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In this paper, we show how techniques from disjunctive logic program-
ming and classical first-order theorem proving can be used for efficient
(deductive) database updates. The key idea is to tranform the given
database, together with the update request, into a disjunctive logic pro-
gram and apply disjunctive techniques (such as minimal model reasoning)
to solve the original update problem. We present two variants of our al-
gorithm both of which are of polynomial space complexity. One variant,
which is based on offline preprocessing, is of polynomial time complexity.
We also show that both variants are rational in the sense that they sat-
isfy certain rationality postulates stemming from philosophical works on
belief dynamics.
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1 Introduction

View update in databases is an important problem that has recently attracted atten-
tion of researchers from both deductive and relational fields [AD95, Bry90, Dec90,
Dec96, GL90, GL91, KM90, Tom88, DB82, Kel85, Lan90, for example| (|Abi88| pro-
vides a survey of works in this regard). One crucial aspect of an algorithm for view
update is the satisfaction of certain rationality postulates stemming from philosoph-
ical works on rationality of change [G&r92, GR95, for example|. This aspect was
studied in detail in [AD95, Ara95], where an algorithm for database deletion that
satisfies all the rationality postulates was presented. However, a serious drawback of
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this and other known rational algorithms (such as the one from Tomasic [Tom88|) is
that they are of exponential space and time complexity.

In this paper, we present a radically different approach to rational view updates
in databases, resulting in an algorithm of polynomial space complexity. We also
show that, with resonable offline preprocessing, polynomial time complexity can be
achieved. For the simplicity of presenting the main ideas, in this paper we restrict our
attention to definite datalog programs (note that relational databases can be repre-
sented by definite programs) and view deletion only. The approach we present here is
very closely related to our diagnosis setup presented in [BFFN97b, BEFN97a|, where
hyper tableaux calculus [BFN96| was used for efficiently solving model based diagnosis
tasks. This close relationship enables us to use our ezisting, efficient implementation
for diagnosis applications for view updates as well.

The basic idea in [BFFN97b, BFFN97a] is to employ the model generation prop-
erty of hyper tableaux to generate models and read off diagnosis from them. One
specific feature of this diagnosis algorithm is the use of semantics (by transforming
the system description and the observation using an “initial model” of the correctly
working system) in guiding the search for a diagnosis. This semantical guidance by
program transformation turns out to be useful for database updates as well. More
specifically, we use a (least) Herbrand Model of the given database to transform it
along with the update request into a disjunctive logic program in such a way that
the models of this transformed program stand for possible updates. Thus known dis-
junctive logic programming and first-order theorem proving techniques are expoited
for efficient and rational view updates.

We discuss two ways of transforming the given database together with the view
deletion request into a disjunctive logic program, resulting in two variants of view
deletion algorithm. In the first variant, a simple and straightforward transformation
is employed. But unfortunately not all models of the transformed program stand for
rational deletions. In order to be rational, we show that a rationality axiom itself
(strong relevance policy) could be used as a test to filter out models representing
non-rational deletions. Interestingly, this test based on a rationality axiom turns out
be equivalent to the groundedness test used by Ilkka Niemeld for generating minimal
models of disjunctive logic programs [Nie96c|. These two concepts (strong relevance
policy and groundedness test) come from two different fields (belief dynamics and
minimal model reasoning resp.) and this equivalence provides more insights into the
issue (minimization) common to both the fields. Further, this equivalence implies
that all minimal models (minimal wrt the EDB atoms) of the transformed program
stand for rational deletions. Not surprisingly, all deletions obtained through this
algorithm result in minimal change.

The second variant of the algorithm uses the Least Herbrand Model of the given
database for the transformation. In fact, what we referred to as offline preprocessing
before is exactly this computation of the Least Herbrand Model (which can be done
in polynomial space and time). This variant is very meaningful in applications where
views are materialized for efficient query answering. The advantage of using the
Least Herbrand Model for the transformation is that all models of the transformed
disjunctive logic program (not just the minimal ones) stand for rational deletions.
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This is a very nice result since a model of a disjunctive logic program can be computed
in polynomial space and time.

The rest of the paper is organized as follows: We first briefly recall the rationality
of change and the hyper tableaux calculus in Section 2. We then present two variants
of our rational and efficient algorithm for view deletion in Secion 3. The paper is
concluded with some comments on our approach and indications for further work.

2 Background

2.1 Rationality of change

Rationality of change has been studied at an abstract philosophical level by various
researchers, resulting in well known AGM Postulates for revison [AGMS85, Gar92,
GR95, for example|. However, it is not clear how these rationality postulates can
be applied in real world problems such as database updates and this issue has been
studied in detail by works such as [AD95, Ara95]. In the sequel, we briefly recall the
postulates and an algorithm for contraction based on abduction from [AD95, Ara95].

Formally, a knowledge base K B is defined as a finite set of sentences from language
L, and divided into two parts: an immutable theory K By, which is the fixed part of
the knowledge; and an updatable theory K Byy. Because of the duality of revision and
contraction, it is enough to consider one, and rationality postulates for contracting a
sentence « from K B, written as KB—a is produced below.

Definition 2.1
Let KB be a knowledge base with an immutable part K B;. Let a and 8 be any two
sentences. Then, a and § are said to be KB-equivalent iff the following condition is

satisfied: For all set of sentences E: KBf UEF aif KBf UEF 3 [ ]
Definition 2.2 (Rationality Postulates)
(KB—1) (Inclusion) KB—a C KB
(KB—2) (Immutable-inclusion) KBy C KB—«
(KB—3) (Vacuity) If o ¢ Cn(KB), then KB—a = KB
(KB—4) (Immutable-success) If KB; tfa, then a ¢ Cn(K B—a)
(KB—5) (Preservation) If o and (3 are K B-equivalent, then K B—a =
KB—8

(KB—6.1) (Strong relevance) If 8 € KB\KB—a, then a € Cn(KB—a U
{8})

(KB—6.2) (Relevance) If 3 € KB\KB—a, then 3K B’ with KB—«
C KB' C KB s.t. a ¢ Cn(KB') and a €
Cn(KB' U {B})

(KB—6.3) (Weak relevance) If 3 € KB\KB—a, then 3K B’ with KB' C
KB s.t. a ¢ Cn(KB') and a € Cu(KB' U

{8})



Note that we have three variants of the relavant postulate of varying strength.
The weaker forms are motivated by various works of Hansson [Han91b, Han91a|.

Now we recall an algorithm for contraction based on abduction presented in
[AD95, Ara95]. Some basic definitions required for the algorithm are presented first.

Definition 2.3

Let KB be a knowledge base and « a sentence. An abductive explanation A for «
wrt KBy is a set of abducibles s.t. AU KB = a and A U KBy is consistent. An
explanation is minimal iff no proper subset of it is an explanation. It is said to be

locally minimal, iff there exists a subset KB} of KBy s.t. A is a minimal abductive
explanation of @ wrt K Bj}. Further, A is said to be KB-Closed iff A C K By. [ |

Example 2.4

Consider a knowledge base K B whose immutable part KBy = {p <~ ¢ A1, p < 1},
where ¢ and r are abducibles. Clearly, Ay = {r} is the only minimal abductive
explanation for p wrt KBj. Ag = {¢,r} is an abductive explanation for p wrt KBy,
but not minimal. However, As is a locally minimal abductive explanation for p wrt
K By, since it is a minimal explanation for p wrt {p < ¢ A r} which is a subset of
K Bj. The concept of a locally minimal abductive explanation is computationally
attractive, since a minimal abductive explanation is more expensive to compute. =

The general contraction algorithm of [AD95, Ara95] is reproduced here as Algo-
rithm 1. The basic idea behind this algorithm is to generate all (locally minimal)
explanations for the sentence to be contracted and determine a hitting set for these
explanations. Since all (locally minimal) explanations are generated this algorithm
is of exponential space and time complexity.

Definition 2.5 (Hitting set)

Let S be a set of sets. Then a set HS is a hitting set of S iff HS C |J S and for every
non-empty element R of S, RN HS is not empty. Further, HS is a minimal hitting
set iff no proper subset of it is a hitting set. [

Algorithm 1 General contraction algorithm
Input: A knowledge base KB = KB;UK By and a sentence « to be contracted.

Output: A new knowledge base KB' = KB U KBy,

begin

1.  Construct a set S = {X | X is a KB-closed locally minimal abductive expla-
nation for a wrt K Br}.
2. Determine a hitting set o(S).

3. Produce KB’ = KBy U (KBy\o(S)) as a result.

end.
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Theorem 1 (Correctness and Completeness of Algorithm 1)
Let KB be a knowledge base and « a sentence.

1. If Algorithm 1 produces KB’ as a result of contracting o from KB, then KB’
satisfies all the rationality postulates (KB—1), (KB—2), (KB—3), (KB—4),
(KB—5), (KB—6.3). Further, if the hitting set computed at step 2 is minimal,
then (KB—6.1) is also satisfied.

2. Suppose KB” statisfies all these rationality postulates for contracting o from
KB, then KB” can be produced by Algorithm 1.

2.2 Hyper Tableaux Calculus

In [BFEN96] a variant of clausal normal form tableaux called “hyper tableaux” has
been introduced. Since the hyper tableaux calculus constitutes the basis for our view
update algorithm, we will briefly recall it. It is sufficient to restrict to the ground
version here.

We assume that the reader is familiar with the basic concepts of propositional
logic. Clauses, i.e. multisets of literals, are usually written as the disjunction A; V
+++VA,V-B1V---V=aB, or as an implication A1 V---V A, < BiA---AB,, (m >0,
n > 0). The literals Ay,..., Ay, (resp. Bi,...,By) are called the head (resp. body)
of the clause. With L we denote the complement of a literal L. Two literals L and
K are complementary if L = K.

From now on D always denotes a finite ground clause set, also called database,
and ¥ denotes its signature, i.e. the set of all predicate symbols occurring in it. We
consider finite ordered trees T' where the nodes, except the root node, are labeled
with literals. In the following we will represent a branch b in T' by the sequence
b= Ly,...,L, (n > 0) of its literal labels, where L; labels an immediate successor
of the root node, and L, labels the leaf of b. Concatenation of node sequences is
denoted by “,”. So, for instances (b, L,,11) denotes the node sequence carrying the
respective labels L1,..., Ly, Lyy1. By a partial branch through a tableau we mean a
sequence of nodes starting from the root to some inner node or leaf node. The same
conventions as for branches apply. By the immediate successor (nodes) of partial
branch b we mean the set of son nodes of the last node of b.

The branch b = L1, ..., Ly is called regular iff L; # L; for 1 <4,5 <n and i # j;
here, equality is understood as equality wrt. the labels (wrt. nodes every branch
obviously would be regular). A branch which is not regular is called #rregular. The
tree T is regular iff every of its branches is regular, otherwise it is irregular. The set
of branch literals of b is lit(b) = {L1,..., Ly}. For brevity, we will write expressions
like A € b instead of A € lit(b). In order to memorize the fact that a branch contains
a contradiction, we allow to label a branch as either open or closed. A tableau is
closed if each of its branches is closed, otherwise it is open.

Definition 2.6 (Hyper tableau)

A literal set is called inconsistent iff it contains a pair of complementary literals,
otherwise it is called consistent. Hyper tableaur for D are inductively defined as
follows:



Initialization step: The empty tree, consisting of the root node only, is a hyper
tableau for D. Its single branch is marked as “open”.

Hyper extension step: If (1) T is an open hyper tableau for D with open branch b,
and (2) C = A1 V---V A, < By A---AB, is a clause from D (m > 0, n > 0),
called eztending clause in this context, and (3) {Bi,...,Br} C b (equivalently,
we say that C is applicable to b) then the tree T’ is a hyper tableau for D,
where T" is obtained from T by extension of b by C: replace b in T by the new
branches

(b,A1)...,(b,Ap), (b,—mB1)...,(b,—By)

and then mark every inconsistent new branch as “closed”, and the other new
branches as “open”.

We say that a branch b is finished iff it is either closed, or else whenever C is applicable
to b, then extension of b by C' yields some irregular new branch. [ |

The applicability condition of an extension expresses that all body literals have to
be satisfied by the branch to be extended (like in hyper resolution [Rob65]). Unless
stated otherwise we will from now on consider only regular hyper tableaux. This
restriction guarantees that for finite clause sets no branch can be extended infinitely
often. Hence, in particular, no open finished branch can be extended any further.
This fact will be made use of below occassionally.

Notice as an immediate consequence of the definition that open branches never
contain negative literals.

Example 2.7 (Hyper Tableaux)

Consider the following database D: Hyper Tableau:
t
D: pVg <+ tATr t
qg <~ pAt o r
The figure on the right contains a hyper tableau for D. For A
economy of notation, closed branches are not displayed. This q P
tableau is obtained as follows: starting with the empty tree, we ‘
can extend with ¢ <— and then with r <-. Then, since ¢ and r q

are now on the branch, we can extend with p V¢ < t Ar. The
left branch is now finished, because q < p A t is not applicable.
Extension with g <— pAt at the right branch finishes this branch
as well.

Definition 2.8 (Branch Semantics)

As usual, we represent an interpretation Z for given domain ¥ as the set {A € X |

Z(A) = true, A atom}. Minimality of interpretations is defined via set-inclusion.
Given a tableau with consistent branch b. The branch b is mapped to the inter-

pretation [b]y, := lit(b). Usually, we write [b] instead of [b]y, and let ¥ be given by

the context. [
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For instance, the semantics of the left (right) branch b; (b2) in the tableau in Exam-
ple 2.7 is [b1] = {t,7,q} ([b2] = {¢, 7, p,q}).

A refutational completeness result for hyper tableaux was given in [BFN96|. For
our purposes of computing database updates, however, we need a (stronger) minimal
model completeness result. Further, we are interested in minimal models only with
respect to some given subset I' of the whole signature 3. In the sequel, I' always
denotes some subset of the signature 3. i.e. a subset of the atoms occuring in a clause
set under consideration.

Definition 2.9 (I'-Minimal Models)

For any atom set M define M|T' = M NT'. In order to relate atom sets M; and M,
define My <p My iff M1|F C M2|F, and My =t M, iff Ml\I‘ = MQ‘P As usual, the
relation My <p M> is defined as My <r My or M1 =r M,. We say that a model
T for a clause set M is T-minimal (for M) iff there is no model Z' for M such that
7 <rZ [ |

It is easy to see <r is a partial order and that =r is an eqivalence relation. Notice
that the “general” minimal models can simply be expressed by setting I' = 3. Hence,
by a minimal model we mean a Y-minimal one.

Some useful facts are the following:

Lemma 2 (Useful facts)
Let My and Mj be atoms sets, and suppose I' C T'. Then the following hold:

M1 SI‘ M2 imp]ies M1 SI" M2 (1)
M1 =r M2 imp]ies Ml =1 MQ (2)

The proof uses simple facts about sets, and it is omitted. Notice that a similar
proposition about <r does not hold in general.
We start with a basic lemma. Similar results were given in [Rei87, Nie96a].

Lemma 3 (Minimization Lemma)
Suppose T is partitioned asT = AUA, i.e. ANA = (. Let M be a set of formulas.
Then?

(1a) M U—-A = A and (1b) M U-A is satisfiable
iff
(2a) M U—-A UA is satisfiable and (2b) A is C-minimal for this property.

Property (2b) using an explicit wording shall mean “there is no partition I' = A’ U A’
with A’ C A such that M U-A’U A’ is satisfiable”.

PROOF: (1) = (2): Let I be a model for M U -A, which exists by (1b). By (1a),
I is a model for A as well. Hence (2a) holds. It remains to show (2b). Suppose, to
the contrary, that A is not a minimal set such that (2a) holds. Hence, there is an

'From a circumscriptive point of view, T' is the set of atoms to be minimized, and X \ T varies.
*For a set A of formulas we define —A := {~F | F € A}. The notation M |= A means M  F,
for every F' € A.



A € A such that MU-AU{=A}UA\ {A} is satisfiable. Trivially, M U —E_U {—4}
is satsifiable as well. But then, M U -A P~ A, and consequently, M U -A = A.
Contradiction to (1a). Hence the claim follows.

(1) < (2) Assume that (2a) and (2b) hold. Hence, (1b) follows trivially. Suppose,
to the contrary, that (1a) does not hold. That is, M U -A [£ A, for some A € A.
Hence, X := M U—A U {—A} is satisfiable. Let I be a model for X. Assume that
I is given as the set of true atoms, and atoms not contained in I are false. Hence I
implicitly is also an interpretation for A\ {A}. Next define

A'={BeA\{A}|I} B}
AN'=AU{A}U{BeA\{A}|I[E-B}
X' =MuU-A"UA" .

Since I = X it follows immediately that I = X' as well. By construction, we also

have I' = A’UA’ and A'NA’ = ). From A’ D A (by construction) it follows A’ C A,

and we have a contradiction to the minimality of A (2b). Hence the claim follows.
|

For minimal model reasoning, or, more generally, circumscriptive reasoning, Lemma, 3
provides an important “tool” for testing whether an open finished branch b represents
a minimal model: T is taken to be either the signature ¥ (for general minimal model
reasoning), or a subset thereof (for circumscriptive reasoning). The set A is the
set of positive atoms occuring on b. Now, by Lemma 3, A is a minimal model for
M iff M U-A E A (where A is read as conjunction of atoms). Notice that this
condition can be tested by a single theorem prover call, which is referred to as the
“groundedness test”, by checking M U—=AU{\/ 4ca A} for unsatisfiablity. Interested
readers are referred to [Nie96b, Nie96¢c| for more information on this technique of
generating minimal models.
The following theorem is a strengthening of a result in [BFFN97a).

Theorem 4 (Model Soundness and I'-Minimal Model Completeness)
Let T be a hyper tableau for D. Then, for every finished open branch b in T it holds
that [b] is a (not necessarily I'-minimal) model for D (Model soundness).

Further, if every open branch in T is finished, then for every I'-minimal model T of
D there is an open branch b in T such that T =r [b] (I'-minimal model completeness).

PROOF: Soundness direction: let b in T be an open finished branch. Suppose, to
the contrary, that [b] is not a model for D. Hence [b] is not a model for some
clause C = Ay V---V A, < By A--- A By,. This means that {B1,...B,} C lit(b)
and {A1,...,Ap} Nlt(b) = 0. Now, m = 0 is impossible, because otherwise by
finishedness, b would have to be extended by C and it would have been close then.
The case m > 0 is handled as follows: since {A1,..., Ay} Nb =0 the extension of b
by C does not violate regularity. Hence, b is not finished. Contradiction.

Completeness direction: if no I'-minimal model for D exists then the theorem
holds vacuously. Otherwise let Z be a [-minimal model for D. Let A C T' the true
atoms, i.e. A={A€A|ZE A}, andlet A=T)\A.
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In a first step we show that there is an open branch b such that A C [b]. It
trivially holds that

D U A U—A is satisfiable, (1)

where =M :={-A | A € M}. Since 7 is a I'-minimal model, Lemma 3 is applicable
(in the “if” direction) and we conclude D U =A = A. This holds if and only if

DU-AU{\/ —A} is unsatisfiable. (2)
A€EA

Hence, by refutational completeness of Hyper tableaux there is a refutation of this
clause set. Further, by 1, the subset D U —A is satisfiable. Hence, in any hyper
tableau refutation the clause \/ 4o 7A must be at used once for an extension step,
say at branch b'. But, by definition of hyper extension step this is possible only if the
complementary literals are on the branch ¢/, i.e. A C lit(b'). We can omit from the
refutation all extension steps with \/ 4ca —A, as well as all extension steps with the
negative unit clauses from —A. The result is a hyper derivation from D alone. Now,
either the branch ¥ is finished, and the theorem is proven, or otherwise the derivation
can be continued so that at least one open finished branch b with lit(b') C lit(b) comes
up. Reason: otherwise every such extension b of &' would be closed, meaning that
we could find a refutation of D U —A alone, which by soundness of hyper tableau
contradicts the satisfiability of D U =A. Thus, b is a branch with A C [b]. This
concludes the proof of the first step.

Next, we show that for some branch b with A C [b] we have AN[b] = . Suppose,
to the contrary, that for every branch b with A C [b] we have A N [b] # (. Hence
each b can be closed with some literal =A € —=A. Thus we can find a refutation of
D U —A alone, which, by soundness of hyper tableaux contradicts the satisfiability
of DU-A. Hence, AN [b] = @ for some branch b. Since we presuppose A C [b] we
have together [b]|T" = A. Since trivially Z|T' = A we conclude Z =r [b] as claimed.
|

For example, since in the tableau in Example 2.7 every open branch is finished, one
of its branches contains a ¥-minimal model (the literals {¢, r, ¢} in the left branch con-
stitute a X-minimal model). The {¢,r, ¢}-minimal models are {¢,r,q} and {¢,r,p,q},
which both are computed.

The just presented calculus of hyper tableau has been adopted in [BFFN97b,
BFFN97a] for model based diagnosis applications (cf. [Rei87]). Further, a semantical
approach (by using an “initial model” of the correctly functioning device for trans-
forming the given system description and observation) was used to guide building
models. This transformation technique can be successfully used for database updates
also, and in the sequel we discuss this in detail.

3 An Algorithm for View Deletion

A definite deductive database DDB consists of two parts: an intensional database
IDB, a set of definite program clauses; and an extensional database EDB, a set of
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ground facts. The intuitive meaning of DDB is provided by the Least Herbrand
model semantics and all the inferences are carried out through SLD-derivation. The
reader is referred to [Llo87, and the references therein|, for more information on
definite programs, the least Herbrand model semantics, and SLD-derivations. All the
predicates that are defined in IDB are referred to as view predicates and those defined
in EDB are referred to as base predicates. Extending this notion, an atom with a
view predicate is said to be a view atom, and similarly an atom with base predicate
is a base atom. Further we assume that IDB does not contain any unit clauses and
no predicate defined in a given DDB is both view and base.

Two kinds of view updates can be carried out on a DDB: An atom, that does
not currently follow from DDB, can be inserted; or an atom, that currently follows
from DDB, can be deleted. In this paper, we consider only deletion of an atom from
a DDB. When an atom A is to be deleted, the view update problem is to delete only
some relevant EDB facts, so that the modified EDB together with IDB will satisfy
the deletion of A from DDB. View update problem, in the context of deductive
databases, has been studied by various authors and algorithms based on SLD-trees
have been proposed [AD95, Ara95, Bry90, Dec90, Dec96, GL90, GL91, KM90, Tom88,
for example].

Note that a DDB can be considered as a knowledge base to be revised. The IDB
is the immutable part of the knowledge base, while the EDB forms the updatable
part. In general, it is assumed that the language underlying a DDB is fixed and
the semantics of DDB is the least Herbrand model over this fixed language. We
assume that there are no function symbols implying that the Herbrand Base is finite.
Therefore, the IDB is practically a shorthand of its ground instantiation®, written as
IDBg. In the sequel, technically we mean IDB g when we refer simply to IDB. Thus,
a DDB represents a knowledge base where the immutable part is given by IDBg and
updatable part is the EDB. Hence, the rationality postulates (KB—1), (KB—2),
(KB—3), (KB—4), (KB—5), and (KB—6.3) provide an axiomatic characterization
for deleting a view atom A from a definite database DDB.

Logic can provide a conceptual level understanding of relational databases, and
hence rationality postulates (KB—1), (KB—2), (KB—3), (KB—4), (KB—5), and
(KB—6.3) can provide an axiomatic characterization for view deletion in relational
databases too. A relational database together with its view definitions can be rep-
resented by a definite deductive database (EDB representing tuples in the database
and IDB representing the view definitions), and so the same algorithm can be used
to delete view extensions from relational and deductive databases. It is then inter-
esting to compare our approach with existing algorithms [DB82, Kel85, Lan90, for
example].

An algorithm for view deletion, based on the general contraction algorithm (cf.
Algorithm 1) was presented in [AD95, Ara95]. There, given a view atom to be
deleted, set of all explanations for that atom has to be generated through a complete
SLD-tree and a hitting set of these explanations is then deleted from the EDB. It

3a ground instantiation of a definte program P is the set of clauses obtained by substituting terms
in the Herbrand Universe for variables in P in all possible ways.
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was shown that this algorithm is rational. A serious drawback of this algorithm is
that all explanations for the view atom to be deleted have to be generated and kept
in memory (recall that a complete SLD-tree has to be generated). This means that
this algorithm is of exponential space complexity. The same analysis holds for other
known rational algorithms such as that of Tomasic [Tom88|.

In this paper, we present a radically different approach that runs on polynomial
space. In contrast to our previous algorithm, this one directly computes a hitting set
without explicitly generating all the explanations. Moreover the generation of hitting
set is carried out through a hyper tableaux calculus that is focussed on the goal.

3.1 An approach based on minimality test

The key idea of the algorithm presented in this paper is to transform the given
database along with the view deletion request into a disjunctive logic program and
apply known disjunctive techniques to solve the original view deletion problem. The
intuition behind the transformation is to obtain a disjunctive logic program in such
a way that each (minimal) model of this transformed program represent a way of
deleting the given view atom. We present two variants of our algorithm. The one
that is discussed in this section employs a trivial transformation procedure but has
to look for I'-minimal models, where I' will consist of the negations of the EDB-
predicates; I'-minimal models therefore characterize minimal deletion operations by
reading the truth of a negative EDB-literal as a deletion.

The other variant (discussed in the next section) perfoms a costly transformation,
but dispenses with the requirement of computing the minimal models.

We start presenting our algorithm by first defining precisely how the given database
is tranformed into a disjunctive logic program for view deletion purposes.

Definition 3.1 (Renaming)
Given a clause C = A < B where A (B) is a disjunction (conjunction) of atoms and
a set of ground atoms S C X. The renaming of C wrt. S is

C% = (VAeA,A¢s A) v (VBeB,BeS ﬁB) « (VBeB,BgéS B) A (VAeA,AeS ﬁA)

For a clause set, the renaming is defined as the renaming of all its members.
]

That is, for renaming a clause every atom A in the body (resp. head) of C that is
also in S is moved to the head (resp. body) as =A. Below we will make make use of
the trivial fact that I = C iff I = C¥.

The careful reader will notice that the renaming does not result in a clause,
because it leaves us with literals where atoms are expected. However, we will take
the freedom to refer to a renaming as a clause as well.

We want to apply the hyper tableau calculus to renamed clause sets as well.
In order to avoid unneccessary changes to the calculus, we can bijectively map a
renamed clause set to a clause set acording to the original definition by taking the
signature X% = {A € ¥ | A ¢ S}U{-A | A € S}. The second set is to be read
as a set of atoms containing in their names the negation sign. Henceforth, when
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the hyper tableaux calculus is applied to a renamed clause set, always the modified
signature X7 is understood. Hence, also the interpretation [b] associated to a branch
b in such a tableau is a model for the renamed clause set, say MS. It can easily
be converted into a model for the original clause set M by the following bijection
between Z-interpretations and X °-interpretation: for every interpretation Z: 7 = M
iff 7% = MS, where Z%(—A) = true iff Z(A) = false for A € S, and Z°(A) = Z(A)
for A¢S.

For instance, take M = {AV -BV C}, S = {4, B}, T = {}. Hence M° =
{=AV -=BV C} and I° = {-A, -B} is a model for M®. This example also
demonstrates that minimality of models is not preserved* Instead the following can
be achieved:

Lemma 5 (Maximal Models by Renaming)
Let S be a set of atoms such that T' C S, and let M® be the renaming of satisfiable
clause set M wrt. S. Let

A={AeTl|ZI(A) = true}
A% = {-AeT%|I5(-A) = true}
(={-AeT%|Z(A) = false}) .

Then a
YS-interpretation Z° is a T'-minimal model for M*® U AS
iff

Z E M UA and there is no set A" with A C A" C T such that M U A’ is
satisfiable.

That is, under the stated condition, computing I'*-minimal models is equivalent to
mazximize a set of atoms A C T' consistent with M. Intentionally A constitutes
ezxactly the true atoms of Z restricted to I'. Hence, 7 is a “I"-maximal” model.
PRrOOF: The equivalence stated in parenthesis follows from the definition of Z° and
the fact that ' C S. We have
Z% is a I'*-minimal model for M U AS
& IS EMSU{-AeT%|I5-A) = true} U{-—A | ~A € T¥ and T%(-A) =
false} and the second set is minimal, and hence the third set is maximal
& ITEMU{-AecTl |Z(A) = false} U{A | A € T and Z(A) = true} and
the second set is minimal, and hence the third set is maximal (this follows
immediately from the definition of Z)

& Ik MUA as claimed
|

Definition 3.2 (IDB* Transformation)
Let IDBUEDB be a given database. Let Sy = EDBU{A | Ais a ground IDB atom}.
Then, IDB* is defined as the renaming of IDB wrt Sj. ]

*One would have to have that ' N1 S = () to achieve that I'-minimality of models is preserved. In
the present paper, however, we do not need this result.
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Remarks 3.3
Note that IDB* is in general a disjunctive logic program. The negative literals (—A)
appearing in the clauses are intuitively interpreted as deletion of the corresponding
atom (A) from the database.

Note that there are no facts in IDB*. So when we add a delete request such as
—A to this, the added request is the only fact and any bottom-up reasoning strategy
is fully focused on the goal (here the delete request). ]

The following example illustrates this transformation idea.

Example 3.4
Consider the following database:
IDB: p + t EDB: t <
p < qAu T4
g + s
U 4~ T

The set Sy is determined by all the IDB atoms and the current EDB atoms and in
our case it is {p, ¢, u,t,r}. IDB* is the transformation of IDB wrt Sy which is given
as follows:

IDB* : -t 4~ p
gV -u < -p

— sA—gq
T —

Now, when we have a deletion request for a ground view atom A, represented as
—A, the idea is to generate models of IDB* U {—A} and read the base atoms to be
deleted from them. As mentioned in the above remark, —A is the only fact and a
bottom-up model generation process is fully goal-oriented. We propose to use the
hyper tableaux calculus for this, and we state precisely how this is done. Suppose a
ground view atom A is to be deleted. Then, a hyper tableau for IDB* with delete
request —A is built. The open finished branches give us models for the renamed
database. The intuition is that the set of EDB atoms appearing in a model (open
branch) constitute a hitting set, and removing this set from EDB should achieve the
required view deletion. This is formalized below.

Definition 3.5 (Update Tableaux, Hitting Set)

An update tableau for a database IDBUFEDB and delete request — A is a hyper tableau
T for IDB*U{—A <} such that every open branch is finished. For every open finished
branch b in T' we define the hitting set (of b in T') as HS(b) = {A € EDB | - A € b}.
|

Remarks 3.6 (Hitting Set and Relation to Diagnosis)
The name “hitting set” is a misnomer here, but we use it in order to compare this
approach with previous approaches that generate explanations and a hitting set of
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them. This new approach directly generates a “hitting set” without enumerating
all the explanations. Also, what we call hitting set here, has been called diagnosis
in [BFFN97b, BFFN97a]. In terms of diagnosis concepts from [Rei87], the system
description can be considered as IDB, while the non-abnormality of the components
form the corresponding EDB. Technically, this means to replace every EDB-atom
p by a clause p < —ab(p), where “ab(p)” means “p is abnormal”. In order to have a
one-to-one mapping between minimal diagnosis (cf. [Rei87]) and minimal database
contractions we need the additional axioms —p < ab(p) for every EDB-atom p.
Together, they mean that a literal p is abnormal (diagnosis) if and only if p is deleted
from the database.

Axioms of the latter kind are a bit problematic in the approach of [BFFN97a] due
to the negative ab-literals, which were not allowed there. However, in any minimal
diagnosis these axioms are a consequence of the other clauses by the following line
of reasoning: let a minimal diagnosis be given (i.e. a model which minimizes the
extension of the ab-predicate. Say that ab(p) holds in that diagnosis. Due to p +
—ab(p), which is the sole clause containing —ab(p), this can only be the case if p is
false. Hence —p < ab(p) holds in this diagnosis.

But now, since we know that —p < ab(p) holds in every minimal diagnosis, these
clauses can be deleted, and the approach of [BFFN97a| can be used to compute
minimal database contractions.

Next we want to assemble all the concepts and results obtained so far in the
following theorem:

Theorem 6 (Completeness of Update tableaux)

Let T be a non-trivial update tableau for IDB U EDB and delete request —A. Then
for every minimal set &« C EDB such that {—~A}UIDB U (EDB\«) is satisfiable there
is an open finished branch b in T such that HS(b) = a.

PROOF:

We have
{-A} U IDB U (EDB\«) is satisfiable, & minimal

For some Z: Z = {—-A} UIDB U (EDB\«), a minimal

<~
Lemma 5 For some T50: T50 is a EDBS0-minimal model for {-A} U IDB* U -«
Reason: Recall from Definition 3.2 that EDB C Sj; hence Lemma 5
is applicable, setting A = (EDB\«), A® = =« and M = {-~A} U IDB
there
= For some Z50: 750 is a EDB®°-minimal model for {~A} U IDB*
Reason: every smaller model wrt. EDB®° would falsify one atom from
=, thus contradicting the previous line.
there is an open finished branch b in T' such that [b] =zpps, Z°°. Fur-
ther, 79 =, b5, -, because ~a = AS = {~A € EDB> | 7% (-A) =
true
= there is an open finished branch b in T such that HS(b) = «

Th 4
eozrfm
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To sum up, we have arrived at a completeness result which allows us to com-
pute minimal contractions by computing one (any) update tableaux. However, the
converese is not established yet. That is, given an open finished branch b, it is not
guaranteed that HS(b) is a minimal database contraction. In other words, we will
have to establish soundness.

Before discussing the soundness of the intuition given above in this section, we
wish to eliminate a trivial form of update tableau:

Definition 3.7 (Trivial Update Tableaux)

Let T be an update tableau. The branch b in T is called trivial if HS(b) = 0,
otherwise it is called non-triviel. An update tableau is called trivial if some open
finsihed branch is trivial, otherwise it is called non-trivial. [ |

Example 3.8

A special case comes up if an update tableau is trivial. For example, if IDB = {p + ¢}
and EDB = {r < } then IDB* ={ < —pAq}. The update tableau for IDBUEDB
and delete request —p consists of one open branch b, which is labelled with —p (because
< —p A ¢ is not applicable to —p). Thus, HS(b) = {}. Intentionally, this means that
the delete request can be fullfilled without deleting any EDB-atoms. [

Note that there is no point in continuing an update tableau construction as soon as
one open finsihed trivial branch is derived. This is always an “optimal” case, because
it means that the delete request ist compatible to the EDB. This is formalized below.

Lemma 7 (Trivial update tableaux)
Let T be a trivial update tableaux for IDB U EDB and delete request —=A. Then
IDB U EDB U {—A} is consistent.

If IDB U EDB U {—A} is consistent then every update tableaux for IDB U EDB
and delete request —A is trivial.

PROOF: For the first part, let T' be given as stated, and assume, to the contrary,
that IDBUEDBU{-A} is inconsistent. As a property of the renaming, it holds that
IDB* U EDB* U {—A < } is inconsistent, where EDB* := { <+ —A| A € EDB}.
Further, since IDB U {—A} is consistent (for syntactical reasons: IDB contains no
facts), IDB* U{—A < } is consistent as well. Notice that by definition of update
tableau, T is a hyper tableau for just this set. By soundness of hyper tableaux
(Theorem 4), T' must contain open branches. Further, every open branch must close
with some clause from EDB* (because otherwise, by completeness of hyper tableaux
(Theorem 4), we would have a contradiction to the inconsistency of IDB* U EDB* U
{—A + }). But this means that every open branch contains at least one literal
from {-A < | A € EDB}. But then HS(b) # 0 for every open branch b in T
Consequently, T' is not trivial. Contradiction.

The argumentation for the second part is similar. We will therefore only sketch
the proof. Assume, to the contrary, that IDB U EDB U {—A} is consistent, and that
there is a respective non-trivial update tableaux. Let T be that tableau. It is a
tableau for the clause set IDB* U {—A < }. It must be open, because IDB U {—A}
is consistent, and consequently IDB*U{—A «+ } is consistent as well. Now, since T'
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is non-trivial, every open branch b in T' contains a literal from {-A <~ | A € EDB}.
Thus, b can be closed with some clause from EDB* (cf. the first part for a definition
of EDB*). From this we learn that IDB* U EDB* U{—A < } is inconsistent. As a
property of the renaming we conclude that IDB U EDB U {—A} is consistent as well.
Contradiction. ]

In this trivial case, we can establish the following link to the abuctive explanations
of atom to be deleted:

Lemma 8
IDB U EDB U {—~A} is consistent iff there is no EDB-closed abductive explanation
for A wrt. IDB.

PROOF: “Only-if”-direction: assume, to the contrary, that IDB U EDB U {—A} is
consistent, and that there is an EDB-closed abductive explanation for A wrt. IDB.
Thus let A C EDB such that A U IDB = A. Equivalently, A U IDB U {—A} is
inconsistent. Thus EDB U IDB U {—A} is inconsistent. Contradiction.
“If”-direction: assume, to the contrary, that there is no FDB-closed abductive
explanation for A wrt. IDB and that IDBUEDBU{—-A} is inconsistent. Equivalently,
IDBUEDB |= A. Since IDBUEDB is consistent (for syntactical reasons), A := EDB
thus is an abductive explanation. Contradiction. [ |

Now let us turn our attention to the vital question of correctness and rationality of
our proposal in the non-trivial case. Unfortunately, reading off updates from models
of the transformed program does not result in a rational deletion, as relevance policy
may be violated.

Example 3.9

Let us continue with example 3.4. Suppose Hyper Tableau:
the view atom p is to be deleted. Then ac- -p
cording to the above proposal, an update ‘
tableau for IDB* and —p is to be built. -t

This is illustrated in the accompanying fig- A
ure. —q —u

As shown, two open branches constitute
two hitting sets {t} and {t,r}. It is not
difficult to see that {¢,7} does not satisfy
any of the relevance policies (KB—6.1) or
(KB—6.2) or (KB—6.3). Hence simple
model computation using hyper tableau
calculus does not result in rational hitting
sets.

-r

{t} {t,r}

So, it is clear that every model of the transformed program does not constitute
a rational deletion. This problem could be rectified in two different ways. In this
section, we discuss an approach that employs a test for every branch. Yet another
approach based on materialized view is presented in the next section.
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To filter out only the rational hitting sets, the postulate (KB—6.1) can be used
as a test! That is, after constructing a branch, the minimality condition of (KB—6.1)
can be checked (which is a theorem proving task). The branch is closed if the corre-
sponding hitting set does not satisfy this strong relevance postulate.

Definition 3.10 (Minimality Test)

Let T be an update tableau for IDB U EDB and delete request —A. We say that
open finished branch b in T satisfies the strong minimality test iff Vs € HS(b) :
IDB U EDB\HS(b) U{s} F A. ]

Definition 3.11 (Update Tableau Satisfying Strong Minimality)

An update tableau for given IDBU EDB and delete request = A is transformed into an
update tableau satisfying strong minimality by marking every open finished branch
as closed which does not satisfy strong minimality. [ |

Example 3.12

Continuing with the same example, after constructing the branch corresponding to
the hitting set {¢,r}, the strong minimality test is carried out as follows: It is checked
if the resulting database with each member of hitting set implies the deleted atom p
or not. For example, IDB U EDB\{t,r} U {t} I p. But the same does not hold for
ri.e. IDB U EDB\{t,r} U {r}p, and hence this branch fails the strong minimality
test. ]

Interestingly, this minimality test is equivalent to the groundedness test used by
Ilkka Niemeld for generating minimal models of disjunctive logic programs [Nie96b,
Nie96¢|. The key idea of the groundedness test is to check if the members in the model
are implied by the program together with the negation of the atoms not present in
the model.

In the following we will formulate this groundedness test technique formally and
establish the equivalence results to the minimality test technique.

Definition 3.13 (Groundedness Test)

Let T be an update tableau for IDBU EDB and delete request —A. We say that open
finished branch b in T satisfies the groundedness test iff Vs € HS(b) : IDB* U {«+
-B|Be€ EDB\HS(b)} U{-A <+ } F —s. |

A notable difference between the groundedness test and the minimality test is
that the minimality test is carried out wrt. the original database IDB, whereas the
groundedness test is carried out wrt. the renamed database IDB*. We will show that
the minimal models computed by using the groundedness test achieve a minimization
of the deletion of EDB-atoms such that consistency with a given delete request is
recovered.

Proposition 9
Let T be a hyper tableau for IDB* U{—-A < } and b be an open finished branch in
T. Then the following are equivalent:
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(a) b satisfies the groundedness test

(b) b satisfies the strong minimality test

(c) [b] is an EDB*-minimal model for IDB* U {—A}, where EDB* = {-C | C €
EDB}

This means that every EDB*-minimal model of IDB*U{-A} provides a minimal
hitting set for deleting the ground view atom A. Candidate branches can be checked
for this property by the groundedness test.

PROOF: (a) iff (b): We have

Branch b satisfies the groundedness test

IDB*U{ + -B|Be€ EDB\HS(b)} U{-A <+ }F{—-s|se€ HS(b)} (*)
IDBU{B «+ |B€ EDB\HS(b)}U{«+ A}F{ <« s|se HS(b)}

Reason: by property of renaming: for any pair of interpretations Z°° for the
previous line and Z for this line: a clause occuring in the previous line (either
in the premise or conclusion) is true in Z% iff the corresponding clause in this
line is true in 7.

& Vse€ HS(b): IDBU EDB\HS(b) U{s}F A

& b satisfies the strong minimality test.

=
=

(a) iff (c): we want to apply Lemma 3 to conclude that line (*) holds iff
IDB*U{ <+ -B| B € EDB\HS(b)} U{-A <+ }U{-s« |se€ HS(b)}

is satisfiable, and HS(b) is minimal. Since this is only slight reformulation of (c) the
claim would be proven.

Hence we show by the following line of reasoning that Lemma 3 is applicable: we
set there M = IDB*U{-A + }, ' = {-C | C € EDB}, A = {-s | s € HS(b)}
and A = {-B | B € EDB\HS(b)}. In order to apply Lemma 3 we have to show
that N = IDB* U{-—B | B € EDB\HS(b)} U {—-A <« } is satisfiable: clearly,
IDB* U {—A « } is satisfiable, because we are given a tableaux with open saturated
branch b for it. No clause <« =B such that B € EDB\HS(b) can be used to close
b, because then we would have to have =B € b, which implies B € HS(b). But B
cannot be in both EDB\HS(b) and in HS(b). Thus, b remains an open branch when
{< -B | B € EDB\HS(b)} would be added to IDB* U{—A « }. Further, b remains
finished, because adding negative clauses does not enable other extension steps than
those closing branches. Thus, together, N is satisfiable, because b constitutes a model
for it. ]

Now we are in a position to formally present our algorithm. Given a database and
a view atom to be deleted, we first transform the database into a disjunctive logic
program and use hyper tableaux calculus to generate models of this transformed
program. Models that do not represent rational deletions are filtered out using the
strong minimality test. This is formalized in Algorithm 2.

To show the correctness of this algorithm (wrt the rationality analysis), we could
study if all the rationality postulates are satisfied. It is obvious that (KB—6.1) is
satisfied and checking other postulates should not be difficult. The completeness of
this algorithm (wrt the rationality analysis) could be studied following the lines of
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Algorithm 2 View deletion algorithm based on minimality test
Input: A database IDB U EDB and a ground view atom A to be deleted.

Output: A new database IDB U EDB’

begin

1. Construct a branch b of an update tableau satisfying strong minimality (cf.
Definition 3.11) for IDB U EDB and delete request —A.

2. Produce IDB U EDB\HS(b) as a result. (HS(b) of a branch b of an update
tableau is defined in Definition 3.5)

end.

[BFFN97a|, where a similar exercise was carried out for minimal diagnosis complete-
ness.

However, we choose an alternative way to show the rationality of this approach in
order to gain more insight. In particular, we analyse how this is related to the
previous approach presented in the last section, i.e. generating explanations and
computing hitting sets of these explanations. To better understand the relationship
it is imperative to find where the explanations are in the hyper tableau approach.
We first define the notion of cut in this direction.

Definition 3.14 (EDB-cut)
Let T be an update tableau with open branches by, ...,b,. Aset S = {41,...,4,} C
EDB is said to be a EDB-cut of T iff —=A; € b;, for 1 < <mn. [ ]

That is, an EDB-cut is obtained from 7' by picking exactly one negated EDB-
atom from each open branch in 7. Notice that for non-trivial update tableau an
EDB-cut always exist, as every open branch contains a negated EDB-atom.

A careful reader would have already realized that a EDB-cut across the tableau
constitutes an explanation for the view atom being deleted. More precisely:

Lemma 10

Let T be a non-trivial update tableau for IDB U EDB and delete request ~A. Let S
be the set of all EDB-closed minimal abductive explanations for A wrt. IDB. Let S’
be the set of all EDB-cuts of T. Then the following hold:

e SCJY
e VA'e S :dA e Sst. ACA'

PRrROOF: For the first item, let EDB O A € S be a given minimal abductive ex-
planation for A. We have to show that there is an EDB-cut of T which consists of
the same literals as A. First, note that IDB U A U {—A} is inconsistent, and that
IDB U A" U{—=A} is consistent, for each A’ C A (*). Since the renaming transfor-
mation preservs satisfiablity, it holds that IDB* UA* U {—=A < } is inconsistent as
well, where A* :={ <« —A| A € A}. Further, since IDB U {—A} is consistent (for
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syntactical reasons: IDB contains no facts), IDB* U {—A < } is consistent as well.
Notice that by definition of update tableau, T' is a hyper tableau for just this set.

By soundness of hyper tableaux (Theorem 4), T' must contain open branches.
Further, every open branch b; in T, for 1 < ¢ < n, must close with some (negative unit)
clause of the form <+ —A; € A*. This holds, because otherwise, by completeness of
hyper tableaux (Theorem 4), we would have a contradiction to the inconsistency of
IDB* U A* U{—A « }. Furthermore, each of the negative unit clauses in A* must
be used (at least once) to close a branch, because otherwise we would have together
with soundness of hyper tableaux a contradiction to the minimality of A, as stated
in (*). Thus, in other words, collecting the respective EDB-atoms from the b;’s gives
the EDB-cut A of T.

The argumentation for the second item is similar. Let A’ € S’ be arbitrarily.
By definition of EDB-cut, for each A € A’ there is an open branch in T' containing
—A, and vice versa. Hence, the additional negative unit clauses A* := { <+ —A |
A € A’} can be used to close T'. Recall that T is a hyper tableau for the clause set
IDB*U{-A + }. Thus, by soundness of Hyper tableaux, IDB*UA*U{-A «+ }
is inconsistent. Renaming does not affect consistency. Hence IDB U A' U {—A} is
inconsistent as well. Equivalently, IDB U A’ |= A. Since IDB U A’ is consistent for
syntactical reasons (this set contains no negative clauses), A’ is an (EDB-closed)
abductive explanation for A. Trivially A’ contains a minimal such explanation A.
That is, A € S as desired. [

Remarks 3.15
Unfortunately, and contrary to what one might expect, it is not possible to strengthen
the second item in this lemma towards

VA'e S':3A € Sst. A=A,

even if we restrict to update tableaux satisfying strong minimality. This is the canon-
ical counterexample:

IDB: p + gqAr EDB : ¢
p — t T
t

TTT

Now consider p. There are two minimal abductive explanations for p, which are {¢}
and {q,r}. An update tableau (even satisfying strong minimality), however, will also
admit the EDB-cuts {q,t} and {r,¢}. This example shows us that computing mini-
mal hitting sets and computing minimal abductive explanations are rather different
things. [

The above lemma precisely characterizes what explanations are generated by an
update tableau. It is obvious then that a branch cuts through all the explanations
and constitutes a hitting set for all the generated explanations. This is formalized
below.
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Lemma 11 ([AD95, Ara95])
Let S and S’ be sets of sets s.t. S C S’ and every member of S’\S contains an element
of §. Then, a set H is a minimal hitting set for S iff it is a minimal hitting set for

S’

Lemma 12

Let T' be a non-trivial update tableau for IDB U EDB and a delete request - A that
satisfies the strong minimality test. Then, for every open finished branch b in T,
HS(b) is a minimal hitting set for all the abductive explanations of A.

PROOF: Follows from Lemma 10 and Lemma 11. [ ]

So, Algorithm 2 generates a minimal hitting set (in polynomial space) of all
EDB-closed locally minimal abductive explanations of the view atom to be deleted.
From the belief dynamics results recalled in section 2, it immediately follows that
Algorithm 2 is rational.

Theorem 13 (Main Theorem)

Algorithm 2 is rational, in the sense that it satisfies all the rationality postulates
(KB—1), (KB—2), (KB—3), (KB—4), (KB—25), and the strong relevance postulate
(KB—6.1). Further, any deletion that satisfies these postulates can be computed by
this algorithm.

3.2 An approach based on materialized view

In many real world applications, the view is materialized, i.e. the least Herbrand
Model is computed and kept, for efficient query answering. In such a situation,
rational hitting sets (i.e. deletions satisfying weak relevance) can be computed without
performing any minimality test. The idea is to transform the given IDB wrt the
materialized view and to make a little change to the calculus. We will first describe
the new transformation, and then motivate why the calculus has to be changed as
well.

Definition 3.16 (IDB* Transformation)
Let IDB U EDB be a given database. Let S; be the Least Herbrand Model of this
database. Then, IDB™ is defined as the transformation of IDB wrt S;. [ |

Example 3.17
Consider Example 3.4 again. It is not difficult to see that the Least Herbrand model
of the database IDB U EDB given there is S; = {t, p, r, u}. Hence:

IDBY: —t +« -p

-u < —PpAgq
qg « s
o 4= U

Note that IDB™ differs from IDB* in the treatment of ¢, which is an IDB-predicate,
but ¢ is false in S;. [
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A first idea to compute rational hitting sets would be to compute an update
tableaux for a delete request —A, where IDB* is replaced by IDB™ (cf. Def. 3.5).
Indeed, this would work for Example 3.17 if we take EDB = {t <— ,r < } and delete
request —p. The single hitting set computed by this method is just {¢}. Deleting ¢ <
from IDB a correct solution (in the sense of the weak relevance postulate). However,
as the following examples shows, in general there is a completeness problem with this

approach:
Example 3.18
Consider the following database:
IDB: p <+ gqAr EDB: q +
p T T

The Least Herbrand Model of this database is {p, g, r} and the transformed database
based on this model is given as:

IDBT: —rV-q < -p

ar 4— -p

To delete the view atom p, the hyper tableau calculus is applied on IDBY U {—p «}.
There exist two different update tableaux, which are the following;:

-p

TN

q -r -p

-r

This tableau is obtained by using the first
rule of IDB™ first, and then using the sec-
ond rule on the left branch. On the right
branch the second rule is not applicable
due to regularity. The two open branches

-r
This tableau is obtained by using the sec-
ond rule first. Notice that the first rule
is not applicable, since the regularity re-
striction would be violated then. The hit-
ting set {r} would be computed.

provide the two models of IDB' U {-p}
which stand for the hitting sets {¢,r} and
{r}. Clearly, {g,r} is not minimal, and
the left branch would be closed by the
minimality test.

Notice that there are two possible contractions of EDB satisfying weak relevance: the
one is deletion of r (r is an EDB-closed locally minimal abductive explanation for p
by virtue of the second rule of IDB), and the other is deletion of ¢ and r (take the
first rule of IDB). However, the latter contraction could not be read off from either
tableaux. One idea would be to drop the minimality test and consider the hitting
sets along the open branches for deletion. However, as the right tableau shows, this
would not help either, because it misses the hitting set {q, r}.

Of course, we do not want to search the space of all possible tableaux. Hence, we
will weaken the calculus below such that both tableaux can be extended to compute
all solutions. [
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The reason for the failure to compute both rational hitting sets lies in the regularity
condition: it is too strong, and thus disables the application of clauses neccessary to
compute all rational hitting sets. However, with a weaker version of regularity we
obtain a complete calculus. In the weaker, strict hyper tableaux we forbid to allow
extension with the same clause more than once along each branch. This can be
formalized equivalently as follows:

Definition 3.19 (Occurrences, Strict Hyper Tableaux)

Given a finite ground clause set D. For comparing two literals L; and Ly occuring in
clauses in D we define L1 =¢cc Lo iff Ly is the same occurrence® as Lo in D. A branch
b=Ly,...,Ly is called strict® iff L; #occ Lj for 1 <4,j <n and i # j. “non-strict”
means “not strict”. These definitions are extended towards tableaux in the same way
as the definition of regularity (cf. Section 2.2). Adapting Definition 2.6, we say that
a branch b in a strict hyper tableau is finished iff it is either closed, or else whenever
C is applicable to b, then extension of b by C' yields some non-strict new branch. m

Notice that every regular hyper tableau is also strict, but not necessarily vice
versa. But as in regular hyper tableau, in strict hyper tableaux no branch can be
extended infinitely often.

Without proof we note that strict hyper tableaux are sound and complete. In
particular, completeness holds because the same model construction for open hyper
tableaux can be carried out as in the regular case.

Definition 3.20 (Update Tableau based on Materialized View)

An update tableau based on materialized view for a database IDB U EDB and delete
request —A is a strict hyper tableau T for IDB™ U {—=A <} such that every open
branch is finished. The notion of trivial update tableaw is similar to that of Defini-
tion 3.7. [

Example 3.21
Consider the database in Example 3.18 again. Two strict update tableau for delete
request —p exist, which are the following;:

/1,\ -p

q -r -r

-r -r —|q -_r
Update tableau 1. Update tableaux 2.

Notice that both tableaux now carry along the open branches the two rational hitting
sets as desired, which are {q, r} and {r}. |

Below we will show the general result, namely that the hitting sets of the open
branches of any update tableau based on materialized view satisfy weak relevance.
Before we are going to prove this, let us first give the algorithm (Algorithm 3):

SFormally, occurrences should be introduced as pairs of labels and, e.g. integers which allow to
uniquely address every literal in every clause in D. We will not do that here.
This notion is taken from [Fit90].



24

Algorithm 3 View deletion algorithm based on materialized view
Input: A database IDB U EDB and a ground view atom A to be deleted.

Output: A new database IDB U EDB’

begin
1. Construct a branch b of an update tableau based on materialized view (cf.
Definition 3.20) for IDB U EDB and delete request —A.

2. Produce IDB U EDB\HS(b) as a result. (HS(b) of a branch b of an update
tableau is defined in Definition 3.5)

end.
Example 3.22
Consider this database:
IDB: ans(X,Y) < par(X,Y) EDB : par(a,b)
ans(X,Y) <« par(X,Z)ANans(Z,Y) par(b, c)
par(b, d)
par(d, e)

To delete ans(a, e), hyper tableau calculus is applied on IDB™ U {=ans(a, e) <} as
follows:

—ans(a, e)
—-par(a, b) —ans(b, e)
—par(b, d) —ans(d, e)

—par(d, e)

Each branch constitutes a hitting set: {par(a, b)}, {par(b,d)}, {par(d,e)}. Any
one of these can be selected and removed from EDB. Note that {par(a, b), par(b, d),
par(d,e)} is an EDB-cut across the tableau. Also note that it is the unique EDB-
closed locally minimal abductive explanation for ans(a, e). [ ]

Like the approach with minimality test, this algorithm runs on polynomial space.
Unlike the previous one, this does not require a minimality test and hence of polyno-
mial time complexity too. But, this requires some offline pre-processing of computing
the Least Herbrand Model. Note that, unlike the other approach based on minimality
test, this method may generate a non-minimal (but rational) hitting set.

So, this approach for view deletion may not satisfy (KB—~6.1) in general. But, as
shown in the sequel, conformation to (KB—6.3) is guaranteed and thus this approach
results in rational deletion. Furthermore, any deletion conforming to (KB—6.3) can
be computed.
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We start with the following lemma which corresponds to Lemma 10 of the ap-
proach based on the minimality test. The first item states completeness of the ap-
proach. To prove this, we need the relaxation of regular towards strict hyper tableaux.
The second item expresses soundness, and the third item states that the EDB-cuts
consist only of atoms which are part of some EDB-closed locally minimal abductive
explanation for A.

Lemma 14

Let T' be a non-trivial update tableau based on materialized view for IDB U EDB
and delete request —A. Let S be the set of all EDB-closed locally minimal abductive
explanations for A wrt IDB. Let S' be the set of all EDB-cuts of T. Then the
following hold:

e SCJS.
e VA'e §':3JA € Ss.t. A C A
« VA €S A CUS

PROOF: The proof of the first item is similar to the corresponding one in Lemma 10.
However, we will give it explicitly in order to make clear why strictness is neccessary.
Thus, let EDB D A € S be a given locally minimal abductive explanation for A. By
definition of “locally minimal” (Def. 2.3), there is some subset M C IDB such that
A is a minimal abductive explanation for A wrt. M.

We have to show that there is an EDB-cut of T' which consists of the same literals
as A. First, note that IDBUAU{—A} is inconsistent (though not neccessarily minimal
inconsistent). As a property of the renaming, it holds that IDBT UAT U{-A + }
is inconsistent, where AT :={ <« =A| A € A}. For later use, we let M™ C IDB™
denote the transformation of M C IDB wrt. the least Herbrand model of IDB U A,
and note that M+ U AT U{-A4 < } is minimally inconsistent (by the satisfiability
preservation of the transformation, and by the fact that A is a minimal abductive
explanation for A wrt. M).

Similarly, since IDB U {—A} is consistent (for syntactical reasons: IDB contains
no facts), both IDBTU{=A + }and M*U{=A < } are consistent as well. Now
let Ths be a strict hyper tableaux for M U {=A < } such that every open branch
is finished. Notice that Tjs in general is not an update tableau based on materialized
view for IDB U EDB and delete request A, because possibly M+ C IDB™.

By soundness of hyper tableaux (Theorem 4), Ths must contain open branches.
Further, every open branch b; in Ty, for 1 < ¢ < n, must close with some (neg-
ative unit) clause of the form < —A; € AT. This holds, because otherwise, by
completeness of hyper tableaux (Theorem 4), we would have a contradiction to the
inconsistency of MT U AT U {=A < }. Furthermore, each of the negative unit
clauses in A* must be used (at least once) to close some branch b;, because other-
wise we would have together with soundness of hyper tableaux a contradiction to the
minimal unsatisfiablity of M* U AT U{=4 + }. Thus, in other words, collecting
the respective EDB-atoms from the b;’s gives the EDB-cut A of Tyy.
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Next, we will argue that T' contains the same EDB-cut A as Tys. First, Ths can be
extended to an update tableau based on materialized view for IDB U EDB and delete
request A, by extending as long as possible (i.e. until every open branch is finished)
with the clauses from IDBT D M*. Let T}, be the resulting hyper tableau. Notice
that trivially all EDB-cuts through T are preserved. Next, apply Proposition 15 to
conclude that T consists of the same open branches as T}, when viewed as a set of
set of occurrences. Hence, also their EDB-cuts are the same. Thus, A is an EDB-cut
of T as desired.

The argumentation for the second item is much the same as in the proof of the
second item of Lemma 10. Therefore, we will not repeat it here. The crucial point
is that the interpretation used for renaming includes all of the EDB-atoms, which is
the case.

The third item can be shown by proving the following proposition: Vr € A’ : r €
us. [ |

Hyper tableaux, like most tableau calculi, enjoy the property of proof confluence:
every derived tableau so far can be continued to a refutation, if one exists at all.
Proof confluence is a most important property because it enables the design of proof
procedures which do not backtrack over the generated tableaux. For our purposes we
need a stronger result, saying that the models computed in any two hyper tableaux
are the same:

Proposition 15 (Model Confluence of Strict Hyper Tableaux)

Let T1 and Ts be strict hypertableaux for some clause set M such that in both Tj
and T5 every open branch is finished. Then the open branches of T and Ty are the
same wrt. occurrences of literals. More formally,

Branches(T7) = Branches(7%)

where
Branches(T") = {OccSet(b) | b branch in T},
OccSet(b) = {L | L is a literal occurrence in b} .

For illustration consider the two strict tableaux in Example 3.21, and notice that

the branch sets of occurrences are the same. On the other side, the tableaux in
Figure 3.18 give a counterexample why Proposition 15 does not hold for regular
hyper tableaux.
PROOF: We will define a strictness preserving transformation 7 on hyper tableaux
where every open branch is finished, such that Branches(7(T")) = Branches(T') (let us
say that 7 preserves branches), and such that every open branch in 7(7')) is finished
as well. Furthermore, 7 does not increase the depth of T'.

Using 7, we will stepwisely transform 75 into T;. Since T preserves branches, this
immediately proves the proposition.

Now for the application of 7: either 75 = 77 and we are done. Equality here
means that 77 = T iff there is a bijection between the nodes (resp. edges) of 77 and
T5 such that corresponding nodes are labelled with the same literal occurrence.

If T1 # T; then find two partial branches (cf. Section 2.2) b; and by through T)
and T, respectively, such that by = by. Here, two branches are equal iff they are
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equal as sequences of literal occurrrences. The branches b; and by can be selected
such that they are of maximal length wrt. this propery, and that the last node is
not a leaf. Pictorially, we climb down T} and T3 as long as possible until we find a
difference.

More formally, there exist partial branches b in 77 and by in T such that by = bo
and (b1, L1) # (be, Lo) for every partial branch (b, L1) in T} and every partial branch
(bg, Ly) in Ty. Such by and by must exist because Ty # T5. Further, it is impossible
that by is a prefix of by, i.e. by = (b1,b) for some node sequence b. This holds, because
otherwise a hyper extension step would be applicable to b; (namely the one which
was applied to bg), contradicting the given assumption that every open branch in T}
is finished. For the same reason it is impossible that by is a prefix of b;. Hence, the
partial branches (b1, L1) and (b, Lo) indeed exist as suggested.

The transformation 7 will be applied to T» at branch by in such a way that after
the transformation the immediate successor nodes of by are labelled with the same
literal occurrences as the immediate successor nodes of b;. Since 7 acts local to the
subtree below by, the transformed tableaux is strictly more in accordance with 77, in
the sense that the partial branches b1 and by can both be extended by one node and
are still equal. Further, since 7 does not increase the depth of the tableaux, repeated
application of T neccessarily terminates after finitely many steps.

Hence it remains to define the transformation 7, proper. It is shown in Figure 1.
Suppose that the immediate successor nodes of b; being labeled with positive literal
occurrences are C1,...,Cy, i.e. by was extended with some clause C with these head
literals (topmost tree in Figure 1). Similarly, suppose that by was extended with a
different clause B with head literals Bj,..., By, (middle tree). From T; we learn
that C is applicable to by, and since by = by, C is applicable to bs as well. Since in T5
every open branch is finished, C must have been used for an hyper extension step in
every open branch in the subtree below by (i.e. at least once). This is also indicated
in the middle tree in Figure 1. C can occur in each subtree below B; (for 1 <7 < np)
several times (only for ease of presentation, these occurrences are drawn at the same
level). Further, below each occurrence of a literal C; (1 < j < n¢) there is a subtree,
where k further names the occurrences of the subtree below C; passing through B;.

The bottommost tree in Figure 1 shows the result of the 7-transformation. First,
we extend by with C instead of B. As can be learned from Ty, C is applicable
to byp. Then, each branch (b, C}) is extended with B. Clearly, B is applicable to
these branches, because B is even applicable to by alone (let us say that “context has
increased” in such situations). Notice that through this exhaustive extension both C
and B appear in every open branch below bs.

Next, the extension steps producing the subtrees T'5i in T} are repeated below the
branches (bo, Cj, B;) in 7(T%). Again, this is possible because context has increased.
Note that there is no problem with strictness, because C' does not occur in 75,

Finally, the branches in the repeated extension steps of T'5i in 7(T3) have to be
extended by repeating the extension steps leading to J'Tgi kin T.

By this transformation the depth of the tree stays the same, as even for the
longest branch only a different order of literal occurrences is produced. Further, by
construction, for each open branch in 7(7%) which finally passes through jTg k¥ there
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is an open branch in 75 being labeled with the same literal occurrences, only in a
different order. In sum, this transformation achieves the desired property above,
namely that 7(7%) is one level more in accordance with T} than T. [ ]

Lemma 16

Let IDBUEDB be a database and —A a delete request. Let S be the set of all EDB-
closed locally minimal abductive explanations for A wrt IDB. Then there exists an
update tableau based on materialized view T for IDB U EDB and —A s.t. S C ',
where S’ is the set of all EDB-cuts of T.

Lemma 17 ([AD95, Ara95])

Let S and S’ be sets of sets s.t. S C S’ and for every member X of S'\S: X contains
a member of S and X is contained in |JS. Then, a set H is a hitting set for S iff it
is a hitting set for S'.

Lemma 18
Let T as in Lemma 14. Then HS(b) is a rational hitting set for A, for every open
finished branch b in T

PROOF: Follows from Lemma 14 and Lemma 17. []

Now the following main theorem, stating the rationality of Algorithm 3, follows
immediately.

Theorem 19 (Main Theorem)
The above algorithm is rational, in the sense that it satisfies all the rationality pos-
tulates (KB—1), (KB—2), (KB—3), (KB—4), (KB—35), and (KB—6.3).

4 Concluding Remarks

We have presented two variants of an algorithm for deleting a view atom from a
definite database. The key idea of this approach is to transform the given database
into a disjunctive logic program in such a way that updates can be read off from
the models of this transformed program. In contrast to the previous approaches, this
algorithm is of polynomial space complexity. One variant based on materialized views
is of polynomial time complexity. Moreover, we have also shown that this algorithm
is rational in the sense that it satisfies the rationality postulates that are justified
from philosophical angle.

As mentioned before, this algorithm is based on a diagnosis algorithm presented
in [BFFN97b, BFFN97a]. An implementation exists for this diagnosis algorithm and
has been tested extensively on real world examples. This implementation can be
easily adopted for view updates as well and we are working on that now.

In the second variant, where materialized view is used for the transformation,
after generating a hitting set and removing corresponding EDB atoms, how do we
easily move to the new materialized view? An obvious way is to recompute the view
from scratch using the new EDB (i.e. compute the Least Herbrand Model of the
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Figure 1: The 7-transformation.
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new updated database from scratch), but it is certainly interesting to look for more
efficient methods. A reasonable answer for this question will greatly increase the
significance of this approach. This is indeed the view maintenance problem studied
by various researchers [GM95, for example].

Our approach works on the assumption that the EDB is available and the com-
plete EDB is indeed used for the transformation. It is interesting to study whether
this approach can be effectively used in situations where EDB is very huge or not
completely known. It should not be difficult to work with only that part of the EDB
upon which the current view update request depends on, but a formal study in this
regard is necessary.

We are also exploring how this approach can be extended for disjunctive databases,
where there is generally no unique minimal model.
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