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In this paper, stepwise and nearly stepwise simulation results for a number of first-order proof calculi
are presented and an overview is given that illustrates the relations between these calculi. For this
purpose, we modify the consolution calculusin such away that it can be instantiated to resolution,
tableaux model elimination, a connection method and Loveland’smodel elimination.

1. Introduction

In (Eder, 1991) the consolution method is introduced as a bridge between the idea of matrix
methods (see (Bibel, 1987)) and resolution. Eder defines a consolution calculus together with
a construction which yields a consolution refutation for every resolution refutation. This gives
both a demonstration that resolution can be seen as a special strategy within consolution and
a compl eteness proof for consolution. However, Eder did not investigate a formal treatment of
matrix methods with consolution; he only gave an informal description of matrix methods as a
starting point for consol ution.

It appeared fascinating to usto see how easily thetwo ideas of amatrix method and aresolution
cal culus can be combined inthe consol ution method. We tried to follow thislineto use consol ution
as aframework to relate matrix methods and resolution by defining special consolution calculi.
It turned out that thisis not as straightforward as we expected. However we can reach this goa
by making numerous changes to the definition of consolution. The changes are harmless in the
sense that the inference rules of the modified cal culus subsume that of the original calculus. The
documentation of these changes is one purpose of this paper.

Another purpose isto demonstrate that consolution iswell suited for comparing calculi. This
isatopic of significant importance for anyone trying to understand the essence of deduction or
to implement a deduction system.

In particular we show that when defined appropriately, consolution can simulate step by step
acertain model eimination calculus (model elimination as defined by Loveland), a connection
method cal culus and a tableau model elimination cal culus on which proof procedureslike PTTP
(Stickel, 1989; Stickel, 1988) and SETHEO (Letz et d., 1992) are based. The result for resolution
and consolution was shown in (Eder, 1991). Altogether we will prove the diagram from figure
1, wherethe A — B means that calculus A can be simulated stepwise by calculus B; dashed
arrowsindicate a“weaker” simulatability relation after certain calculus restrictions.

0747-7171/90/000000+ 00 $03.00/0 © 1994 Academic Press Limited



2 P. Baumgartner and U. Furbach

Sequence Consolution

4/ -
Consolution

T ] Connection
Resolution Cadculus
AN 7
Tableau-Model - Lovdand's
Elimination <-------- Mode -Elimination

Figure 1. Relations between calculi.

Furthermoreall these calculi are defined in auniform and consol ution-likelanguage, making it
easy to relate them among each other. Thisisasignificant difference when compared with other
work — we use one formal framework for the definition of the various calculi, which alows
rigorous comparisons together with proofs.

Inthe next section we briefly review theideaand the consolutioncal culus asitisgivenin (Eder,
1991). In section 3 we define amodel elimination cal culus in a consol ution-likelanguage, which
we call “tableau model elimination”, and show how to modify consolution in order to simulate
tableau model elimination. As aresult we come up with a consolution method called “ sequence
consolution” which loses part of itsel egance and simplicity compared withthe original, but which
makes some of its parameters explicit. Section 4 relates consol ution to sequence consolutionin a
formal way. Sequence consol ution then serves as aframework for the definition and comparison
of other calculi. Thisisdonein section 5 for Loveland’s origina model elimination calculus and
in section 6 for a connection calculus. Section 7 relates the tableau model elimination calculusto
resolution. Finally section 8 containsthe discussion.

2. Theldea of Consolution

Consolution can be seen as a procedure for converting a formula given in one normal form
into another normal form: assume we are given a (for smplicity: ground) formulain digunctive
normal form (DNF) and want to proveitsvalidity. This can be doneby convertingitinafirst step
into conjunctivenormal form (CNF). The second step then uses thefact that aformulain CNFis
valid iff every conjunct contains complementary literals. Thus, a simple test for complementary
literals in every conjunct suffices to decide the validity of the CNF and also the DNF. Now,
with some additional optimizationsthisisjust how consolutionworks. Consider for example the
DNF-formula

(PAQ)V(=PAQ)V-Q
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Conversion to CNF can be begun by applying the law of distributivity to the underbraced part,
yielding

(PV=P)A(PVQ)A(QV-P)A(QV Q) V-Q

Thisoperationis also carried out as afirst step in an consolution inference. The subsequent steps
deal with the above-mentioned optimizations: first, disuncts such as P v =P which contain
complementary literas are tautological and thus can be removed. Second, disjuncts may be
shortened; for example, (@ vV —P) may be replaced by (. This corresponds in some sense to
the “weakening” rule in Gentzen’s sequent calculus (see eg. (Gallier, 1987) for the sequent
calculus). The shortening step is sound since it preserves non-tautologyhood. Howevey, it may
cause incompl eteness by throwing away the “wrong” literal, i.e. the litera that contributesto a
complementary pair in alater stage. Third, @ v @ can bereplaced by @. Thisrule correspondsto
the " contraction” rule in the sequent calculus. It isimplicitly present in consolution by means of
the set data structure, which collapses multiple occurences of literalsinto asingle one. Similarly,
identical conjuncts such as @ in @ A @ can be contracted to a single one. Carrying out these
suggested operationsresultsin the formula

(PVQIANQ)V=Q

Thisformulaisthe result of an application of the consolution inference rule. Applying the rule
again yieldsby thelaw of distributivity the formula

(PVQRV=-Q)AN(QV~-Q)

This formula can be simplified as explained above towards the “empty” conjunct, which is a
proof for the validity of the given formula

Consolution is slightly more general than just explained: instead of logical formulasin DNF,
consolution works on sets of clauses, where a clause isa set of literals. The semantics of clause
sets is then obtained by interpreting the outer commas by “Vv” and the inner commas by “A”.
The clause set data structure is more general, since the interpretation of the outer comma and
inner comma can be exchanged. In other words, one starts with a CNF instead of a DNF. A
derivation of the empty clause can then beinterpreted as proof of the unsatisfiablity of the DNF-
formula, instead of a proof of the validity of a (logically different) CNF-formula. This duality
is not specific to consolution but applies to every caculus with clause sets as data structure. It
gives us the freedom to directly relate derivationsin e.g. mode eimination (which is usually
formulated in the refutational setting) and consol ution (which was formulated in Eder’s theorem
in the affirmative setting).

Consolution can a so be explained from the background of the connection method (cf. (Bibel,
1987)). Here, sets of clauses are called matrices, and the method is concerned with proving that
every path through this matrix contains two complementary literas, called connections in this
framework (a path through a matrix is built by selecting exactly one literal from every clausein
the matrix).

To illustrate consol ution we use an example from (Eder, 1991):

The three clauses { P, @}, {—P, @} and — @ are represented in the connection method as a
matrix M:
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Thus the possible paths through this matrix are { P, =P, - Q},{P, @,-Q},{@,~P,—-Q} and
{®,—@Q}. Consolution shares with the connection method the idea of showing that every path
contains a connection. Consol ution does so by combining partial paths through a matrix to even
longer partia paths and thereby ruling out paths containing a connection. The following treeis
aproof tree in consolution. The nodes are marked with path sets, eg. {{P, @},{Q,~P},{Q}}
is a set with three partia paths through the two leftmost clauses in the matrix M. Now, in an
inference the cross product of the elements of the parent nodes is built, and paths containing
connections are del eted.

{rr{eh} /{{ﬂP},{Q}}
{r. er{Q.-rr{Q}} {{-Q}}

~,

The root of this tree is the empty path set, which proves that all paths through M are comple-
mentary.

To introduce consol ution formally we need only the following definitions.

A connection in a set of clauses or a matrix isapair (K, L) of literals which can be made
complementary by application of a substitution.

DerINITION 2.1. (Eder’s Consolution (Eder, 1991)) A pathisafinite set of literals.

If pand g are paths and P and Q are path sets, thenpq := puqandP - Q := {pg | p €
P and g € Q}. For ease of notationwe writep - P asan abbreviationfor {p} - P. If Cisaclause
thenitspath setisPc := {{L} | L € C}.

A path set Q isobtained from a path set P by eimination of complementary paths if there
isaset of connectionsin P and a most generd unifier o of this set of connections such that Q
isthe set of non-complementary elementsin Po. A path set Q is obtained from a path set P by
shortening of paths if thereisasurjective mapping f : P — Q such that f(p) C p holds for all
peP.

A path set R is obtained from a path set P by simplification (Mersion O)T if there existsa path
set Q such that @ isobtained from P by elimination of complementary paths and such that R is
obtained from @ by shortening of paths.

The inference rule consolution is defined as follows

P Q
R

T Later on wewill introduce different versions of simplification.
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if thereexistsavariant @’ of @ which does not have variablesin common with P such that R is
obtained from P - @’ by simplification. R iscalled a consolvent of P and Q. O

To recognize the soundness of the consolution inference rule consider again the explanation at
the beginning of the previous section. In particular, multiplication of paths corresponds to the
application of the law of distributivity, which is an equivaence transformation. Furthermore,
if path sets are interpreted as conjunctions of digunctions then shortening of paths preserves
non-tautologyhood; or dualy, if path sets are interpreted as digunctions of conjunctions then
shortening of paths preserves satisfiability.

DEFINITION 2.2. (Derivation) A derivation of amatrix M is afinite sequence (P, . .., Pn) of
path sets, wheren > 1 and foral k = 1,..., nthe set Py equas Pc for some C € M, or Py isa
consolvent of P; and P; for somei,j < k. A derivation ending in a path set P, = ) isalso called

arefutation.! O

The reader isinvited to figure out in detail the derivation which led to the consolution proof
tree given above.

THEOREM 2.1. (Eder, 1991) A formulain disjunctive normal formisvalid if and only if there is
a refutation of its matrix by consolution.

Eder gave a proof of this theorem which used the completeness of resolution. The proof
is by constructing a consolution derivation for every resolution refutation, which gives the
completeness of consol ution (see theorem 8.1 in section 8).

3. Modd Elimination and Consolution

In this section wewill informally introduce amodel elimination cal culus. Then aformalization
in a consol ution-like language follows. Building on this, we define a more refined consolution
method, which can then be shown to simulate stepwise the model elimination calculus.

Model elimination was originaly introduced by Loveland (cf. (Loveland, 1968; Loveland,
1969; Loveland, 1978)). It can be seen as a restricted form of linear resolution (see (Loveland,
1978) and section 7). However, model eliminationand itslinear proof format wasinvented before
linear resolution, which came upin 1970. More recently it became obviousthat model elimination
can be understood very naturally as a matrix method; here we will follow the lines from (Letz
et a., 1992) and define the inference rules as tree-transforming operators. Then the calculusis
much in the spirit of semantic tableaux with unification for clauses (see (Fitting, 1990)), but with
an important restriction. Thisrestrictionwill be explained bel ow and justifies using the new name
— “tableau model elimination” — instead of qualifyingit as“analytical tableaux for clauseswith
unification”.

Compared to Loveland’smodel elimination, the calculus presented below isweaker, in that it
lacks some efficiency improvements. Of course, these could be added, but for our purpose they
are not essential and hence are omitted for the sake of simplicity.

As an example for model elimination in our format take the following tree, which is nothing
more than a representation of the clause { P, @} of the matrix M in the consolution example.

T Hereweare not compatiblewith (Eder, 1991). What he calls “ derivation” is called “ refutation” by us; thiswas done
to be compatible with subseguent calculi and to standard text books (e.g. (Chang and Lee, 1973)).
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P/\Q

An extension step can be performed by sel ecting one branch of thetree, say the one leading to
P, and an input clause that contains a literal which can be made complementary by unification
with the leaf of that path; in the notation of matrix methods thisis aconnection. In our example
the clause {— P, '} can be used to construct a new tree:

P/\Q
N

The sdlected path is extended with the literals of the clause as new leaves. Asusual, the ground
case for the connection is lifted to the general case by means of a most general unifier (MGU),
and this unifier has to be applied to the entire tree. As a result of this operation, (at least) one
extension of the selected path contains complementary literals and can be closed, i.e. it need not
be considered further; thisis marked with an asterisk. The other extensions remain unmarked.
However, closing a branch can be achieved even without extending the tree with a new clause:
whenever alesf of apath has aconnectionwith one of itsancestor literals, the path may be closed
and the used MGU is applied to the entire tree. Such steps are called reduction steps. Unless
the used MGU is empty there is a don’t-know nondeterminism here wrt. the application of an
extension step or a reduction step.

In our example, after two more extension steps we arrive a atree which contains only closed

paths, and thus serves as a refutation:
/ P \ |
—Px Q

—|Q*

—|Q*

Let us use now the notation from consolution to describe tableau model eimination. Since
consol ution manipul ates sets of paths our trees should be coded as consolution path sets. Then,
neglecting already closed paths, for example, the second tree in the derivation above is naturally
represented by the path set P = {{P, @},{@}}. For the extension step we have to select one
path, say { P, @}, and within that path we have to select the leaf as part of a connection. But
which element of the set is the leaf? Due to set notation, the information about which litera is
the leaf islost. What we need are paths as sequences instead of sets:
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DEFINITION 3.1. (Path) A path isasequence of literals, writtenasp = Lj o ---o L. L, iscalled
theleaf of p, which isalso denoted by leaf (p). By abuse of notation, ‘o’ denotes a so the append
functionfor literal sequences.

The operations* elimination of complementary paths’ and multiplication (*-") are modified as
expected.

A path g isobtained fromapathp = L; o - - - o L, by immediate shortening of p, q <1 p, iff

Ji(l<i<ny:gq=Lyo---olj_joljy0---oly

For the transitive closure we say that q is obtained by shortening of piff g<1t p.
The partial order < on pathsisdefined as

p<q iff p=qgordsep<tq

The definition of shortening of paths (cf. def. 2.1) is modified to take care of the new data
structure: apath set @ isobtained from apath set P by shortening of paths if thereisasurjective
mapping f : P — Q such that f(p) < p holdsforal p e P. O

Now, when using sequences instead of sets we can identify aleaf in a path, i.e. in the first
extension step of the above example we take in consolution the path P and multiply it with the
path set {—P, @}, which isderived from the clause {—P, @}. Thisgives{P o =P, Po Q}; t0
get the closing effect from model eliminationin consolution, we have to choose only connections
we have just introduced during the multiplication. (In thisexample thisisthe only one). Then we
have to apply the unifier for these connectionsto the path set and subsequently have to eiminate
complementary paths. In our case the only complementary path we want to eliminate is the one
which contained the connection chosen for this step.

Another property of tableau model elimination isthat it only manipulates one path at atime,
even if there are identical paths within atableau. Thus, the paths of atableau model elimination
tree are technically a multiset. In consolution however we dea with sets of paths. In other
words, multiple occurrences of identical paths in model eimination are collapsed into a single
occurrence in consolution. As a consequence, a consolution inference may accidentally close
several occurrences of identica paths in asingle step — which is clearly not intended (at 1east
for thissimulation). As a solution we offer:

‘ In the following path sets are multisets of paths.

Next we want to treat the mapping from tableau model eimination to consolution more
rigorously. For thiswe first introduce tableau model eliminationin aformal way. Thisisdonein
aconsol ution-likelanguage. Then we describe the necessary changes to consolution.

DEFINITION 3.2. (Tableau Mode Elimination) Given amatrix M.

The inference rule extension is defined as follows:
P U {p} Pc

R

where

P U {p} isapath set, and C isavariable digoint variant of aclausein M, and
thereisaliteral L € C such that (leaf (p), L) isaconnection withMGU ¢, and
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R=(PU(p Pc-i}))e
Theinference rule reduction is defined asfollows:
P U{p}
Po

where

P U {p} isapath set, and
thereisaliteral L in p such that (L, leaf (p)) isaconnection with MGU o.

A sequence (P, ..., Pn) iscaled amodel éimination derivation iff

Py isapath set Pc, withCin M, and
Pi+1 isobtained from P; by means of an extension step with an appropriate Pc, or
Pi+1 isobtained from P; by means of areduction step.

The path p is called selected path in both inference rules. a

In order to simulate the closing of tableau model elimination of only one path at atime, in
consol ution we make explicit the step of fixing the set of connections:

DErFINITION 3.3. (Spanning MGU) A substitution o is a spanning MGU for a path set Q iff
there is a set of connections, one connection in each path of Q, such that & is a most general
substitution unifying each of these connections, i.e., making the two literals of each of these
connections syntactically complementary. a

Building on this, simplification is modified:

DEFINITION 3.4. (Simplification, Version 1) A path set R is obtained from a path set P by
simplification iff

A) there existsaspanning MGU ¢ for some subset Q C P, and

B) PBisobtained from Po by deleting zero or more paths containing complementary literals,
and

C) R isobtained fromPB by shortening of zero or more paths.

O

The definition of consolution, Version 1 isliterally the same as for consolution, with the only
exception that the modified simplification, Version 1 isused.

However, thismodification does not yet suffice to prove that consolution stepwisely simulates
model elimination. The problem is that in tableau model dimination during an extension of
P U {p} we must extend only p. In consolution, however, by multiplication al paths from
P U {p} will belengthened. Asa conseguence all pathsfrom P will aso belengthened, and, ina
subsequent simplification step they can be shortened again. This however leads to duplication of
paths, and therefore these multiple occurrences must be eliminated again. This leadsto an extra
operation in simplification:

DerINITION 3.5. (Simplification, Version 2) A path set R is obtained from a path set P by
simplification, ersion 2 iff
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A) there existsaspanning MGU ¢ for some subset Q C P, and

B) PBisobtained from P o by deleting zero or more paths containing complementary literals,
and

C) PC isobtained from PB by shortening of zero or more paths, and

D) R isobtained from PC in the following way: for every path p € P, zero or more, but not
all, paths are deleted that are equal to p as a set of literals.

O

DEFINITION 3.6. (Sequence Consolution) The inference rule sequence consolutionis defined as
follows
P Q
R

if there existsavariant Q' of @ which does not have variablesin common with P such that R is
obtained from P - Q' by simplification, Version 2. R is called a sequence consolvent of P and
Q.
The definition of a sequence consol ution derivationis the same as for a consol ution derivation,
except that the sequence consolution inference ruleis used. O

Deletion of duplicate paths (the term “equa as a set of literals’ in item D in definition 3.5)
is dlightly more general than needed for the simulation of tableau model elimination. This will
become clear in the next section.

The next theorem shows that sequence consolution is a framework to express tableau model
elimination. Together with the completeness of tableau model eimination (Baumgartner, 1992)
the theorem also yields compl eteness of sequence consol ution.

THEOREM 3.1. (Sequence Consolution Simulates Tableau Model Elimination) Let M be a
matrix and (P4, ..., Pn) a tableau model eimination derivation. Then there exist variants of
clauses Cy, ..., Cy from M, such that (P1, Pc, . . ., Pn—1, Pc,_,, Pn) 1S @ sequence consolution
derivation of M.

PROOF. LétP; 1 bederived by extensionwithP; and P, ; we construct the following sequence
consolvent:

P; hastheformP; U {p} and C; isavariant of aclausein M, hence P; and P, do not have
variablesin common. According to the sequence consol utioninference rulewe may then multiply
thesetwotoobtan®; - Pc, = (P;U{p})-Pc, = (P;-Pc,)U(p-Pc,). Usingsmplification
Version 2 from definition 3.5 we build:

A) o is obtained by unifying the connection (Z, leaf(p)), which was used in the extension
step.
B) P* isobtained from (P; - P¢,)o by deleting the path (p - {L})o from (p - P¢,)o; thus
PP =((Pi-Pc,)U(pPc,—1)))o
C.D) fromPZ we shorten all pathsfrom (P} - P¢,)o and delete multiple occurrences to obtain
Pio whichfinaly givesR = (P;U(p - Pc,—{1}))o

Clearly R istheresult of the extension step aswell, i.e. R = P,41. Thecase in which P, 41 is
obtai ned by a reduction step ishandled anal ogoudly. Here any variable digoint variant C; can be
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used to perform a sequence consol ution step; by appropriate shortening and del etion of multiple
occurrences of paths, the undesired path extensionswith C; can be cancelled again. O

4. Consolution and Sequence Consolution

Sequence consolution is a true generalization of consolution with respect to data structures
and inference rules. Thus, any consol ution derivation can be reflected in a sequence consolution
derivation. For the case of data structures, the set data structure of path sets in consolution can
be simulated by deletion of duplicate paths (simplification, step D) in sequence consolution.
Deletion of duplicate paths is defined without regard to the ordering of literals. Thisisimportant
for the following reason: in sequence consol utiona path set might contain the two different paths
Po @ and Qo P, whilein consolution these are collapsed into the single path { P, @ }. But then
in sequence consolution we can delete one of the two paths and will thus be compatible with
consol ution.

Similarly, appropriate shortening of paths (simplification, step C) in sequence consolution
simulates the set data structure of paths in consolution. With that we obtain the following trivial
theorem:

THEOREM 4.1. (Sequence Consolution SimulatesConsolution) Let (P, . .., Pn) bea consolu-
tion derivation. Then there is a sequence consolution derivation (P, . . ., P;,) of the same matrix
such that for every i = 1...n there exists a bijective mapping f; : P; — P/ such that for every
p € Pi, p and fi(p) are equal as multisetsof literals.

The converse of this theorem does, of course, not hold. This results from the following facts:
firstly, dueto set data structures, consol ution coll apses multiple occurrences into one occurrence;
thus, in the course of a sequence consolution refutation more paths have to be eliminated. Se-
condly, the consol utioninferencedeletesall complementary paths, whereas sequence consol ution
deletes only some; thus, in a sequence consolution refutation more inferences may have been
employed. However a weaker notion of simulatability can be established (theorem 4.2 below).
Thiswill be done next. As atechnical preliminary, we have to say how to relate data structures
of consolution and sequence consol ution: if a sequence appears where a multiset is required, the
trangl ation from sequences to multisetsisdoneinthe obviousway; similarly, if amultiset appears
where a set is required, the trandation is aso done in the obvious way. For example, if P isa
path set in sequence consolution, i.e. amultiset of sequences, and P’ isapath set in consol ution,
i.e. aset of sets, then P’ C P means the subset relation where P is mapped in the above way to
aset of sats.

THEOREM 4.2. (Consolution Simulates Sequence Consolution) Let M be a matrix and
(P1,...,Pn) be a sequence consolution derivation of M. Then there is an integer m < n and
there is a consolution derivation (P5, . .., P/,) of M and there is a monotonic mapping ¢ such
that for every k = 1. . .nthereisa substitution 6 and P;(k)ék C Px.

The consolution derivation may be shorter than the sequence consolution derivation, since in
sequence consolution some complementary paths may persist through simplification, whereas
they are definitively removed in consol ution. These pathsin the sequence consol ution derivation
may furthermore be used in inference steps that do not have a counterpart in the consolution
derivation. The consol ution derivation pauses meanwhile; however, these stepsfurther instantiate
the path set, giving the need for the substitution 6.



Consolution as a Framework for Comparing Calculi 11

PROOF. (Theorem 4.2) We show that a consolution derivation of the same length exists, for
which thetheorem holdswhen ¢ istheidentity function. Thisderivationmay contain consecutive
identica elementsP;, P, ..., P;,,. Clearly, wemay drop P; , toP; ; and redefine ¢ so that
d(i+1)=¢(i +2)="---¢(i + j) = 7, and the theorem will hold for the resulting derivation.
The proof is by induction on the length » of the sequence consol ution derivation.

Base case: If » = 1 then the sequence consolution derivation (P1) consists of a single path
set P (amultiset of sequences) for some C' € M. Let the consol ution derivation be (P7) which
consists of asingle path set P (aset of sets). When read as a set of sets, it evidently holdsthat
P1 equals P;. Hence with 61 := € the claim holds.

Induction step: Suppose the result to hold for al sequence consolution derivations
(P1,...,Pyp_1) (forsomen > 1). Thusthere existsaconsolution derivation (of the same length)
(Pi,...,P,_y) for M andfork = 1...n — 1lthereisasubstitutioné; and P} 6 C Py.

We have to show that the result holds for P}, as well, i.e. that a substitution §,, such that
P!, C P, exists. According to the definition of derivation, we distinguish two cases:

Subcase 1: P, isthe path set P of aclause C' € M. In this case the same argumentation
applies as for the base case.

Subcase 2: P,, isobtained as asequence consolvent of some P; and P; with i, j < n. Without
loss of generaity assume that P; is aready variable digoint from P;. We will trace through the
simplification of the product P := P, - P; and construct an appropriate consolvent of P; and P;.
Assume also that P; and P; are variable digoint and hence can be used for the multiplication
P; - 'P; without renaming.

In the simplification of P inthefirst step (Step A) aspanning MGU o for some subset of P is
determined and applied to P. Hence let P4 := Po.

Now for the intended consolution step we build first the product 7' := P; - P;. Since P;
and P; are variable digoint, the domains of ¢; and é; can be supposed to be digoint. Hence
Pié; = Pgéiéj and 77;5]' = 77]‘(52‘5]'. It follows

P66, = (PL-Pl)&s,;
(Consequence of def. of product) = P;é;6; - P;6,6;

By the induction hypothesiswe learn that substitutions é; and é; exist such that P;6;, C P; and
P1é; C P;. Fromthisand (4.1) it follows
_ ) ) /¢ /c (4_~1) 1ooc
P =P P; DPIs; - Pls; = P66, (4.2)
Applying ¢ to both sides yields
PA = Po 3 P56,0 (4.3)

Next, in step B of simplification in sequence consolution, zero or more paths containing comple-
mentary literalsare deleted from P4, which yields P . We di tingui sh two disjoint cases now in
order to determine the operation “elimination of complementary paths’ for the consol ution step:

Case 1: Only pathswhich are not contained in P’ é,6; o are deleted from P4, i.e. it holds P D
P’é;650. In this case consider the empty set of connections for “elimination of complementary
paths’ inP’. Clearly o’ := ¢ isan MGU for thisset. Let P’? bethe path set obtained from P’ =
P’o’ by removing all the paths containing complementary literals. Finaly define é,, := é;6;0.
Using this definition P’#6,, C PP holds

In case 2, the negation of case 1, some paths are deleted from P4 that are also contained in
P'é;6;0. Define the path set Q' C P, which corresponds to the deleted pathsin P4 \ P2 (Q
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will be subject to step A in simplification):
Q' :={qeP | ¢8sjoccP?\PF} (4.4)

Every deleted pathin P4 \ P contains complementary literals. By definition of Q' every path
in Q'8;6;0 iscontained in P4 \ P£ and hence also contains complementary literals. Thus an
MGU ¢’ and a substitution é,, exist such that §;6;0 = ¢’6,,. Since, by definition, @' C P’ we
can continue the simplification of the consolution step with P’ by sdecting Q' for elimination
of complementary paths, where the MGU used is o’. Let P'? be the path set obtained from
P’c’ by removing al the paths containing complementary literals, i.e. at least the elements of
Q’o’ areremoved. Using these definitionsit followsfrom the definition of @’ and with (4.3) that
P86, C PE. Thisconcludes case 2 (with the same result as case 1).

The next step in simplification is shortening of paths. Let P¢ be obtained from P# by
shortening of the pathsin Q@ C P#. Define a corresponding subset 9" C PP as

Q":={qeP?P| ¢, €09}

Since P'B¢s,, C PP we can shorten the paths given by Q" in P'Z in such away that for the
resulting path set R’ it holdsR'6,, C P“. Notethat R’ isthe result of the consolution step. To
obtain the result of the sequence consolution step, P,,, zero or more, but not al duplicate paths
are dleted from P ¢ . But since for every path each of its duplicate paths when read as a set is
collapsed into a single set of sets when compared to the paths in consolution, deletion of some,
but not all duplicate paths preserves R's,, C P,,. Thus we can set P, := R’ to complete the
proof. U

The last two theorems have established the correspondence between our two versions of con-
solution, consolution and sequence consol ution. The theorems might suggest that both versions
are equivalent on a certain level of abstraction. But thisrough equivalence does not help to solve
our main goal: recall from theintroductionthat we are mainly interested in expressing (defining)
other calculi, such as model elimination, in the consolution framework. Technically this means,
again for model elimination, that we have to find a bijection between the traditional model dli-
mination derivations and the model elimination expressed in the consolution framework. This
approach, however, does not work for Eder’s consol ution (see the previous section about model
elimination for a discussion of the reasons why). Sequence consol ution offers a solution.

5. Modd Elimination with Chains

In this section we will investigate an original chain-based model elimination calculus, asitis
givenin (Loveland, 1978). Among the several variants presented there we have chosen aversion
called “weak model eimination”; weak model elimination is the same as “mode eimination”
but lacks a factorization rule (which is not necessary for completeness).

In order to distinguish this calculus from the one given in the previous section we will prefix
theinference ruleswith“ME”.

The main data structure is a chain, i.e. a sequence of literals of distinguished type. Literals
may be of type A or of typeB. Chains are written by juxtaposing their literals, and A-literalsare
writtenin brackets. Example: the chain D[E]F' containsthe B-literals D and I and the A-literal
E.

A chainiscaled admissibleiff

1 complementary B-literalsare separated by an A-literd;
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2 no B-literd isto theright of an identical A-literal;
3 no A-litera isidentical or complementary to another A-literal; and
4 therightmost literal isa B-literdl.

To simulate those chains in the sequence consol ution cal culus we need a further refinement of
our principal data structure:

In the following we have to use sequences of paths instead of multisets.

Admissiblechainscan beunderstood astrees, wherethe A-literalsareinner nodesand B-literals
are leaves:

DerFINITION 5.1, Let P = (p1,...,Pm) @nd Q@ = (qu,...,0n) be sequences of paths. Then
P e Q denotes their concatenation (ps, - . ., Pm, 0, - - -, dn), and the dot product (cf. aso the
corresponding definition 2.1 for consol ution) isthe path sequence

P-Q:=(p1o0s,...,Pro0n,---,Pmo U1, ---,Pmo On)

Let aib; . . .anb, be an admissible chain, where & (resp. by) is a sequence of A-( resp. B-
)literas. The transformation M transforms an admissible chain into a path set which represents
atree (depicted in figure 2):

M) = 0
M(aK) = (&) M(K)
M(biK) = ((b), ..., (b)) e M(K),

whereb; = (bt, ... bk)
m

Such degenerated, linear shaped trees are caled ferns in (Baumgartner et a., 1992). More
formally, ferns are trees, where every inner node lies on one single path from the root to a lesf.
The following lemma can be shown after rigorous formalization by induction on the length of
chains:

LEMMA 5.1. Let ¢ be an admissible chain. Then M(c) isafern.

Takeasan examplethechain Q[ P] @, wheretheA-literal isinbrackets. Thischainisadmissible
and

M(Q[PIQ)=(Q,P° Q)

isthe corresponding path sequence. Thisis obviously one of thetrees we depicted on page 6 with
the closed path being omitted (and right and I eft interchanged).

Note that this interpretation of chains is based on the rightmost strategy used by the model
elimination calculus of Loveland. More precisaly, it is the transformation A which takes into
account the way the chains are handled by Loveland’'s ME procedure.

From the above definition we immediately concludethat if C isaclause, thenP¢ = M(K),
where K isachain containing only B-literals, which are exactly theliteralsfrom C.

Admissibility after the transformation M reads as follows:

ProposiTION 5.1. If K is an admissible chain, then for M(K) = (p1,...,pn) the following
holds:
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M(agby - - - anbn) = ®/® A

o
o,

Soa
L

o s

@’Q”

an

P
4 ™o

Figure 2. Result of the transformation M depicted as atree.

1. Thereisnoi andj (i # j) such that p; and p; differ only in their leaf nodes, where those
leaves are complementary;

2. thereisno path, such that itsleaf isidentical to another e ement of the same path;

3. thereisno path p o L, such that there are two identical or complementary literalsin p.

Another property we need below concerns the specia nature of ferns:

LEMMA 52. Let K be an admissible chain and M(K) = (pi,...,pn) such that leaf (pi) =
leaf (p;) for somei, j withi < j. Then p; can be obtained from pj by shortening, i.e. pi <t p;.

PrOOF. By lemma5.1 (ps, ..., p,) isafern. Since every inner node of thefern (p1, ..., pn) is
an element of the same path, all elements of p; except itsleaf are elements of p;. By assumption,
leaf (p;) isan element of p;, which provesthelemma. U

The inference rules of the model elimination calculus with chains are ME-extension and ME-
reduction. They all make use of an ME-accepting transformationT on chains. Thistransformation
performs reduction and factorizations for which no unifier is necessary:

DerINITION 5.2. Let K beachain, then T maps M (K) to a sequence of paths by the following
modifications of M(K) :

a) if M(K) contains two paths with identical leaves, then delete the rightmost (“ground
factorization”).
b) if M(K) containsapathwith complementary literals, deletethispath (“ground reduction”).
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O

In the original definition from (Loveland, 1978) thereis an additional case, which allows the
elimination of certain A-literalsto theright of the right-most B-literal. Since we are dealing with
an explicit representation of pathsthisisnot necessary inour case. Itisleft asasimpleexerciseto
the reader to show that the transformation 7' as defined above for sequences of pathsisidentical
totheonegivenin Loveland’'s caculusfor chains.

Theinferencerulesare similar to the ones of tableau model elimination, namely extension and
reduction.

DEFINITION 5.3. Given amatrix M and an admissible chain K with M (K) = (py, . . ., pn).

The inference rule ME-extension is defined by:

(p]-: R} pn) PC
T(R)
where
Cisavariabledigoint (frompy, .. ., p,) variant of aclause from M
(leaf (pn), L) isaconnectionwithMGU o, where L whichisthelast (rightmost) literal
of the sequence Pc,

R = (Ph,- - P_1, Pn- reaITange(T(Pe_(13)))

with (pl, ..., P = T(pP1o, ..., Pno)

and (pi, ..., p,) isadmissible

and p, = pno and T(Pco) still containsLe and is admissible.

The function rearrange sorts the paths of T(Pc_;.30), which al have length 1,
according to agiven order. Thiswill be discussed below.

The inference rule ME-reduction is defined by:
(P1s- -+, Pn)
T(p1o,. .., pno)
where

thereisan L in p,, such that (L, leaf (p,)) isaconnection with MGU o.
o

We omitted an important festure of thissort of model elimination, namely the use of an ordering
rule. It is explained in detail in (Loveland, 1978); for our purposes it is sufficient to note that
it determines the order of these literals, which are added to a path in an extension step. The
function rearrange in the M E-extension can be defined in away which expresses the meaning of
the ordering rule.

Anaogoudly to the previous section, we use the notion of an ME derivation .

As an example take the Matrix M = { PzQz, Pz—Qz,— Pz} and the two sequences of (unit-
ypaths (Pz, Qz) and ( Py, - Qy). The intermediate sequence of paths R is

R = (Pz, Qz o Pz)
An application of the transformation 7' to this sequence deletes the rightmost path. Hence
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weget T(R) = (Pz) astheresult of one ME-extension step. In the tableau model elimination
calculusan extension step would giveR = ( Pz, Qz o Pz); the*ground factorization” performed
by the T'-operation, however, can only be simulated by an additional deduction, which eliminates
thepath Qz o Pz.

THEOREM 5.1. (Sequence Consolution SimulatesME) Let M bea Matrixand (Py, ..., Ps) an
ME derivation. Then there are variants of clauses Cy, . . ., Cs_1 from M, such that (P1, Pc,,. .
Ps-1,Pc,_,, Ps) IS a sequence consol ution derivation of M.

)

PrROOF. Inthefirst caselet P, 11 bederivedfromP; = (p1, . . ., pn) by an ME-extension stepwith
“auxiliary chain” P, . We construct a sequence consol vent by first multiplying path sequences:
Pi-Pc,=(p1 - Pc;s--,pnPcy)

We perform the following simplification:

A) The substitution o is obtained by unifying the connection (L, leaf (p»)), which was used
in the extension step, where L isthe rightmost literal of P, .
B) - From(p, - Pc,)o we can delete the complementary path (p,, - (L))o to obtain

(pl 'PCZ‘a ces Pn-1 '/PCZ'aPn 'PCZ'—{L})O- =
(p10-Pc,o,...,pn-10-Pc,0,ppo - Pc,_{1)0)

The result is depicted in figure 3.
— From this path sequence we del ete those paths which contain a ground connection in
the prefix p;o, 1 < ¢ < n and get:

(pi : (PCZ‘ 0-)? B p/r—l ) (7)01‘ U)a p/r : (PCZ‘—{L}U))

Note, that by definition of the ME-extension rule p, o does not have a connection,
hence we know p!. = p, 0.
C) Now we shorten

- pathsto obtain
(pia ey p;*—l: p;" : (PCZ‘_{L}U))

- from this we shorten al p; for which a path p; exists with i < j and leaf(p;) =
leaf (p;), suchthat p; = p;. Thisis possible because of lemma 5.2.

D) From the above resultswe del ete rightmost multiple occurrences of paths, to obtain finally
T(T(p1o,...,pn-10) 0 (ppo - T(PCZ._{L}U)))

which is exactly the sequence T'(R) from the definition of the ME-extension rule. Note that
by the outermost application of 7" only paths with identical leaves are deleted, paths containing
complementary literals are aready deleted by the inner applications. These paths are aready
eliminated by the second shortening in step C).

Inthe other case let P, 11 bederived fromP; = (p1, . .., pn) by an ME-reduction step. Let C;
be an arbitrary “auxiliary chain”. Thereisa o, such that p, o is complementary. As before, we
construct a consolvent by first multiplying path sequences:

Pi-Pc, =(p1-Pc;,---,pn-Pc;)
From(p1-Pc,, ..., pn-Pc,;)o We delete those complementary paths (p; - P, )o, which contain
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Pn-10 Pno

( L)C" ( L)a ( X)o'

Figure 3. A sequence of paths from theorem 5.1.

their connection in the prefix p;o. Next we shorten paths and del ete those multiple occurrences
such that we finally obtain

T(p1o,...pno).
O

Let us conclude this section with remarks on a comparison of model elimination and tableau
model elimination. Intableau model elimination extension and reduction stepsare possibleon any
path from the tableau 7. ME-extension and M E-reduction steps, however, are only possible on
thelast path from P, where P isunderstood as a sequence of paths. Another significant difference
isthat model elimination applies the T-operation, which correspondsto ground factorization and
ground reduction at various opportunitieswithin one application of an inference rule. In tableau
model elimination these steps have to be simulated by additiona inference steps. It isinteresting
to note that consolution has a direct counterpart to the ground-reduction part of the T-operation.
After applying the MGU to a path set, all complementary paths have to be deleted, which is
exactly the effect of a T-operation.

6. The Connection Method

As mentioned in the introduction, consolution is intended to bridge the gap between matrix
methods, such as the connection method, and resolution. Hence, it should be possible to carry
on in the spirit of the previous sections and show that consolution simulates the connection
method. Such a result was not established in (Eder, 1991) and will be done in this section. As
another interesting aspect we will discuss the relation of the connection method to tableau model
elimination.

In order to do all this, one has to lay down the connection calculus. However, according to
(Bibel, 1987) the connection method should not be understood as a single calculus, but as a
methodol ogy to design calculi; every calculusthat proceeds by discovering a connectionin every
path through a given matrix (i.e. finds a “spanning set of connections’) should be considered
as a connection method. Clearly, for our purpose we have to commit ourselves to a single such
“connection calculus’. Here we will define a connection calculus that is very similar to the one
in (Eder, 1992).
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THE CONNECTION METHOD AND TABLEAU MODEL ELIMINATION

The example in section 3 can serve to illustrate the connection method in relation to tableau
model elimination. The sequence of the trees depicted there can also be read as a connection
method refutation. In genera the following differences have to be obeyed:

1 In selecting the next branch to be extended, only alongest branch among the collection of
open branches may be considered. This corresponds to the stack-like search organization
in Eder’s calculus. In other words, when deleting the branches aready closed, every tree
in a derivation then takes the form of afern.

2 The clauses in Eder’s calculus are sets. As a consequence, identically labeled branches
have to be collapsed into a single occurrence.

3 Eder’s calculus permits severa of the new branches to be closed in one single extension
step, i.e. several connections may be established in the step. This corresponds in tableau
model elimination to one single extension step (with one single connection) followed by a
sequence of reduction steps. This correspondence will be put more precisely below. A word
of warning: the set of connectionsis alowed to be empty. Thus we may extend without
closing any branch. Such steps have no counterpart in model elimination.

4 Most importantly, with regard to the search space, a connection need not be established
between alitera of the extending clause and theleaf of the extended branch, but any other
literal in the branch will do as well. Thus the search space in this connection method is
much broader.

These observations are reflected in the following definition.

DEFINITION 6.1. (Connection Calculus) Given a matrix M. A path is a sequence of literals. A
path set isa set of paths. The inference rule (connection) extension is defined as follows:
P U{p} Pc

R

where

‘P U {p} isapath set with longest branch p, and

Cisavariabledigoint variant of aclausein M, and

let D C C (D possibly empty) such that there is a set of connections between every literal
in D and literalsin pwith MGU ¢, and

R = (77 U (p . PC_D))O'

The path p is called the selected path. Derivation is defined with respect to the single inference
rule* connection extension” as for model elimination (def. 3.2). O

Notethedifferences between connection extension and extension in tableau model elimination,
which mirror the above informa consideration. In particular, D is a set of severa literals and
the paths resulting from the elementsin D areall closed. Thus the connection calculus extension
step can be viewed as a “macro” combination of a single tableau model elimination extension
step, followed by some reduction steps with the remaining literals. This observation is the key
for the stepwise simulation of tableau model eimination by the connection method. However,
some precautions must be taken to achieve thisgoal: first, model elimination must be restricted
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to work on alongest branch. This is motivated by the longest-branch restriction of extensionin
the connection method. The second point is more serious and concerns the macroscopic nature
of connection extension: suppose we have executed amodel elimination extension step £ which
results in the new open paths py, . . ., p,. In the subsequent refutation each of these paths will
either be closed by areduction step or will be extended to closed paths. Now, in order to enable
the stepwi se simulation by a connection extension step, tableau model eliminationisrestrictedin
the following way: if in the subsequent derivation there is an extension step on one of the paths
p1, - - -, Pn, then every reduction step on (another) of the paths py, . . ., p, must be executed prior
to that extension step. Such derivationswill be called compact in the next definition, which starts
the formal treatment of this matter.

DEFINITION 6.2. (Compact Model Elimination Derivation) Let (P, ..., Pn) be amodd di-
mination derivation, and suppose the selected pathsare denoted by py, . . ., pn—1 (inorder). If the
inference rule applied to some P; (i € {1...n— 1}) isan extension step, then define the set of
“new” paths brought in by that extension step as

new; := (pi - Pc—{L})0i

where C; is the variant of the clause used, L; is the litera to build the connection and o isthe
MGU used (cf. def. 3.2).

A model eimination derivation is called compact iff whenever an extension step is applied to
Pi(i € {1...n—1}) thefollowing holds:

if somep; (N> j > i) isthe selected path in areduction step, and p; isan instance
of an occurence of a path in new;

then every selected path py (i < k < j) isan instance of an occurence of apathin
new; and is subject to areduction step.

O

The completeness of compact tableau model elimination follows from the completeness result
in (Baumgartner, 1992) and its “independence of the computation rul€”, that allowsfor arbitrary
re-ordering of inferencesin aderivation.

Note that the connection method deal s with sets of sequences, whereas tableau model eimina
tion deal s with multisetsof sequences. Whenever required for relationships, multisetsare mapped
to setsin the obviousway (cf. aso the similar discussion on data structuresin section 4).

Building on this, we arrive a the following theorem:

THEOREM 6.1. (The Connection Method Simulates Tableau Model Elimination) Let M be a
matrix and let (Py, ..., Pn) be a compact tableau model elimination derivation from M, such
that in every inference step the selected path is of maximal length. Then there exists a connection
method derivation (Qy, . . ., Qx), for somek < n, fromM and a substitution 6 suchthat Qyé C Pp.

PROOF. Induction on thelength » of the given derivation.

Base case: If » = 1 then the model elimination derivation (P1) consists of asingle path set
P (amultiset of sequences) for some C' € M. Let the connection method derivation be (Q1)
which consists of asingle path set P (aset of sequences). When read as aset of setsit evidently
holdsthat P, equals Q1. Hence with 6 := ¢ the claim holds.



20 P. Baumgartner and U. Furbach

Induction step: We observe that for derivations of length > 1 the given model elimination
derivation has avery special structure: first, the sequencesinP; areal of length 1. Hence thefirst
step isan extension step, since no reduction step is applicable to a sequence of length 1. Second,
due to this, for every compact model elimination derivation the sequence of selected paths can
evidently be written as

0 1 k1 0 1 k
plapla"':p]_J"'apmapm:"':pmm
S——— S———
newp newm

whereprecisaly the p? (i = 1. .. m) are selected for an extension step, and all other pf’ (% > 0)
are selected for areduction step with membership in new; asindicated. We will make use of this
structure bel ow.

By the induction hypothesis suppose the result to hold for the model eimination derivations
(P1,...,Pw) (fordl m < n). Hence, a connection method derivation (Q1, . .., Q;)existswith
! < m and a subgtitution é such that Q;6 C P,,. We have to show that a connection method
derivation (Qy, ..., Qp) existswith !’ < n suchthat for some é’ : Q.6 C P,. Inorder to do so,
we haveto trace back to the most recent extension step, and assembl e thisstep and all subsequent
reduction steps to a single connection method extension step. More formally, according to the
above consideration about the structure of compact model elimination derivations, the sequence
of selected pathsin the given model elimination derivationis

k..

p:?ip]]:""?p]1?17"'?p?7p3-?"'7pi2
where p? isthe selected path in the most recent model elimination extension step, all subsequent
steps are reduction steps, and pfi isthe selected pathin P, _1. Notethat if k; = OthenP,,_; is
obtained by amode! elimination extension step, otherwise by amodel elimination reduction step.

Suppose C; is the variant of the clause used in the model elimination extension step of P2,
which can be partitioned as

PP =P U {pd} (6.1)

and op istheMGU used. Hence new; = (p?-Pc,_{1,})o0 Where L, istheliteral in C; that builds
the connection. Since themodel elimination derivationiscompact, all subsequent reduction steps
remove instances of pathsin new; from the path set. More precisely, in the reduction step where
pl (G € {1...k;}) isthe selected path and o, isthe MGU used, a path in new;o001 - - - 0; is
removed from P?. Now let

D! :={LeC;|3j :p?o Logoy---0j € new;0901---0; isremovedinPf}

be those literals from C; which extend the selected path p? to those paths being removed in the
reduction steps. It somewhat eases argumentationto use D; := D!U{L;} inthesequel. Thenthe
extension step and the subsequent reduction steps each remove exactly one instance (by MGU
oooy - - o;) of an dement of p? - D; from P! (for j € {0,...k;}). As the result of the final
reduction step we can write with (6.1)

Pn = (77;0 U p? 'PCZ._DZ.)O'Oo'l SOk

13

(6.2)

Let (P, PL ..., PR . PO beaprefix of thegiven model €imination derivationleading to
the last extension step. By theinduction hypothesisthere exists a (not longer than the derivation
ending in P?) connection method derivation (Qy, . . ., Q;) and a substitution § with @ ;6 C P2.

We further distinguish two cases:

Case 1. p° € Q6. In words: the model eimination derivation extends a path that is not present
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in the corresponding connection method path set. Thus with Q6 C P/C it follows

Qiboooy - - -0y,
C Plogoy oy,
C(PPU(p?- Pc,—p;))o001- - -0,
=P,

Hence Q; and the substitution §oqoy - - - oy, satisfiestheclaimfor Py, .

Case 2 (- case 1): p? € Q6. We intend to simulate the model elimination extension step of
P9 and the subsequent reduction steps (if any), including the final one which led to P,,, by a
single connection method extension step (figure 4). The one premise path set for the connection
method extension stepis Q; = Q4 U { ¢}, where the selected path ¢; correspondsto p?, i.e.

@ = p} (6.3)

For the other path set recall from the definition that we have to find avariable digoint variant C
of an input clause from M and determineaset D C C which forms a set of connections with
the selected path ¢; by an MGU. In this case we take for C' the same clause as used in the last
extension step in the model dimination derivation, i.e. C' := C;. For D we choose the literas
used to build the deleted paths, i.e. D := D, in the connection method extension step. In order
to carry out the inference it has to be shown that by some MGU r every path in (¢; - Pp)7 is
complementary (by this we mean that the leaf of a path is complementary to another element
in the path). This can be shown as follows: every MGU g0 - - - o; renders apath in p? - Pp,
complementary (j € {1,..., k;}). Hence aso the more specific substitution oooy - - - oy, does.
Thusevery pathin (p? - Pp,)ooos - - - ok, isalso complementary. With (6.3) and the assumption
that 6 does not act upon the variables of C; (without loss of generality C; can also be assumed to
be variable digoint from P?) it follows

(p? - Pc;)ooor ok, = (@ - Pc,)b0001 - - 0y, (6.4)
Since éogoy - - - ok, renders every path in ¢; - Pp, complementary, there isan MGU r and a
substitution 8’ such that

76’|d0m(60001...0ki) = bog0y1 - Oy, (6.5)

Using 7 the desired connection method extension step can be carried out, yielding the path set

Quy1=(QU (¢ -Pe,—p,))T (6.6)
From the induction hypothesis and (6.3) we conclude
Qis C PP (6.7)
Now things can be put together:
6.6
Qry18' € (Q1U (q1-Pc,—p,))Td’
= ’ﬂ'é’U(q; 'Pci_Di)T(SI
(6.5)

Q’,60001~ © Ok, ) (QI 'PCZ'—DZ‘)T(SI

1 By an expression of the form 0|d0m( 5y we mean the restriction of o to the domain of §, i.e. from o just those
assignmentsto variables are selected which have also an assignmentin §.
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6.5,6.4
(6259 Qiboooy ok, U(py - Pe,—p,)o001- - - 0%,
6.7) 0 0
g (Pl U (pl . Pci—Di))O-OO-l e O-kl‘
(62)

Py
Hence Q41 and §’ satisfy theclam. U

The converse of the theorem does not hold. This is due to the restriction in tableau model
elimination that in inferences the leaf of the selected path must be part of the connection.

THE CONNECTION METHOD AND SEQUENCE CONSOLUTION

Let us now relate the connection method to consolution. Note that the observation we made
during the discussion of tableau model elimination that led to the definition of sequence conso-
[ution can be made with the connection calculus as well. In the connection calculus one is not
forced to delete all complementary paths, whereas by Eder’s consolution one isforced to do this.

As a conseguence we need sequence consol ution to establish the following result:

THEOREM 6.2. (Sequence Consolution Simulatesthe Connection Method) Let M be a matrix
and (P4, ..., Pn) aconnection calculus derivation. Then variants of clauses Cy, . . ., C, fromM
exist, such that (P1,Pg, . . ., Pn-1, Pc,_., Pn) 1S a sequence consol ution derivation of M.

PROOF. Let P;41 be derived by extension with P, then we construct the following sequence
consolvent:

P; hastheformP; U {p} and C; isavariant of aclausein M, hence P; and P, do not have
variablesin common. Let D; C C; be the set of literals selected for closing. According to the
sequence consol ution inference rule we then have to multiply these two to obtain P; - P¢, =
(Piu{p})-Pc, = (P;-Pc,)U(p-Pc,), whichfurther hasto be modified with our simplification
rule, Version 2 from definition 3.5:

A) o is obtained by unifying the connection (L, leaf(p)), which was used in the extension
step.
B) P isobtained from (P; - P¢,)o by deleting the paths (p - {L})o for every L € D; from
(p 'PCZ.)O'; thusP® = ((KPQ '/PCZ.) U (p ~PCZ._DZ.))O'
C.D) from P# we shorten &l paths from (P; - P¢,)o and delete al duplicate occurrences to
obtain P;o which finaly givesR = (P; U (p - Pc;—p,))o

Clearly R istheresult of the extension step as well. [

7. Resolution Simulates Tableau M odel Elimination

Up to now we know the relation of several calculi to consolution; these include resolution,
tableau model elimination, Loveland’s model elimination and a connection calculus. In order to
learn more about the rel ationships of these calculi, we show here the rel ation between resolution
and tableau model elimination. More specifically, we will show that resol ution stepwise simul ates
tableau modd eimination.

To express the result, we define the multiset of open leaves of a path set P as the multiset
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O(P) := {leaf(p) | p € P}. In order to compare multisets to sets, we map multisets X to sets
inthe obviousway by X! := {z | z occurs a least oncein X }. Now we claim:

THEOREM 7.1. (Resolution Simulates Tableau Model Elimination) Let M be a matrix and
let (P4, ...,Pn) be atableau model elimination derivation from M such that in every P; (i =
1...n—1) alongest branch is selected. Then there exist a resolution derivation (Cy, . . ., Cy),
for somek < n, fromM and a substitutiony such that Cyy C O(Py)!.

Let us call the elements of atableau model eimination derivation tableaux.

In every tableau P; in aderivation, O(P;) (the set of leaves of open paths) can be seen as the
goal set still to be proved. Furthermore, since the leaf of a branch selected for an inference has
to be part of the connection (cf. definition 3.2), one could say that this goal set is consecutively
processed in alinear way. It isthus quite natural to relate atableau mode elimination refutation
toalinear resolutionrefutation by relating every O(P;) inthemodel elimination refutationto the
near parent in alinear resolutionrefutation (see e.g. (Chang and Lee, 1973) for linear resol ution).
Thisrelationship is given in the theorem as the subset relation Cyy C O(P,,)!. Thusthe model
elimination-tabl eau can be seen, modul o instantiation, as an “upper bound” for the corresponding
goal clause in resolution. In other words, the resolution goa clause subsumes the tableau model
elimination goal.

The inference rules of model elimination and resolution correspond as follows: an extension
step corresponds to aresol ution step of the goal clause with an input clause, and areduction step
correspondsto aresolution step of the goa clause with an ancestor clause. Thiswill be put more
precisely in the proof below.

The following example is typical for the simulation; it shows the mapping of data structures,
the mapping of inference rules, and also where factoring comes into resolution, which is not
needed in model elimination:

Model elimination derivation of S = {Puv V Qu, =Pyz V = Pry}:

P Po: Ps:
S S S
Puv Qu Puv Qu Puvv Qv
S S
- Puv - Pou = Py = Py
* * *

Corresponding resolution derivation:
C1: PuvV Qu Cy: =PuuV Qu C3: QuVvV Qu

The set of open nodes O(P;)! of Py is exactly the clause Cy; the same holds for P, and
C>, where P, is obtained from P, by extension with = Pyz V — Pzy. The interesting case isthe
reduction step with MGU ¢ = {u — v} applied to obtain P3. In generd, reduction steps with
an ancestor literal L are mapped to linear resolution steps, where the far parent clause is the
clause corresponding to apreviously derived tableau that contains L as open leaf. In the example
L = Puw, the previously derived tableau isP;, and the corresponding clause is C;. However,
resol ution forces the parent clauses to be variable disjoint. Hence we have to use avariant of Ci,
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eg. C{ = Pu’v' v Qu'. Using an appropriate unifier we arrive at the resolvent Qu v Quv of C»
and Cj. Note that withy = {v — u} we can find a substitution such that the theorem holds.
Here we can see where factorization comes in: suppose that e.g. a unit clause —Qa were given.
—(Qa can beused to close P3, butif C3 werenot factorized prior to binary resolution to the clause
Qu, then the resolvent would be Qv and the theorem would not hold.

It turns out that the simulation cannot be done precisely step by step. One could say that
resolution is more “optimal” than modd dimination in the following sense: in resolution due
to the set data structure identical literals are collapsed into one single occurrence, whereas the
corresponding data structurein tableau model elimination are multisets and thus permit multiple
occurrences of identical literals. As a consequence for derivations, in tableau model elimination
identical subgoals have to be proven independently from each other, whereas resolution treats
them in one step. So it is not surprising that the resolution refutation may be shorter than the
model elimination refutation. Informally, the resolution refutation has to “pause” while in the
tableau model elimination refutation a subgoal is proved that is absent in the resolution clause
due to the set data structure. Note that this property of resolution has nothing to do with the use
of lemmas.

We will use the following standard definition of resolution (Chang and Lee, 1973):

DErFINITION 7.1. (Resolution, (Chang and Lee, 1973)) Let C; and C, be clauses and ¢1 and
@2 respectively be most general factorization substitutions for some subsets of C; and C,
respectively. Let L; € C; and L, € C, such that L1¢; and Lo¢, are unifiable by MGU o. Then
the resolvent of C; and C, isthe clause (C1¢10' — {L1}¢10') U (C2¢20' — {Lz}d)za‘) O

PROOF. (theorem 7.1) Induction on n, the length of the ME derivation.
Basecase: If n = 1thenP;isapathset P with C € M. Withy = ¢ theresult holdstrivially.
Induction step: Suppose by the induction hypothesis that the result holds for derivations of
length n, i.e. thereisaresolution derivation for Cj from M and a~ such that

Cpy C O(Py)! (7.1)

We show that the claim holds also for derivations of length » + 1. Thisis done by case analyses
with respect to the inferencerule applied to P,,.

Case 1: an extension step applied (cf figure 5). By definition of tableau model elimination 3.2,
Pn =PU{p}, leaf(p) = K and C isavariant of aclausein M such that for some L € C,
(L, K) isaconnection. Let o bethe MGU used for that connection. Then

O(Pn41) = (O(Py) —{K}oU(C —{L})o. (7.2)

We do a further case analysis. In the first (and trivial) case K ¢ Cy~. But then it follows
from (7.1) and (7.2) Cyyo C O(Pn41)'. Setting v := yo provesthe claim. In the second case
K € Cyv. Here the extension step of P,, with C' has to be smulated in a resolution step of Cj,
with C'. As mentioned in the introductory example, a little care must be taken to factorize on
“enough” literals of the parent clauses. For the extension step it suffices to factor only Cj. For
this, C can be partitionedas Cy, = D U £, where D and £ aredigoint and 1 isamaximal set
suchthat Dyo = {Kc}. Let ¢1 beamost generd factorization substitutionfor D C Cj (by this
we mean amost general substitution with domain and range as the variables of C} such that D
becomes a singleton). ¢ ismore generd than vo. Hence there exists a substitution é; such that

Cr¢161 = Cryo (7.3)
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Now consider C'. Let 6, betherestriction of o to the variables of C'. Then
Cér=Co (7.4)

Since ¢; does not introduce new variablesto Cy. it followsthat 61, which isapplied to Cy ¢1,
can be assumed to act on the variables of Cj only. Without loss of generality assume C to bea
“new” variant. Hence 6; does not act upon thevariablesof C. Thusalso C = C'61. Applying é,
to both sidesyields

Céy = Cé16, (7.5
Since C isanew variant, §, acts on the variables of C only. It follows
Cr 9161 = Crp16162 (7.6)
Concerning D it followsfromthis, (7.3) and Dyo = {Ko}
D¢1616, = {Ko} (7.7)

Since o isaunifier for L and K (modulo sign) we have with (7.7), (7.5) and (7.4) that 616, isa
unifier (modulo sign) for D¢, and { L}. But then thereisaso an MGU ¢’ for D¢; and {L} and
asubstitution 8’ such that

quSla’(S’ = Ck(f)l(sl(sz and (78)
Co's = (86 (7.9
Hence we can resolve the factor Cy ¢, of Cy with selected literal D¢1 against C' with selected
literdl L and MGU ¢'. Theresolvent Cy41 isthe clause
Cry1 = (Crd10’ — D1o’) U (Co’ — {L}o’)
= E¢10’ U(Co’ —{L}d")
Here we have used the fact that D and E are digoint, even after instantiation with ¢10”. Next
we will prove that C41 isthe desired clause and é' is the desired substitution, i.e. Cy416" C
O(Prs1)t.
Cr418" = (E¢r0’ U (Co’ — {L}o'))&
= E¢10'8' U (Co’' — {L}o")§’

(787573) Eyo U (Co’' —{L}d")é

- EyoU(C —{L})d'¢

(7.97574) Fyo U(C - {L})e

(Cevo = {Ea})U(C - {L})o

C (0P —{K})oU(C—{L})o
(7.2)
C  O(Pnyr)t

In (x) we used the digjointness and maximality propertiesof D and £ as defined above.

Thus the derivation of Cy41 and the substitution §’ provesthe claim.

Case 2: a reduction step applied. By definition of reduction step (def. 3.2), P, = P U {p},
leaf(p) = K and p containsaliteral L suchthat (L, K') isaconnection. Let 0,1 bethe MGU
used for that connection. As a result of the reduction step we obtain

O(Pnt1) = (O(Prn) = {EK})ons1 (7.10)
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The literal L that is used in the reduction step must have been the leaf of a path ¢ in a
previously derived tableau P, (for some m < n),i.e. L € O(P,,). We may assume that P,,
is the last tableau in the derivation that contains that occurrence of ¢. Thus P,, 41 is obtained
from P,, by extending the path ¢. Concerning the set of open leaves we have O(P,,+1) =
((O(Pm)—{L})U O +1)0m+1, Where O, 1.1 isthe (possibly empty) set of open |eaves stemming
fromthisextension step, and ¢, +.1 istheMGU used. By the given assumptionin every inference
step alongest pathis selected. Asaconsequence of thisand the fact that every inference removes
exactly the selected path, the paths eliminated in thetableaux Py, 41, . . ., P, aredl (instances of)
alongest extension of g. Thus no (instance of) apath aready containedinP,, — { ¢} isremoved.
Hence O(P, — {¢}) = O(Pn) — {L} persists; more formally we have:

Vi=m+1l..n41: (OPn)—{L})oms1-- 01 C O(P) (7.12)
Since m < n by theinduction hypothesisthereisa C; and a+y; such that
Civ; € O(Pm)t (7.12)
Also by the induction hypothesisthereisa Cy and a~y; such that
Ciyk C O(Py)! (7.13)

Leto, (: = m+1...n)betheMGU appliedinthederivation of P, fromP;_1. SincetheMGUs
are applied to thewhole path set, L isinstantiatedto Loy, 41 - -0 iINP,,. Let 0,41 bethe MGU
used in the reduction step. Thus

Kopy1=Lopmyr - 0nong1 (7.14)

In the sequel we will abbreviate oy, 41 0041 85 T.

Now we distinguish three cases. In the first (trivial) case, K € Cyvyi. Thisis similar to the
first trivial case in extension step, i.e. Cy and v := w0, 41 Will do. In the second (also trivial)
case L ¢ Cjv;,1.e theclause C; corresponding to the previoustableau P,,, does not contain the
ancestor literal. Thus C; and the substitutiony := ;7 will do.

In the non-trivial case K € Cyyy A L € Cyyy. It is similar to the non-trivia case in the
extension step, except that resolution of Cj with an input clause C' is replaced by resolution of
Cy, with the ancestor clause Cj. Unlikein the extension step, C; thistime has to be factorized:
takeeg. C; = P(z) V P(y) and ¢ hasthelesf L = P(a). Suppose ¢ is extended and contains
theleaf —P(a) which is subject to areduction step with P(a) now. Let Cy, = =P (u) V =P(v).
After the reduction step the set of open leaves contains neither P(a) nor —=P(a). Hence the
corresponding literals from the corresponding clauses have to be resolved away. Note that thisis
possibleonly after factoring both P(z) v P(y) aswell as—P(u) V = P(v) to asingleton.

Cy can bepartitionedas Cy, = DU E,where D and £ aredigointand D isamaximal set such
that Dyrop41 = {Ko,41}. Let 1 beamost general factorization substitutionfor D C Cy. ¢1
ismore general than v o ,+1. Hence thereisasubstitution é; such that

Cr 9161 = Ceyk0ns1 (7.15)

Now consider C;. Similarly to Cy, C; can bepartitionedas C; = /' U G, where I and G are
disointand F' isamaximal set such that Fy;7 = {L7}. Let ¢, be amost genera factorization
substitutionfor #'. Since ¢, is more general than ~; 7 thereis a substitution 6, such that

Cj262 = Cjyyr (7.16)

Since ¢; does not introduce new variablesto Cy. it followsthat 61, which isapplied to Cy ¢1,
can be assumed to act on the variables of ¢}, only. Without loss of generality assume C; to be a
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“new” variant, variable digoint from Cy. Hence é; does not act upon the variables of ;. Thus
aso Cj¢o = Cj¢261. Applying 6, to both sides yields

Cj9262 = Cjd26162 (7.17)
Concerning F it followsfrom thisequation, (7.16) and F'y;7 = {L7}
F¢26162 = {LT} (718)

Since C; isanew variant and ¢, does not introduce new variables, é, acts on the variables of
C; only. It follows

Cr 9161 = Cp 916162 (7.19)
Concerning D it followsfrom thisequation, (7.15) and Dyro 41 = {Kony1}
qu)léléz = {I(Un-(-l} (720)

Since o, 41 isaunifier for Loy, 41+ - -0, and K (modulo sign) we have with (7.18) and (7.20)
that 616, isaunifier (modulo sign) for D¢1 and F ¢,. But then thereisaso an MGU o for D¢,
and F ¢, and asubstitution 6’ such that

Ck¢1a’6’ = Ck(bl(sléz and (721)

quf)zd"(sl = Cj(’f)zé]ﬁz (722)
Hence we can resolve the factor Cy¢1 of Cy with selected literal D¢, against thefactor C; ¢, of
C; with selected literal F¢, and MGU o’. The resolvent Cj41 isthe clause

Cr41 = (Crdr0" — Dd10") U (Cjdo0’ — Foo')
= qu)lcf’ U Gq/)zal
Here we have used the fact that D and £ (or /' and G respectively) are disjoint, even after
instantiationwith ¢10” (or ¢o0”). Next wewill provethat Cy1 isthedesired clauseand §’ isthe
desired substitution,i.e. Cy418’ € O(Prt1)t.
Ck+16’ = (E(blo'/ U quzal)(sl
= E¢10'6 U Gpoo'é'

7.21,7.19,7.15
( = )E’yk0n+1U G0’ 6’

7.22,7.17,7.16
( = )E7k0n+lU G’y]'T

—~

*

= (Ceveonyr— {Kony1}) U Gy;7

W (Comonsi— {Konpa}) UGy — {L7))
(O(Pa)t = {E})onsrU (O(P) — {L})

(0P U (0@ — (Lh7)!

T2 o(Pagr)!

In (x) we used the dis ointness and maximality propertiesof D and E as defined above. The
same holdsin (x«) for 7 and G.
Thus the derivation of Cy.1 and the substitutioné’ provestheclam. U

N

(7.12,7.13)
C

In (Eder, 1992) Eder gives a theorem that relates the connection calculus to resolution. This
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theorem is also relevant for tableau model elimination, since tableau model eimination can be
seen as arestricted variant of the connection method. Infact, the theorem can easily be adapted to
tableau model elimination. Then it states, similarly to our theorem above, that for every tableau
model elimination refutation there is a resolution refutation that is no longer. However there are
some differences: firstly, his proof isinformal, whereas we feel the need for a rigorous formal
treatment. Using our notation, he states that either O(P,,)! subsumes C}, or else an input clause
subsumes C. Note that we do not need the input clause set and thus have a tighter coupling of
the refutations. Furthermore note that we use the converse subsumption relation, i.e. we claim
that C; subsumes O(P,)!. It might seem obvious then to conclude that Cy and O(P,,)! are
equivalent. However thisis not true since Eder uses a different resolution calculus from the one
wedo: we use Chang and Lee' s definition, where factorizationiscarried out on the parent clauses.
Eder treats factorization by an extrainference rule and thus can even factor resolvents; but more
important than the order of factoring isthe fact that for Eder’s proof the factorization inference
rule has to be replaced by a subsumption inference rule. His subsumption rule however worksin
ahighly non-standard way: it allowsthe derivation of aclause D fromaclause C if C subsumes
D. Note that this rule reverses the standard subsumption rule; in Eder’s calculus the clause D
is obtained from C' by introducing arbitrary literals and by arbitrary instantiation. The rule is
applied in place of factorizationin the traditional calculus, i.e. it is applied to the parent clauses
before the binary resolution inference. In our view, thisis a counter-intuitiveinference rule that
also destroystheidea of simulating extension steps by resolution steps.

Using Eder’sresolution it might be possible to prove the theorem the way we stated it (although
we did not check it). However it is not possible to show Eder’s subsumption relation with our
calculus.

8. Discussion

RESUMEE

One starting point for this work was Eder’s consolution together with his investigation on its
relation to resol ution. We gave avariant of consolution, which isstronger than consolution, inthe
sense that every consol ution derivation can be simulated stepwise by this variant. This sequence
consolution was used as a framework for comparing other calculi. For this we presented the
calculi under consideration in the language of consolution, i.e. using paths and sets or sequences
of paths. For the sake of completeness we cite from (Eder, 1991) the following theorem, which
relates resol ution and consol ution:

THEOREM 8.1. (Eder, 1991)(Consolution SimulatesResolution) Let Mbeamatrixand (Cy,. . . ,Cy)
be a resolution refutation of M. Then (Pc,, . .., Pc,) isa consol ution refutation of M.

Together with the results from this paper we arrive at the diagram in figure 6. There, A — B
means that calculus A can be simulated stepwise by calculus B, and dashed arrows indicate a
“weaker” simulatability relation after certain calculus restrictions.

Although our main concern was to demonstrate the advantages of sequence consolution for
theseinvestigations, we obtained several new resultsand formal proofsof folklore-liketheorems.
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RELATION TO OTHER WORK

In (Letz, 1993) the “clausal tableau calculus’ is chosen as a starting point for a comparison

of various calculi and proof procedures. It corresponds exactly to Beth’s or Smullyan’s analytic
tableaux calculus (Beth, 1959; Smullyan, 1968) when restricted to propositiona formulaswhich
aregivenin clause form. This calculus can be further restricted, such that tableau expansions are
allowed only when the clause used for the extension step introduces at least one complementary
literal compared with the leaf choosen for extension. This calculusis exactly our tableau model
elimination calculus; it is caled “connection tableau calculus’ in (Letz, 1993). However, this
taxonomy is not so straightforward when first order calculi are compared. In this case, there is
a significant difference, in that anaytic tableaux use an instantiation rule, whereas the tableau
model elimination cal culus needs unification; thisisthereason why, at least inthefirst order case,
the tableau model elimination resembles very much the model elimination calculus introduced
by Loveland in (Loveland, 1968).
Another interesting property discussed by Letz is proof-confluence. The tableau calculus for
exampleis proof-confluent, because any tableau can be completed to a closed oneif the input set
is unsatisfiable, whereas tableau model eliminationis not proof-confluent; i.e. a proof procedure
based on the latter has to perform some kind of backtracking.

In (Wrightson, 1989) the relation of analytic tableaux to various calculi and strategies is
discussed. Wrightson gives in his paper a transformation of some sample resolution and model
elimination proofs into proofs using clausal tableaux. His work addresses very much the same
problems as our work does; whereas Wrightson gives a number of example deductions together
with transformations, our main concern was to present rigorous theorems, stating how some
calculi can be related to each other. For example, Wrightson transforms one resol ution refutation
for a propositional formulainto an analytic tableaux proof; the resolution proof is alinear input
refutation and to usit isnot clear if and how this approach worksfor non-linear resol ution proofs
aswell.

Bibel gave a comparative study of severa proof proceduresin (Bibel, 1982). There, a number
of proof procedures are compared with three versions of the connection method (which were
called “matrix methods’ at that time). Bibel gave atheorem which establishes arelation between
the “pure model dimination” (PME) calculus and the connection method. This PME calculus
corresponds to our tableau model eimination and hence our theorem 5.1 is a proof of Bibel’s
theorem by means of the consol ution-framework. It isobviousthat asimilar one-to-onesimulation
for Loveland’s model elimination is not possible. We are confident that our approach, using
sequence consolution as a framework calculus, hel psto understand the common ground and the
differences between those calculi.

In (Loveland, 1972), the relation between ME and several other calculi is investigated. As
a main result, which is also contained and proved in a similar form in (Loveland, 1978), it
demonstrated that M E and a certain restriction of linear resol ution simul ate each other by stepsat
the ground level. On the non-ground level ME may require additional extension steps that do not
have a counterpart in resolution. This is shown by means of an example, and this example can
al so be used to show the same negativeresult for tableau model elimination. Alsoin that paper the
linked conjunct procedure and a matrix reduction procedure (Prawitz, 1970) are discussed, and it
isdemonstrated at the ground level that under certain circumstances thereisa 1-to-1 relationship
between matrix reduction and ME.

Plaisted (Plaisted, 1990) has obtai ned a mapping (on the ground level) from model elimination
toasequent calculus (seee.g. (Gallier, 1987)). Using this setting he showsthat it suffices to apply
reduction stepsto leaves with one (say: negative) polarity only.
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ON COMPLEXITY

Let us finally make some remarks on complexity results. All results of this paper depicted in
figure 6 state a stepwise or shorter — and hence p(olynomial) — simulatability relation between
caculi. There are a lot of interesting problems when one tries to establish simulatability in
directions opposite to those shown in figure 6 by giving up stepwise simulatability. In (Eder,
1992) it is shown that the connection calculus simulates resolution only exponentialy with
respect to proof length. With the same argumentation we can conclude that the tableau model
elimination calculus exponentially simulates resol ution.

Negative resultswith respect to stepwise simulatability are al so contained in (Schreiber, 1974).
He relates an early presentation of the connection method according to Bibel and two variants
of the resolution calculus (binary resolution with factoring and linear resolution). By means of
examples he shows severa rel ationshi psbetween Bibel’smethod and the two resolution variants.

In (Letz, 1993) it is proven that the tableau model elimination calculus (in this paper called
connection tabl eau as mentioned above) cannot polynomially simulate clausal tableaux. Sincethe
connection cal culus can be understood as a clausal tableau cal culus with aspecial path-selection
function, that result fitsinto our scenario. Letz further investigated the difference between regular
versions of calculi, i.e. where multiple occurences of a literal within one path are forbidden.
Among others, it then turns out that regular tableau model elimination cannot polynomially
simulate (non-regular) tableau model elimination.

Theimportance of regularity and itsdetection in derivationsisanother argument for i ntroducing
sequence consolution. Recall that sequence consol ution does not merge occurrences of the same
literalsalong a path (as consolution does). Hence regularity, or the violation of regularity, can be
detected easily.
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Mode Elimination:

. . Pn-1: .
Extension Reduction " ! Reduction
PP Pl P P
p? p? p? p
Lo Lt Lk Lo L1k Lo L1k
« . % . o x %
Connection Method:
Q Qi1
//’i Extension
a a
Lo Lk
. o x %

Figure 4. Simulation of acompact extension method subderivation by a single connection method extension step. The
selected paths are drawn bold, and the involved substitutions are omitted.
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Model Elimination:

Pn : Pn_}_]_ .
Extension with

.

) Qo o [ o
| (by induction) / N\

Cvy = [KERN *
Resolution:
VI (withé’)

@é Factor D¢>1<E£1
C= [II11] % = (1] Resolution

C= L[] z [IT1T] =G

Figure 5. Simulating a model elimination extension step.

Sequence Consolution

4’ .
Consolution
6.2
8.1 _
Connection
Resolution C?LE“' us
= T 5.1
7.1 - 6.1
Tableau-Model - Lovdand's
Elimination <--------- Model-Elimination

Figure 6. Theorems of this paper.



