proceedings of
the 18th International Colloquium on Automata, Languages and Programming,
pages 267278, July 1991. LNCS 510.

[Digricoli and Harrison, 1986] Vincent J. Digricoli and Malcolm C. Harrison.
Equality-Based binary Resolution. Journal of the Association for Computing
Machinery, 1986.

[Dixon, 1973] J. Dixon. Z-Resolution: Theorem-Proving with Compiled Axioms.
Journal of the ACM, 20(1):127-147, 1973.

[Eder, 1991] E. Eder. Consolution and its Relation with Resolution. In Proc. IJCAI
’91, 1991.

[Eder, 1992] E. Eder. Relative Complezities of First Order Languages. Vieweg,
1992.

[Enderton, 1972] H.B. Enderton. A Mathematical Introduction to Logic. Academic
Press, 1972.

[Fages and Huet, 1986] F. Fages and G. Huet. Complete Sets of Unifiers and
Matchers in Equational Theories. Theoretical Computer Science, 43, 1986.
[Fages, 1984] F. Fages. Associative-commutative unification. =~ Rapports de

Recherche 287, INRIA, April 1984.

[Fitting, 1990] M. Fitting. First Order Logic and Automated Theorem Proving.
Texts and Monographs in Computer Science. Springer, 1990.

[Fitting, 1993] Melvin Fitting. Basic Modal Logic. In Gabbay et al. [1993], pages
365-448.

[Frisch, 1991] A. M. Frisch. The Substitutional Framework for Sorted Deduction:
Fundamental Results on Hybrid Reasoning. Artificial Intelligence, 49:161-198,
1991.

[Furbach et al., 1989a] U. Furbach, S. Hélldobler, and J. Schreiber. Horn Equa-
tional Theories and Paramodulation. Journal of Automated Reasoning, 5:309-
337, 1989.

[Furbach et al., 1989b] U. Furbach, S. Hélldobler, and J. Schreiber. Paramodula-
tion modulo equality. In Proc. GWAI’89, pages 107-116. Springer, IFB 216,
1989.

[Furbach et al., 1989c] Ulrich Furbach, Steffen Holldobler, and Joachim Schreiber.
Horn equational theories and paramodulation. Journal of Automated Reasoning,
3:309-337, 1989.

[Furbach, 1991] U. Furbach. Logische und Funktionale Programmierung — Grund-
lagen einer Kombination. Kiinstliche Intelligenz. Vieweg, 1991.

274 Bibliography

[Gabbay et al., 1993] Dov M. Gabbay, C.J. Hogger, and J.A. Robinson, editors.
Handbook of Logic in Artificial Intelligence and Logic Programming, Volume 1:
Logical Foundations. Oxford Science Publications, 1993.

[Gallier and Snyder, 1990] J. Gallier and W. Snyder. Designing Unification Proce-
dures Using Transformations: A Survey. Bulletin of the EATCS, 40:273 — 326,
1990.

[Gallier et al., 1987] J. H. Gallier, S. Raatz, and W. Snyder. Theorem proving
using rigid e-unification: Equational matings. In Logics in Computer Science
’87, Ithaca, New York, 1987.

[Gallier et al., 1992] Jean Gallier, Paliath Narendran, Stan Raatz, and Wayne Sny-
der. Theorem Proving Using Equational Matings and Rigid E-Unification. Jour-
nal of the ACM, 39(2):377-429, April 1992.

[Gallier, 1987] J. Gallier. Logic for Computer Science: Foundations of Automatic
Theorem Proving. Wiley, 1987.

[Ganzinger, 1991] Harald Ganzinger. A Completion Procedure for Conditional
Equations. Journal of Symbolic Computation, 11:51-81, 1991.

[Gentzen, 1939] Gerhard Gentzen. Untersuchungen iiber das logische Schlieflen.
Mathematische Zeitschrift, 176-210, 405431, 1939. English translation in: Sz-
abo, M. (ed.), The Collected Papers of Gerhard Gentzen, pp. 68-131, North
Holland, Amsterdam, 1969.

[Hanschke and Hinkelmann, 1992] P. Hanschke and K. Hinkelmann. Combining
Terminological and Rule-based Reasoning for Abstraction Processes. In H.-J.
Ohlbach, editor, Proceedings of the 16-th German AI-Conference (GWAI-92),
pages 144-155. Springer, 1992. LNAI 671.

[Heinemann and Weihrauch, 1991] B. Heinemann and K. Weihrauch. Logik fiir
Informatiker. Leitfaden und Monographien der Informatik. B.G. Teubner, 1991.
(in German).

[Hines, 1990] L. Hines. Str+veC: The Str4ve-based Subset Prover. In Stickel
[1990b], pages 193-206.

[Hines, 1992] L. Hines. The Central Variable Strategy of Str+ve. In Kapur [1992],
pages 35—49.

[Holldobler, 1989] Steffen Holldobler. Foundations of Equational Logic Program-
ming, volume 353 of Lecture Notes in Artificial Intelligence. Subseries of Lecture
Notes in Computer Science. Springer, 1989.

[Hollunder, 1990] B. Hollunder. Hybrid Inferences in KL-ONE-based Knowledge
Representation Systems. Research Report RR-90-6, DFKI, May 1990.

[Hopcroft and Ullman, 1979] A. Hopcroft and D. Ullman. Formal languages and
their relation to automata. Addison-Wesley, 1979.

[Hsiang and Rusinowitch, 1986] J. Hsiang and M. Rusinowitch. A New Method for
Establishing Refutational Completeness in Theorem Proving. In Jérg Siekmann,
editor, 8th International Conference on Automated Deduction, LNCS 230, pages
141-152, Oxford, England, 1986. Springer-Verlag.

[Hsiang and Rusinowitch, 1987] J. Hsiang and M. Rusinowitch. On word problems
in equational theories. In Proc. ICALP’87, pages 54-71. Springer, LNCS 267,
1987.

[Hsiang and Rusinowitch, 1991] Jieh Hsiang and Michiiel Rusinowitch. Proving
refutational completeness of theorem proving strategies: the transfinite semantic
tree method. Journal of the ACM, 38(3):5659-587, 1991.

[Hsiang, 1985] J. Hsiang. Refutational theorem proving using term rewriting sys-
tems. Artificial Intelligence, 25:255-300, 1985.

[Huet and Oppen, 1980] Gérard Huet and Derek C. Oppen. Equations and Rewrite
Rules. A Survey. In R. Book, editor, Formal Languages: Perspectives and Open
Problems, pages 349-405. Academic Press, 1980.

Bibliography 275

[Hullot, 1980] J.M. Hullot. Canonical forms and unification. In Proc. Conf. Auto-
mated Deduction, pages 318-334, 1980.

[J.-P. Jouannaud, 1991] C. Kirchner J.-P. Jouannaud. Solving Equations in Ab-
stract Algebras: A Rule-Based Survey of Unification. In J.L. Lassez and
G. Plotkin, editors, Computational Logic — Essays in Honor of Alan Robinson,
pages 257-321. MIT Press, 1991.

[Jaffar and Lassez, 1987] J. Jaffar and J.-L. Lassez. Constrained Logic Program-
ming. In Proc. of the ACM Symp. on Principles of Programming Languages,
pages 111-119, 1987.

[Joyner, 1976] W.H. Joyner. Resolution Strategies as Decision Procedures. Journal
of the ACM, 23(3):396—417, 1976.

[Kaplan, 1987] Stéphane Kaplan. Simplifying Conditional Term Rewriting Sys-
tems: Unification, Termination and Confluence. J. of Symbolic Computation,
4(3):295-334, 1987.

[Kapur, 1992] Deepak Kapur, editor. 11th International Conference on Automated
Deduction, LNAI 607. Springer-Verlag, 1992.

[Kerber et al., 1993] Manfred Kerber, Erica Melis, and Jérg Siekmann. Reason-
ing with Assertions and Examples. Technical Report SEKI Report SR-93-10,
Universitat des Saarlandes, Fachbereich Informatik, 1993.

[Knight, 1989] Kevin Knight. Unification: A multidisciplinary survey. ACM Com-
puting Surveys, 21(1):93-124, March 1989.

[Knuth and Bendix, 1970] Donald E. Knuth and B. Bendix, Peter. Simple world
problems in universal algebras, 1970.

[Kowalski and Kuehner, 1971] R. A. Kowalski and D. Kuehner. Linear resolution
with selection function. Artificial Intelligence, 2:227-260, 1971.

[Kowalski, 1974] R. A. Kowalski. A proof procedure using connection graphs. Jour-
nal of the ACM, 22:572-595, 1974.

[Kunen, 1991] Kenneth Kunen. A completeness result for linked resolution. Tech-
nical Report CS-TR-91-1013, University of Wisconsin, Madison, February 1991.

[Lalement, 1993] R. Lalement. Computation as Logic. International Series in Com-
puter Science. Prentice Hall, 1993.

[Lee and Plaisted, 1989] Shie-Jue Lee and David A. Plaisted. Reasoning with Pred-
icate Replacement, 1989.

[Lee and Plaisted, 1992] S.-J. Lee and D. Plaisted. Eliminating Duplicates with
the Hyper-Linking Strategy. Journal of Automated Reasoning, 9:25-42, 1992.

[Letz et al., 1992] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A
High-Performance Theorem Prover. Journal of Automated Reasoning, 8(2),
1992.

[Letz et al., 1994] R. Letz, K. Mayr, and C. Goller. Controlled Integrations of the
Cut Rule into Connection Tableau Calculi. Journal of Automated Reasoning,
13, 1994.

[Letz, 1993] R. Letz. First-Order Proof Calculi and Proof Procedures for Automated
Deduction. PhD thesis, Technische Hochschule Darmstadt, 1993.

[Lloyd, 1987] J. Lloyd. Foundations of Logic Programming. Symbolic Computation.
Springer, second, extended edition, 1987.

[Loveland and Reed, 1989] D.W. Loveland and D.W. Reed. A near-horn prolog for
compilation. Technical Report CS-1989-14, Duke University, 1989.

[Loveland, 1968] D. Loveland. Mechanical Theorem Proving by Model Elimination.
JACM, 15(2), 1968.

[Loveland, 1970] D. Loveland. A Linear Format for Resolution. In Symposium on
Automatic Demonstration, number 125 in Lecture Notes in Mathematics, pages
147-162, 1970.

276 Bibliography

[Loveland, 1978] D. Loveland. Automated Theorem Proving - A Logical Basis.
North Holland, 1978.

[Lynch, 1995] Christopher Lynch. Paramodulation Without Duplication. In Logics
in Computer Science, 1995.

[Manna and Waldinger, 1986] Z. Manna and R. Waldinger. Special Relations in
Automated Deduction. Journal of the ACM, 33(1):1-59, 1986.

[Manna et al., 1991] Z. Manna, M. Stickel, and R. Waldinger. Monotonicity Prop-
erties in Automated Deduction. In V. Lifschitz, editor, Artificial Intelligence
and Mathematical Theory of Computation: Essays in Honor of John McCarthy,
pages 261-280. Academic Press, 1991.

[Marcinkowski and Pacholski, 1992] J. Marcinkowski and L. Pacholski. Undecid-
ability of the Horn Clause Implication Problem. In Proc. 83rd Annual IEEE
Symposium on Foundations of Computer Science, pages 354-362, 1992.

[Martelli et al., 1986] A. Martelli, C. Moiso, and G. F. Rossi. An algorithm for
unification in equational theories. In Proc. of the Third IEEE Symposium on
Logic Programming, pages 180-186, 1986.

[Mayr, 1995] K. Mayr. Link Deletion in Model Elimination. In R. Hihnle P. Baum-
gartner and J. Posegga, editors, Theorem Proving with Analytic Tableaur and
Related Methods, volume 918 of Lecture Notes in Artificial Intelligence, pages
169-184, 1995.

[McCharen et al., 1976] J. McCharen, R. Overbeek, and L. Wos. Complexity and
related enhancements for automated theorem-proving programs. Computers
and Mathematics with Applications, 2:1-16, 1976.

[McMichael, 1990] Alan F. McMichael. SLIM: An automated reasoner for equiva-
lences, applied to set theory. In Stickel [1990b], pages 308-321.

[Morris, 1969] J. B. Morris. E-Resolution: An Extension of Resolution to Include
the Equality Relation. In Proc. IJCAI pages 287-294, 1969.

[Moser et al., 1995] Max Moser, Christopher Lynch, and Joachim Steinebach.
Model Elimination with Basic Ordered Paramodulation. Forschungsgruppe Au-
tomated Reasoning AR-95-11, Technische Universitdt Miinchen, 1995.

[Moser, 1993] M. Moser. Improving Transformation Systems for General E-
Unification. In Rewrite Techniques and Applications, RTA-95, volume 690 of
LNCS, pages 92-105. Springer, 1993.

[Murray and Rosenthal, 1987] N. Murray and E. Rosenthal. Theory Links: Appli-
cations to Automated Theorem Proving. J. of Symbolic Computation, 4:173—
190, 1987.

[Myers, 1994] K.L. Myers. Hybrid Reasoning Using Universal Attachment. Artifical
Intelligence, 67(2):329-375, June 1994.

[Neugebauer and Petermann, 1995] Gerd Neugebauer and Uwe Petermann. Spec-
ification of Inference Rules and Their Automatic Translation. In R. H&hnle
P. Baumgartner and J. Posegga, editors, Theorem Proving with Analytic
Tableaur and Related Methods, volume 918 of Lecture Notes in Artificial In-
telligence. Springer, 1995.

[Nieuwenhuis and Orejas, 1990] Robert Nieuwenhuis and Fernando Orejas. Clausal
Rewriting. In S. Kaplan and M. Okada, editors, Proceedings of the 2nd Interna-
tional Workshop on Conditional and Typed Rewriting Systems, pages 246-258.
Springer-Verlag, June 1990. LNCS 516.

[Nieuwenhuis and Rubio, 1992] Robert Nieuwenhuis and Albert Rubio. Theorem
Proving with Ordering Constrained Clauses. In Kapur [1992], pages 477-491.

[Nieuwenhuis and Rubio, 1995] R. Nieuwenhuis and A. Rubio. Theorem Proving
with Ordering and Equality Constrained Clauses. Journal of Symbolic Compu-
tation, 19:321-351, 1995.

Bibliography 277

[Nieuwenhuis, 1993] R. Nieuwenhuis. Simple LPO Constraint Solving Methods.
Information Processing Newsletters, 47:65-69, 1993.

[Nonnengart, 1995] Andreas Nonnengart. A Resolution-Based Calculus for Tem-
poral Logics. PhD thesis, Universitit des Saarlandes, 1995.

[Oberschelp, 1962] A. Oberschelp. Untersuchungen zur mehrsortigen Quantoren-
logik. Math. Annalen, 145:297-333, 1962.

[Ohlbach, 1987] Hans Jiirgen Ohlbach. Link Inheritance in Abstract Clause
Graphs. Journal of Automated Reasoning, 3(1):1-34, 1987.

[Ohlbach, 1990] H.-J. Ohlbach. Compilation of Recursive Two-Literal Clauses into
Unification Algorithms. In V. Sgurev Ph. Jorrand, editor, Artificial Intelligence
IV — Methodology, Systems, Applications. Norh Holland, 1990.

[Ohlbach, 1993] H.-J. Ohlbach. Translation Methods for Non-Classical Logics —
An Overview. Research Report MPI-1-93-225, Max-Planck-Institut fiir Infor-
matik, 1993.

[Oppacher and Suen, 1988] F. Oppacher and E. Suen. HARP: A Tableau-Based
Theorem Prover. Journal of Automnated Reasoning, 4:69-100, 1988.

[Paramasivam and Plaisted, 1995] M. Paramasivam and David Plaisted. Auto-
mated Deduction Techniques for Classification in Concept Languages. Technical
report, University of North Carolina, 1995.

[Paul, 1985] Etienne Paul. Equational Methods in First Order Predicate Calculus.
Journal of Symbolic Computation, 1(1), March 1985.

[Paul, 1986] E. Paul. On Solving the Equality Problem in Theories Defined by
Horn Clauses. Theoretical Computer Science, 44:127-153, 1986.

[Petermann, 1991a] U. Petermann. Building in Equational Theories into the Con-
nection Method. In Proceedings of Symposium on Fundamentals of Artificial
Intelligence Research, Smolenice, 1991.

[Petermann, 1991b] U. Petermann. Petermann U., Building in Equational The-
ories into the Connection Method. In Proceedings of the 1st Int. Symp. on
Foundamentals of AI-Research, FAIR ’91, 1991.

[Petermann, 1992] U. Petermann. How to build in an open theory into connection
calculi. J. on Computer and Artificial Intelligence, 1992.

[Petermann, 1993a] U. Petermann. Completeness of the pool calculus with an open
built in theory. In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, edi-
tors, 8rd Kurt Gddel Colloquium ’93, number 713 in Lecture Notes in Computer
Science, pages 264-277. Springer-Verlag, 1993.

[Petermann, 1993b] Uwe Petermann. Building-in a theory into a connection
calculus with positive refinement. Technical Report 25/1993, Uni Leipzig,
Naturwissenschaftlich-Theoretisches Zentrum, 1993.

[Petermann, 1994] U. Petermann. A Complete Connection Calculus with Rigid
E-Unification. In C. MacNish, D. Pearce, and L. Pereira, editors, Logics in
Artificial Intelligence, volume 838 of LNAI, pages 152-166. Springer, 1994.

[Peterson, 1983] G. Peterson. A Technique for Establishing Completeness Results
in Theorem Proving with Equality. SIAM Journal on Computing, 12(1):82-100,
February 1983.

[Plaisted and Greenbaum, 1984] D. Plaisted and S. Greenbaum. Problem Repre-
sentations for Back Chaining and Equality in Resolution Theorem Proving. In
Proceedings of the First Conference on Artificial Intelligence Applications, 1984.

[Plaisted, 1988] D. Plaisted. Non-Horn Clause Logic Programming Without Con-
trapositives. Journal of Automated Reasoning, 4:287-325, 1988.

[Plaisted, 1990] D. Plaisted. A Sequent-Style Model Elimination Strategy and a
Positive Refinement. Journal of Automated Reasoning, 4(6):389-402, 1990.
[Plaisted, 1993] D. Plaisted. Equational Reasoning and Term Rewriting Systems.

In Gabbay et al. [1993], pages 273-364.

278 Bibliography

[Plaisted, 1994] David Plaisted. The Search Efficiency of Theorem Proving Strate-
gies. In Bundy [1994].

[Plaisted, 1995] D. Plaisted. Special Cases and Substitutes for Rigid E-Unification.
Research Report MPI-1-95-2-010, Max-Planck-Institut fiir Informatik, 1995.
[Plotkin, 1972] G. D. Plotkin. Building-In Equational Theories. Machine Intelli-

gence, 7:73-90, 1972.

[Rabin, 1977] M. Rabin. Decidable Theories. In Jon Barwise, editor, Studies in
Logic and the Foundations of Mathematics, volume 90 of Studies in Logic and
the Foundations of Mathematics, chapter C.3, pages 595-630. North-Holland,
1977.

[Reeves, 1987] S. Reeves. Semantic Tableaux as a Framework for Automated The-
orem Proving. In C.S. Mellish and J. Hallam, editors, Advances in Artificial
Intelligence (Proceedings of AISB), pages 125-139, 1987.

[Reif, 1992] W. Reif. The KIV-System: Systematic Construction of Verified Soft-
ware. In D. Kapur, editor, 11th Conference on Automated Deduction. Proceed-
ings, Springer LNCS. Albany, NY, USA, 1992.

[Reiter, 1987] Raymond Reiter. A Theory of Diagnosis from First Principles. Ar-
tificial Intelligence, 32(1):57-95, April 1987.

[Robinson and Wos, 1969] G. A. Robinson and L. Wos. Paramodulation and The-
orem Proving in First Order Theories with Equality. In Meltzer and Mitchie,
editors, Machine Intelligence 4. Edinburg University Press, 1969.

[Robinson, 1965a] J. A. Robinson. Automated deduction with hyper-resolution.
Internat. J. Comput. Math., 1:227-234, 1965.

[Robinson, 1965b] J.A. Robinson. A machine-oriented logic based on the resolution
principle. JACM, 12(1):23-41, January 1965.

[Schmidt-SchauB and Smolka, 1991] Manfred Schmidt-Schaufl and Gert Smolka.
Attributive concept descriptions with complements. Artificial Intelligence,
48(1):1-26, 1991.

[Schmidt-Schauf}, 1988] M. Schmidt-Schauf. Implication of Clauses is Undecidable.
Theoretical Computer Science, 59:287-296, 1988.

[Schmidt-SchauB, 1989] M. Schmidt-Schaufl. Computational Aspects of an Order
Sorted Logic with Term Declarations, volume 395 of Lecture Notes in Artificial
Intelligence. Springer, 1989.

[Schmitt and Wernecke, 1989] P.H. Schmitt and W. Wernecke. Tableau calculus
for sorted logics. In Sorts and Types in Artificial Intelligence, volume 418 of
Lecture Notes in Artificial Intelligence, pages 49-60. Springer, 1989.

[Schmitt, 1987] Peter H. Schmitt. The THOT theorem prover. Technical Report
TR-87.09.007, IBM Heidelberg Scientific Center, 1987.

[Schumann, 1994] Johann Schumann. Delta — a bottom-up preprocessor for top-
down theorem provers — system abstract —. In Bundy [1994], pages 774-777.

[Siekmann and Wrightson, 1983] Jérg Siekmann and Graham Wrightson, editors.
Automation of Reasoning — Classical Papers on Computational Logic. Symbolic
Computation. Springer, 1983.

[Siekmann, 1989] Jorg H. Siekmann. Unification Theory. Journal of Symbolic
Computation, 7(1):207-274, January 1989.

[Sikka and Genesereth, 1994] Vishal Sikka and Michael Genesereth. Integrating
Specialized Procedures into Proof Systems. In 12th National Conference on
Artificial Intelligence. AAAI Press, 1994.

[Smullyan, 1968] R. Smullyan. First Order Logic. Springer, 1968.

[Snyder and Lynch, 1991] W. Snyder and C. Lynch. Goal directed strategies for
paramodulation. In R. Book, editor, Rewriting Techniques and Applications,
Lecture Notes in Computer Science No. 488, pages 15 — 28, Berlin, 1991.
Springer.

Bibliography 279

[Snyder, 1991] W. Snyder. A Proof Theory for General Unification. Birkhiuser,
1991.

[Socher-Ambrosius, 1990] R. Socher-Ambrosius. Simplification and Reduction for
Automated Theorem Proving. SEKI-Report SR-90-10, Universitit Kaiser-
slautern, 1990. (Ph.D. Thesis).

[Socher, 1992] R. Socher. How to Avoid the Derivation of Redundant Clauses in
Reasoning Systems. Journal of Automated Reasoning, 9:77-97, 1992.

[Steinbach, 1990] J. Steinbach. Improving Associative Path Orderings. In Stickel
[1990b], pages 411-425.

[Stickel, 1985] M.E. Stickel. Automated Deduction by Theory Resolution. Journal
of Automated Reasoning, 1:333-355, 1985.

[Stickel, 1986] M. Stickel. An Introduction to Automated Deduction. In Bibel,
Biermann, Delgrande, Huet, Jorrand, Shapiro, Mylopoulos, and Stickel, editors,
Fundamentals of Artificial Intelligence, pages 75—132. Springer, 1986.

[Stickel, 1988] M. Stickel. A Prolog Technology Theorem Prover: Implementation
by an Extended Prolog Compiler. Journal of Autornated Reasoning, 4:353-380,
1988.

[Stickel, 1989] M. Stickel. A Prolog Technology Theorem Prover: A New Exposition
and Implementation in Prolog. Technical note 464, SRI International, 1989.
[Stickel, 1990a] M. Stickel. A Prolog Technology Theorem Prover. In Stickel

[1990Db], pages 673-675.

[Stickel, 1990b] Mark E. Stickel, editor. 10th International Conference on Auto-
mated Deduction, LNAT 449, Kaiserslautern, FRG, July 24-27, 1990. Springer-
Verlag.

[Sutcliffe et al., 1994] G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem
library. In Bundy [1994].

[Tammet, 1992] T. Tammet. Resolution Methods for Decision Problems and
Finite-Model Building. Technical report, Chalmers University of Technology,
Goteborg, Department of Computer Science, 1992. (Ph.D. Thesis).

[Tarver, 1990] Mark Tarver. An examination of the Prolog technology theorem-
prover. In Stickel [1990b], pages 322-335.

[van Dalen, 1980] D. van Dalen. Logic and Structure. Universitext. Springer, 2nd
edition, 1980.

[Veroff and Wos, 1992] R. Veroff and L. Wos. The Linked Inference Principle, I:
the Formal Treatment. Journal of Automated Reasoning, 8(2), 1992.

[Voronkov and Degtyarev, 1996] Andrei Voronkov and Anatoli Degtyarev. What
You Always Wanted to Know About Rigid E-Unification. UPMAIL Technical
Report 125, Uppsala University, Computing Science Department, April 1996.

[Walther, 1983] C. Walther. A Many-Sorted Calculus Based on Resolution and
Paramodulation. In Proc. 8th IJCAI, Karlsruhe, 1983.

[Walther, 1987] C. Walther. A Many-Sorted Calculus Based on Resolution and
Paramodulation. Research Notes in Artificial Intelligence. Pitman Ltd., 1987.

[Weidenbach, 1993] C. Weidenbach. Extending the Resolution Method with Sorts.
In 138th International Joint Conference on Artificial Intelligence, IJCAI 93,
pages 60-65. Morgan Kaufmann, 1993.

[Weidenbach, 1994] Christoph Weidenbach. Minimal Resolution. Technical report,
Max-Planck-Institut fir Informatik, Saarbriicken, 1994.

[Weidenbach, 1995] C. Weidenbach. First-Order Tableaux with Sorts. Journal of
the IGPL, 3(6), 1995.

[Wos et al., 1984] L. Wos, R. Veroff, B. Smith, and W. McCune. The Linked Infer-
ence Principle, II: The User’s Viewpoint. In R. E. Shostak, editor, Proceedings
of the 7" Conference on Automated Deduction, Napa, CA, USA, May 198,

280 Bibliography

volume 170 of Lecture Notes in Computer Science. Springer Verlag, Berlin, Hei-
delberg, New-York, 1984.

[Zhang and Kapur, 1988] H. Zhang and D. Kapur. First-Order Theorem Proving
Using Conditional Rewrite Rules. In E. Lusk and R. Overbeek, editors, 9th
International Conference on Automated Deduction, LNCS 310, pages 1-20, Ar-
gonne National Laboratory, 1988. Springer-Verlag.

Index

Amplification, 16, 119, 120, 158, 184,
223, 261

Ancestor Nodes, 55, 61, 62, 68, 91, 99,
100, 126, 137, 197-199, 236

Answer, 57

— Completenes

—— of PRTME-I, 138

—— of PTME-I, 127

—— of TTME-MSR, 109

— Definite ~, 57, 58, 139

Assignment, 21

Atom, 18

Beate, 113
Branch, 49

Calculus, 53

— Table of ~i, see table on page 265

Chain, 58

Clause, 29

Closure

— Universal, Existential ~, 20

Complement, 20

Completeness, see Ground Complete-
ness, Answer Completeness

— Answer ~, 57

— Relative ~, 181

Computation Rule, 60

Connection, 10, 50, 52, 54, 86, 130, 143

— Calculus, 10, 52, 53, 54, 65, 67, 80,
86, 95, 123, 130, 200, 265

—— History of ~, 5

— Method, 9, 10, 218

—— Equality in ~, 73, 74, 83

- T-~, 89,104, 135

Consistent, 37

Consolution, 58

Continuation, 216

Contradictory, 37

CSRr(M)[V], 102

Decidability, 41

Deduction, 171

— Fair ~, 176

~ Limit of ~, 174

— step, 171

Derivation

— Calculus specific Def. of ~, see table
on page 265

— First-order background ~, 123

— general Def. of ~, 55

Z-~, 158

Normal ~, 177

ordering, 167

— via computation rule, 60

Equality, 4, 5, 12, 39, 39, 40, 44, 70,
77, 79, 80, 141, 146, 147, 157, 194,
200, 202

— ~ handling, overview, 73-76

— ~ in Linearizing Completion, 186-189

— Axioms of ~, 39

Equational Theories, 39, 76

— ~ within TTME-MSR, 108

Equational theories, 5

Evaluation, 22

Factorization, 11, 60-62, 62, 63, 139,
193, 200

— weak version, 62, 63

Fairness, 176

Formula, 18

Ground Completeness
— of PRTME-I, 136

— of PTME-I, 235

— of TTME-MSR, 216

Herbrand

— ~Base, 31

— ~ Interpretation, 30, 31-33, 157, 264
—— ~ for theories, 44, 45

281

282 Index

— ~ Theorem, 15, 33, 34 Residue, see T-Residue
—— ~ for theories, 47, 109 RUE-resolution, 75, 145, 189
Inference, see Theory inference Satisfiability, 23
Inference system Selection function, 131
— Completed ~, 176 Sentence, 20
Instance, 32 Signature, 17
— ground ~, 32 Stickel, Mark, 8, 49, 67, 68, 78, 116, 195
Interpretation, 21 Structure, 21

Substitution, 32
Lifting Lemma, 221-228 — away from variables, 35
Linked Inferences, 155 — CoDomain of ~ (Cod), 35
Link condition, 86 — Composition of ~s, 34
Literal Tree, 49 — Domain of ~ (Dom), 35
Loveland, Don, 15, 58, 74, 197 — Empty ~, 34

— More general ~, 35
Variable CoDomain of ~ (VCod), 35

Mayr, Klaus, 143

Model, 23 Switching Lemma, 228-235
Model Elimination, 53
— Loveland’s ~, 58, 197 T-Complementarity, 81
Most General Unifier (MGU), 35, 36, — Undecidability of ~, 81
102, 172 T-Connection, see Connection
— Multiset ~, 35, 119 T — MGR, 105
MSRr(M)[V], 105 T-Refuter, 68, 81
Multiset, 15 — Complete set of ~s, 102
— Nested ~ with weight, 165 — Most general set of ~s, 105
T-Residue, 92
NonRed(Z), 170 T -Unification procedure, 102
Tableaux, 50
Ordering, 16 — Branch representation of ~, 52
— Derivation ~, 167 — Inference rule, 53
Term, 18
Paramodulation, 4, 73, 186-189 Theory, 36, 37
Path, 216 — Axiomatizable ~, 42
Petermann, Uwe, 10, 67, 73, 82, 84, 89, _ Complete ~, 41
112, 200 — Definite ~, 90, 108
Plaisted, David, 34, 63, 73, 74, 84, 135 — Definition of ~, 37
Program, 57 — Group ~, 40

— of arithmetic, 40

Query, 57 — of orderings, 40

— of Peano arithmetic, 40
Redpndancy .. — Universal ~, see Universal theory
— Lin-d-~, criterion, 244 Theory inference
~ »-c-~, 168, 194

— Matching ~, 158

- >-d-~, 153, 168 — Minimal First-Order ~, 118
— Criterion, 169 ~ rule, 118

Refutation, see Derivation - persisting ~, 174

Regularity, 11, 60, 61, 108, 110, 112, system, 118, 157
135, 193, 200, 216-219, 222, 224, 228, Completeness criterion, 116, 125
22.95 233, 234 —— Contra-Definite ~, 131

— ~ in Restart TME, 137-139 __ TInitial ~. 160

- ~in TTCC, 101 - Soundne,ss of ~, 120

—- open Problem, 91 Theory Reasoning, 1-262
~ ~ in partial TME, 128 cory hieasontis,

Index 283

- History of ~, 7
Transformation system, 171
— Punit-normalizing ~, 179
— ~ Lin, 171

— Normalizing ~, 180

— Order-normalizing ~, 177

Unifier, 34

— Multiset ~, 34

Universal theory, 5, 44, 47, 48, 81, 85,
87, 92, 102, 109, 123, 127, 138

Validity, 23
Variant, 34

