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Abstract proof procedures, like hyper-linking. Ganzinger and his co-

. workers are presenting an approach where orderings are used
In this paper we demonstrate how general purpose 4 construct models of clause sets. Indeed, they even relate
automated theorem proving techniques can be used oy approach to SATCHMO-like theorem proving, which
to solve realistic model-based diagnosis problems. i 5 instance of the hyper tableau calculus. However, the
For this we modify a model generating tableau cal-  gemantics have to be given by orderings or alternatively, by
culus such that a model of a correctly behaving de- 41 gpsets of the set of clauses. In cases where the initially
vice can be used to guide the search for minimal 46 semantics is not compatible with orderings or is not ex-
diagnoses. Our experiments show that our general oqgible by Horn subsets it is unclear how to proceed. We
approach is competitive with specialized diagnosis iy show, that in the case of diagnosis an initial semantics,

systems. which is naturally given by a model of the correct behavior
of the device under consideration, can improve performance
1 Introduction significantly. Our proof procedure does not impose any re-

In thi il d trate that model tionth strictions on these initial models.
n this paper we wilt demonstrate that model generation theo- -y, oo me that the reader is familiar with the basic con-

rem proving Is very well swte@ for solving con3|stency-.basedcepts of propositional logicClausesi.e. multisets of literals,
diagnosis tasks. More precisely, we want to emphasize twgIre usually written as the disjunctioty V---V 4,, V=B, V

aspects: --V =B, or as an implicationd,,...,4,, «+ By,...,B,

i) Theorem proving techniques are very well applicable to(m > 0, n > 0). With L we denote the complement of a
realistic diagnosis problems, as they are contained in diliteral L. Two literalsL and K arecomplementarif L = K.
agnosis benchmark suites.

ii) Semantic information from a specific domain, can be2 Model-Based Diagnosis
used to significantly improve performance of a theoremin model-based diagnodi$0] a simulation model of the de-
prover. vice under consideration is used to predict its normal behav-
ior, given the observed input parameters. This approach uses

According to Reiter[(10]) a simulation model of the tech- . > . .
nical device under consideration is constructed and is used logical description of the device, called the system descrip-

to predict its normal behavior. By comparing this predictiont'ont (SD()j' form?'zed by _atset fOf flrsi—ofrder_ formuLas. 'I;he_
with the actual behavior it is possible to derive a diagnosis. system description consists of a set of axioms characteriz-
ing the behavior of system components of certain types. The

This work was motivated by the study of the diagnosis sys- : .
tem DRUM-2[5; 9]. The basic idea is to start with an ini- topology is modeled separately by a set of facts. The diag-

tial model of a correctly functioning device. This model is nostic problem is described by system descripidh a set

revised, whenever the actual observations differ from the pregOMP of components and a s€iBS of observatlons (Iog-_
dicted behavior. ical facts). With each component we associate a behavioral

We will use a proof procedure, which is an implementatioande: Mode(c, Ok) means that componentis behaving
of the hyper tableaux calculus presentedilh We adapt the correctly, whileMode(c, Ab) (abbreviated bylb(c¢)) denotes

idea from DRUM-2 to this tableaux calculus, which yields thatc is faulty.
semantic hyper tableauXhe resulting system approximates p @ . 5 4 (Reiter 87) A Diagnosis of

the efficiency of the DRUMTZ §ystem. . SD,COMP,0BS) is a setA C COMP, such that
The use of semantics within theorem proving procedure%D U OBS U {Mode(c, Ab)|c € A} U {~Mode(c, Ab)|c €
have been proposed before. There is the well-known cong,,p _A}is consist’entA is called aMinimal D’iagnosis
cept of semantic resolutiofd]) and, more recently, there are iff it is the minimal set (wrt.C) with this property]
approaches by Plaistef4] and Ganzinger[6]). Plaisted is =
arguing strongly for the need of giving semantic information The set of all minimal diagnoses can be large for complex
for controlling the generation of clauses in his instance-basetéchnical devices. Therefore, stronger criteria than minimal-



ity are often used to further discriminate among the minimal3 Hyper Tableaux Calculus
diagnoses. These criteria are usually based on the probabilify [1] a variant of clausal normal form tableaux called “hyper

or cardinality of diagnoses. In the remainder of this paper Wgapeaux” is introduced. We briefly recall the ground version
will use restrictions on the cardinality of diagnoses. We say, e

that a di_agnos_is sqtisf_ies tl’r_aefault assumptionff |A| < n. . From now onsS always denotes a finite ground clause set,
Other minimality criteria which prefer e.g. more probable di- ;45 denotes its signature, i.e. the set of all predicate sym-

agnoses are conceivable as well, but are not treated in thg|s gccurring in it. We consider finite ordered tre®svhere

present paper. the nodes, except the root node, are labeled with literals. In
A widely used example of the-fault assumption is the the following we will represent a brandhin T by the se-
1-fault assumption o8ingle Fault AssumptionMany spe- quenceb = L;,...,L, (n> 0) of its literal labels, wherd,;
cialized systems for technical diagnosis have the Single Faulabels an immediate successor of the root node, anth-
Assumption implicit and are unable to handle multiple faults.bels the leaf ob. The branchb is calledregulariff L; # L;
for 1 <4,7 < n andi # j, otherwise it is calledrregular.
The tree T is regular iff every of its branches is regular,
otherwise it isirregular. The set ofbranch literalsof b is
lit(b) = {L;,...Ly,}. For brevity, we will write expressions
like A € b instead ofA € lit(d). In order to memorize the
fact that a branch contains a contradiction, we allow to label
a branch as eitha@penor closed A tableau isclosedif each
of its branches is closed, otherwise ibjsen

In model-based diagnosis systems the
Single Fault Assumption can be acti-
vated explicitly in order to provide more
discrimination among diagnoses and to
speed up the diagnosis process.

As a running example consider the sim-
ple digital circuit on the right consisting of
an or—gate dr1) and two invertersiquv!
and inv2). The system descriptio§D

is given by the following propositional
clauses:.

Definition 3.1 (Hyper tableau) A literal set is calledin-
consistentff it contains a pair of complementary literals, oth-
erwise it is callecconsistentHyper tableauxor § are induc-
OR1: ab(orl),high(orl,il),high(orl,i2) < high(orl,o) tively defined as follows:

ab(orl),high(orl, o) < high(orl,il)

Initialization step: The empty tree, consisting of the root
ab(orl),high(orl, o) < high(orl,i2) P 4 g

node only, is a hyper tableau f8r Its single branch is marked

INV1: ab(invl) < high(invl,o),high(invl,i) as “open”.
ab(inv1), high(invl, ), high(inv1, o) ¢ Hyper extension step:If (1) T is an open hyper tableau fsr
INV2: ab(inv2) < high(inv2, o), high(inv2,1) with open branch, and (2)C = A4,...,Aym < Bi,..., B,
ab(inv2), high(inv2, 1), high(inv2,0) < is a clause frong (m > 0, n > 0), calledextending clausi

this context, and (3} By, ..., B, } C b (equivalently, we say
that C is applicable tob) then the treel” is a hyper tableau
for S, whereT" is obtained fromT" by extension ob by C:

) o replaceb in T by thenewbranches
We observe that both inputs of the circuit have low volt-

age and the output also has low voltage, i.e. the clause set (b,4;)...,(b,An),(b,~B;)...,(b,~By)
of OBS is given by{«+ high(inv1,i), < high(inv2,i), +
high(or1,0)}. and then mark every inconsistent new branch as “closed”, and

. o . the other new branches as “open”. We say that a brarish
The expected behavior of the circuit given that both Inputsﬁnishediff it is either closed o?else whengv@r is applica-

are low would be high voltage at the outputs of both inverter le to . then extension of by C vields some irreqular ne
and consequently high voltage at the output of the or—gat%ranch’u X ! yoyl rregu w

This model of the correctly functioning device, naméjy=
{high(inv1,o0), high(inv2,0), high(or1,il), high(or1,i2),  The applicability condition of an extension expressesatiat
high(or1,0)}, can be computed very efficiently even pody literals have to be satisfied by the branch to be extended
for large devices by domain-specific tools, e.g. circuit(jike in hyperresolutior). From now on we consider only
simulators. regular hyper tableaux. This restriction guarantees that for
finite clause sets no branch can be extended infinitely often.

high(or1,i1) < high(invl,0) high(orl,i2) < high(inv2, o)
high(invl,o0) < high(orl,il)  high(inv2,0) < high(orl,i2)

1These formulas can be obtained by instantiating a first O'Definition 3.2

- . . ] B h ti ,
der description of the gate functions with the structurdbrin int t t'( nlr ?nc .Semzn Ics).nés ustL;]aI Wejrélepr(;sent
mation. For instance, the clauses for the OR1 gate stem frorft1 INtErpretatio or given domain2 as the Set{ € |

the formulay OR_gate : (~ab( OR_gate) — (high( OR_gate, 0) <> I(A) = true, A atom}. Minimality of interpretations is de-
(high(OR_gate,i1)V high( OR_gate,i2)))) fined via set-inclusion.



Given a tableau with consistent branghThe branchb is Note, that the initial model, usually already takes into

mapped to the interpretatid]s := lit(b)*, where li{p)* =  account a part of the observations which correspond to the
{A €lit(b) | Aisa positive literal}. Usually, we write[b]  inputs of the device under consideration. These input values
instead of[b] s and letX be given by the contextd are needed to simulate the correct behavior of the device. In

our example, the initial model reflects the fact that the inputs

Figure 1 contains a of the inverters both have low voltagg (was given at the end

hyper tableau for the / \ of Section 2).

clause set from our bt high | o

. ab(invl igh(invl,i) high(invl,o) P . . .
running example. Each - g| 4 Formalizing the Diagnosis Task with
open branch for the Semantic Hyper Tableaux

clause setSD U OBS }h%“) " . g H . nitial i
corresponds to a partial e o In this section we discuss how to incorporate initial interpre-

tations into the calculus. Our first technique @yts should
be understood as the semantics of the approach; an efficient
implementation by aompilation techniqués presented af-

model. The high- / \

Ilghted mOdeI can ab(inv2) high(inv2,1) high(inv2,o0)

be understood as an *

attempt to construct a i (ont 52 terwards.

model for the whole 4.1 Initial Interpretations via Cuts

clause ~set, without Figure 1: Hyper tableau. The use of aninitial interpretation can be approximated in the

assuming unnecessary
ab-predicates. Only for
making the clauses fror@R1 true is it necessary to include
ab(or1) into the modelhigh(or1,0) cannot be assumed, as Definition 4.1 The inference rulédtomic cut (with atom
this contradicts the observatien high(or1, o). A) is given by: if

A refutational completeness result for hyper tableaux was
given in[1]. For our purposes of computing diagnosis (i.e.

models), however, we need a (stronger) model completeneden the literal tree” is a hyper tableau faf, where 7" is
result: obtained fromT by extension ob by AV —A (cf. Def. 3.1).

O

Theorem 3.3 (Model Completeness of Hyper Tableaux.)  Note that in regular tableaux it cannot occur that a cut with
Let T be a hyper tableau faf such that every open branch atom 4 is applied, if eitherA or =4 is contained on the

is finished. Then, for every minimal modelbf S there is an  pranch. As a consequence it is impossible to use the “same
open branch in T such thatl = [b]. cut” twice on a branch.

This theorem enables us to compute in particular minimal di-C uY;/Z?taZrz)gr?:r:ienlmg? Ie;gﬁrﬁ reteart![(;rglset;)&applymg atomic
agnosis by simply collecting allb-literals along[b], be- 9 9 yP :

cause every minimal diagnosis must be contained in SOMBegyition 4.2 An initial tableau for an interpretatiorfy is
minimal mode| ofs. given by a regular tableau which is constructed by a applying

3.1 Lessons from the Specialized Diagnosis System &tomic cuts with atoms frorfy as long as possiblé]

hyper tableau calculus by the introduction of an additional
inference rule, thatomic cut rule

T is an open hyper tableau fgrwith open branch,

DRUM-2 The branches of an initial
In order to make the generation of models efficient enouglableau for an interpretatiaf
for the large benchmark circuits used in this paper, additionatonsist obviously of all inter- high(inv1,0)  —high(inv1,0)
knowledge has to be used to guide this model generatiompretations with atoms fronf,.
This is done by starting from a model of the correct behavA part of the initial tableau high(inve, 0) ~high(inv2, 0)

ior of the deviceSD and revising the model only where nec- for the initial interpretatiory,
essary. This idea of a “semantically guided " model genergiven at the end of Section 2 is
ation has been introduced first in the DRUM-2 systin  depicted in Figure 2. Note that high(ort, 1)  ~highont, if)

9]. The basic idea of DRUM-2 is to start with a model of the highlighted branch corre-

the correct behavior of the device under consideration, i.esponds to the highlighted part Figure 2: Initial tableau.
with an interpretatiody, such thatl, = SDU{-Ab(c)|c € in Figure 1 (a negative literal

COMP}. Then the system descriptiofiD is augmented in an initial tableaux, such ashigh(or1,0), is represented
by an observation of abnormal behavi@BS, such that the implicitly in a hyper tableau as thabsenceof the comple-
assumption that all components are working correctly is nanentary positive literal). If this branch is extended in succes-
longer valid. Thus], is no model ofSD U OBS, howeverit  sive hyper extension steps, the diagnasisr1 ), which was

is used to guide the search for modelsS@i U OBS. contained in the model from Figure 1 can be derived as well.

high(or1, 0)=high(or1,0)



Definition 4.3 (Semantic Hyper Tableau - SHT) A se-  Definition 4.5 (I-transformation) Let C = L; V---V L,
mantic hyper tableator I, and is a hyper tableau which is be a clause anfl be a set of atoms. Thetransformation of
generated according to Definition 3.1, except that the empty’ is the clause obtained frofl by replacing every positive
tableau in the initialization step is replaced by an initial literal A with A € T by —neg_A, and by replacing every nega-
tableau forl,. O tive literal = A with A € I by neg_A. Thel-transformation of
S, written as$’, is defined as thé-transformation of every
It is easy to derive an open tableau starting from the initialclause inS. O

tableau forl, in Figure 2, such that it contains the model from ]
Figure 1. It is easy to see that everftransformation preserves the

models of a clause set, in the sense that every model for the
. non-transformed clause set constitutes a model for the trans-
Proposition 4.4 (Model Completeness of SHT) Let T formed clause set by settingg_A to trueiff A is false for

be a semantic hyper tableau fby andS, such that every every A e I, and keeping the truth values for atoms outside
open branch is finished. Then, for every minimal motlef  of 1. More formally we have:

S there is an open brandhin T such thatl = [b].

. ) . ] Proposition 4.6 (Model Preservation of /-transformation)
4.2 Initial Interpretations via Renaming For every interpretatiod: J & S iff rename;(J) = S,

The just defined “semantical” account for initial interpreta- Where rename; (J)(neg-A) = J(A) iff A € I, and else
tions via cut is unsuited for realistic examples. This is, be-renamer(J)(A) = J(4).

cause aI_I th@. 1 possuble_ deV|e_1t|ons from the initial in . As explained informally above, the branch semantics of
terpretation will have to be investigated as well. Hence, in

this section we introduce a compilation technique which im_tablgaux derived from_ a renamed, ifetransformed clal_Jse

plements the deviation from the initial interpretation only by set, |s_ch§mged to assigmie to every atom fromf_, L_J_nless Its

need. negation is on the branch. This is a formal definition:
Assume we have an initial interpretatidp = {a} and []" =(I\{A | neg_A €lit(b)})uU

a clause set which contairls< and ¢ + a A b. By the (lit(b)\ {neg_4 | neg_A € lit(b)})

only applicable atomic cut we get the initial tableau with two 9- 9-

branches, namelja} and{-a}. The first branch can be ex- g connection of semantic hyper tableaux to hyper tableaux
tended twice by an hyper extension step, yield{ngb, c}. and renaming is given by the next theorem.
The second branch can be extended towdrds, b}. No

more extension step is applicable to this tableau. Tgl
be this tableau.

Let us now transform the clause set with respedgtsuch
that every atom frond, occurring in a clause is shifted to the
other side of the— symbol and complemented. In our ex-
ample we get the clausev —a + b; the factb + remains,
because is not inIp. Using b «— we construct a tableau The theorem tells us that with the renamed clause set we com-
consisting of the single brangfb}, which can be extended pute some deviation of the initial interpretation. The value of
in an successive hyper step by using the renamed clause. Wege theorem comes from the fact that the converse does not
get a tableau consisting of two brancHésc} and{b,—a}.  hold in general. Thatis, not every possible deviation is exam-
Let T be that tableau. Now, let us interpret a brancifias ined by naive enumeration of all combinations.
usual, except that we set an atom frégnto true if its nega- In order to see that the converse does not hold, take e.g.
tion is not contained in the branch. Under this interpretations — {a <} andI, = {b}. There is only one semantic hy-
the brancRb, ¢} in T corresponds to the usual interpretation per tableau of the stated form, namely the one with the two
of {a,b,c} in Tcy. Likewise, the second brandld, —a} i branches{b,a} and {-b,a}. On the other side, thé,-

Tyt corresponds to the second modelfin transformation leaves untouched, and thus the sole hyper

Note that by this renaming we get tableaux where atomsgableau fors consists of the single brand} with seman-
from I, occur onlynegativelyon open branches; such casestics [{a}]" = {a,b}. However, the semantics of the branch
just mean deviations frory . In contrast to the cut approach, {-b,q} in the former tableau is different. The set of mod-
these deviations are now brought into the tableau by need. els which are computed i’/ can be characterized by an

The following definition introduces the just described ideaordering,>;, , which takes into account the deviation from
formally. Since we want to avoid unnecessary changes to thihe initial interpretation. Ifb; and b, are branches in a se-
hyper calculus, a new predicate namey_A instead of-A  mantic hyper tableau faf andI, b; >j, by iff [b;]NT D
will be used. [be]NI and[b ]\ I = [be]\I.

Theorem 4.7 Let T be a semantic hyper tableau oandI
where every open branch is finished; Tt be a hyper tableau
for the I-transformation of where every open branch is fin-
ished. Then, for every open branghin T! there is an open

branchb in T such[b! ]]I = [b]. The converse does not hold.



Theorem 4.8 Let T and T! be given as in Theorem 4.7. Adaption for the Diagnosis Task. While incorporation of
Then, for every opetr ;,-maximal brancth of T there is an the initial interpretation is treated by renaming predicates in
open branch! in T, such tha{bl]]f =[b]. the input clause set (Section 4), and thus requires no modifi-
cation of the prover, implementing the minimality restriction
To conclude, the semantic hyper tableau approach servésdealt with by the following new inference rule: “any branch
us as a tool founderstandinghe effects of initial interpreta- containingn + 1 (due to regularity necessarily pairwise dif-
tions. Forefficient computingve rely on the nexttheorem:  ferent) Ab-literals is closed immediately”.
Notice that this inference rule has the same effect as if
Theorem 4.9 (Minimal Diagnosis Completeness) Let I the (lonoﬁp‘) clauses< ab(C),...,ab(Cpy) (for C; €
be an interpretation such thgtn{ Ab(c) | c€ COMP}=0,  COMP, C; # C;, wherel <i,j < n+1 andi # j) spec-
andT be a hyper tableau fg'o such that every open branch ifying the n-faults assumption would be added to the input
is finished. Then, for every minimal diagnofisc COMP  clause set. Since even for the smallest example (c499) and the
there is an open brandhin T such that 1-fault assumption the clause set would blow up from 1600
to 60000 clauses, the inference rule solution is mandatory.
A= {c e COMP | renamer, ([b]) = Ab(c)}

={ce COMP | Ab(c) € b} . Computing Minimal Diagnoses From Theorem 4.9 we
know that for each minimal diagnosis the hyper tableau

Proof.(Sketch) We need Theorem 3.3 and Proposition 4.6¢ontains an open finished branch. However, there are also
suppose) is a minimal diagnosis. Consider all atom setspranches corresponding to non—-minimal extensiong inf
M such thatM U{A4b(c) | c € A} = S. As a consequence  Since the number of non—-minimal diagnoses is exponential in
of the model correspondence expressed in Proposition 4.¢he number of components of the device, our goal is to avoid
thereby using the facts thd§ does not contaimb-literals  extension of branches which correspond to non-minimal di-
and that is a minimal diagnosis, we can find @ suchthat  agnoses. This can be achieved by a combined iterative deep-
J 1= renamer, (M U{Ab(c) | c € A}) is a minimal model  ening/lemma technique. It can be basically realized by a
for $70. Hence, by Theorem 3.3 this model, and in particularsimple outer loop around the just described proof procedure.

this diagnosigy, will be computed along some finished open The outer loop includes a countdf = 0, 1,2, ..., which

branchb. Q.E.D. stands for the cardinality of the diagnosis computed in the
inner loop. Thdnvariantfor the outer loop is the following:

5 Implementation and Experiments all minimal diagnosis with cardinalit< N — 1 have been
computed, say it is the séty_;, and every such diagnosis

We have implemented a proof procedure for the hyper, ¢i,...,cn} € Ay_; has been added to the input clause set
tableaux calculus df1], modified it slightly for our diagno- as alemma clause Ab(¢;) V --- V- Ab(c,). Before enter-
sis task, and applied it to some benchmark examples from ﬂ\ﬁg the proof procedure in the inner Ioopr\l/veAQ,t ‘= Ay

diagnosis literature. and the proof procedure is slightly modified according to the
following rule: whenever a finished open brartcts derived,

The Basic Proof Procedure. A basic proof procedure for a new diagnosid, = {c | Ab(c) € b} is found. Hence we
the plain hyper tableaux calculus for the propositional case isetAy := Ay U {A} and addA, as a lemma clause to the
very simple, and coincides with e.g. SATCHM#E]. Initially input clause set, as just described. No more modifications are
let T be a tableau consisting of the root node only. I&t necessary.
be the tableau constructed so fitain loop: if T is closed, Notice that the lemma clauses are purely negative clauses
stop with “unsatisfiable”. Otherwise select an open branctand hence can be used to close a branch. Since we give prefer-
b from T (branch selection) which is not labeled as “fin- ence to negative clauses, no diagnosis will be computed more
ished” and select a claudé + B (extension clause selec- than once, because as soon as a diagnosis is computed the
tion) from the input clause set such tHaC b (applicability)  first time, it is turned into a (negative) lemma clause which
andH Nb = {} (regularity check). If no such clause exists, will be used to immediately close all branches containing the
b is labeled as “finished” anfib] is a model for the input same diagnosis. Furthermore, we compute eniyimal di-
clause set. In particular, the set of literalstowith predicate  agnosis as an immediate consequence of the iterative deepen-
symbol Ab (simply calledAb-literals) constitutes a (not nec- ing over N: any branch containing a non-minimal diagnosis
essarily minimal) diagnosis. If every open branch is labeledvould have been closed by a lemma clause stemming from
as “finished” then stop, otherwise enter the main loop again.a diagnosis with strictly smaller cardinality, which must be

In the diagnosis task it is often demanded to compute eveontained in the input clause set due to the invariant for some
ery (minimal) diagnosis. Hence the proof procedure does notalue< N. Thus, the invariant holds for a\'.
stop after the first open branch is found, but only marks it as Although this procedure computing minimal diagnosis un-
“finished” and enters the main loop again. der then-fault assumption is so simple, it has some nice prop-



© N was solvable (in 174 seconds); all other examples could not
& & & o ) -
& & NG 2 be solved within 2 hours, whatever flag settings/heuristic we
f&\ \'Z& "bq < @Q .
O @ SOPRS & < tried!
Name % * L ki v In the “All?” column a “yes” entry means that there are
C499 202 1685] 2 5 3015] no _ "y ay y
2_fault: 67 50 | 27323] yes no diagnosis with cardinality- 1, resp.> 2 for the 2-fault
C880 383 | 2776 19 2 161 | yes rows. That is, only for c1355 there are possible diagnosis
C1355 546 | 3839| 5 47 24699 | no with cardinality> 2 which we did not compute, for all other
0226';%‘1“1 1103 | 8260 3? 294§ 1284;‘3?34 no examples all minimal diagnosis were computed. We can de-
yes . . . P
Ca540 1669 | 10658 | 3 | 10853 | 1473572 | yes tect if all minimal diagnoses were found by checkln_g if some
C5315 2307 | 16122 | 5 13 3071 | yes tableau branch was closed due to théault assumption. To

our impression, increasingusually drastically increases the
Figure 3: ISCAS' 85 Circuits and runtime results. time to compute diagnosis.

. o _ _ _ _ 6 Conclusions
erties. First, it can be implemented easily by slight modifica-

tions to the basic hyper tableau proof procedure. Second,

i X ) .
the hyper tableau proof procedure we look at one branch aglased diagnostic reasoning and tablegux bas_ed theorgm prov-
a time, which gives a polynomial upper bound for the mem-Ng- We showed how to implement diagnostic reasoning ef-

ory requirement for the tableau currently constructed. Ad_flmen.tlly using a hyper _ta_pleaux based theorgm prover. -We
mittedly, there are possibly exponentially many minimal gi- [dentified the use of an initial model as the main optimization

agnosis wrt] COMP|, but we assume that those will be kept technique in the diagnostic reasoning engine DRUM-2 and

anyway. Further, it is important to notice that we computeShOWeOI how to apply this technique within a hyper tableaux

minimal models only wrt. the extension of thi-predicate, cglchulus. Wsl shghtl)? mlodlft|)ed an |mplgmelnta_t|ﬁn of thi.ba'd
but not of minimal models wrt. all predicates. Sif€G&MP| sic hyper tableau calculus by augmenting it with a combine

will be usually much smaller than the number of atoms in theterative deepening/lemma technique. This guarantees com-

this paper we analyzed the relationship between logic-

translation(SD, COMP, OBS) to propositional logic, com-
puting minimal models wrt. all predicates would usually re-
quire considerably more memory (such an approach to mini-
mal model reasoning was proposedz2th).

Experiments. We implemented a prover according to the 2.
proof procedure as outlined above. It is a prover (written in
SCHEME) for first-order logic, and thus carries some signifi-
cant overhead for the propositional case. For our experiments
we ran parts of the ISCAS-85 benchmatfi$ from the di-
agnosis literature. This benchmark suite includes combinato->-
rial circuits from 160 to 3512 components. Table 3 describes
the characteristics of the circuits we tested. The observations
which were used can be obtained from the authors.

The results are summarized in Table #.Clausess the
number of input clauses stemming from the problem descrip—5'
tion. We ran our prover in 1-fault and 2-fault assumption set-
tings. Timedenotes proof time proper in seconds, and thus ex-¢
cludes time for reading in and setup (which is less than about
10 seconds in any case). The times are taken on a Sparc?.
Station 20. # Stepsdenotes the number of hyper extension
steps to obtain the final tableau, ah®iag denotes the num-
ber of diagnosis. When two rows for a circuit are given, the
upper one is for the 1-fault assumption, and the lower onegq
is for the 2-fault assumption (recall that the 2-fault diagnosis
includethe 1-fault diagnosis). We emphasize that the results
refer to the clause sets with renamed predicates according to
Section 4. Without renaming, and thus taking advantage ot0-
the initial interpretation, in the 1-fault assumption only c499

pleteness for minimal diagnosis computation.
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