
Semantically Guided Theorem Proving for Diagnosis Applications

Peter Baumgartner
Univ. Koblenz

Inst. f. Informatik���������� 	 
�� ��� 	
���� 
��

Peter Fröhlich
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Abstract

In this paper we demonstrate how general purpose
automated theorem proving techniques can be used
to solve realistic model-based diagnosis problems.
For this we modify a model generating tableau cal-
culus such that a model of a correctly behaving de-
vice can be used to guide the search for minimal
diagnoses. Our experiments show that our general
approach is competitive with specialized diagnosis
systems.

1 Introduction
In this paper we will demonstrate that model generation theo-
rem proving is very well suited for solving consistency-based
diagnosis tasks. More precisely, we want to emphasize two
aspects:

i) Theorem proving techniques are very well applicable to
realistic diagnosis problems, as they are contained in di-
agnosis benchmark suites.

ii) Semantic information from a specific domain, can be
used to significantly improve performance of a theorem
prover.

According to Reiter ([10]) a simulation model of the tech-
nical device under consideration is constructed and is used
to predict its normal behavior. By comparing this prediction
with the actual behavior it is possible to derive a diagnosis.

This work was motivated by the study of the diagnosis sys-
tem DRUM-2[5; 9]. The basic idea is to start with an ini-
tial model of a correctly functioning device. This model is
revised, whenever the actual observations differ from the pre-
dicted behavior.

We will use a proof procedure, which is an implementation
of the hyper tableaux calculus presented in[1]. We adapt the
idea from DRUM-2 to this tableaux calculus, which yields
semantic hyper tableaux. The resulting system approximates
the efficiency of the DRUM-2 system.

The use of semantics within theorem proving procedures
have been proposed before. There is the well-known con-
cept of semantic resolution ([3]) and, more recently, there are
approaches by Plaisted ([4] and Ganzinger ([6]). Plaisted is
arguing strongly for the need of giving semantic information
for controlling the generation of clauses in his instance-based

proof procedures, like hyper-linking. Ganzinger and his co-
workers are presenting an approach where orderings are used
to construct models of clause sets. Indeed, they even relate
their approach to SATCHMO-like theorem proving, which
is an instance of the hyper tableau calculus. However, the
semantics have to be given by orderings or alternatively, by
Horn subsets of the set of clauses. In cases where the initially
given semantics is not compatible with orderings or is not ex-
pressible by Horn subsets it is unclear how to proceed. We
will show, that in the case of diagnosis an initial semantics,
which is naturally given by a model of the correct behavior
of the device under consideration, can improve performance
significantly. Our proof procedure does not impose any re-
strictions on these initial models.

We assume that the reader is familiar with the basic con-
cepts of propositional logic.Clauses, i.e. multisets of literals,
are usually written as the disjunction� � � � � � � � � � � � � �
� � � � � � � or as an implication� � �    � � � ! � � �    � ��
(" # $ , % # $ ). With & we denote the complement of a
literal &. Two literals& and' arecomplementaryif & ( ' .

2 Model–Based Diagnosis
In model-based diagnosis[10] a simulation model of the de-
vice under consideration is used to predict its normal behav-
ior, given the observed input parameters. This approach uses
an logical description of the device, called the system descrip-
tion ()* ), formalized by a set of first–order formulas. The
system description consists of a set of axioms characteriz-
ing the behavior of system components of certain types. The
topology is modeled separately by a set of facts. The diag-
nostic problem is described by system description)* , a set+ ,- .

of components and a set
,� ) of observations (log-

ical facts). With each component we associate a behavioral
mode:

- /01 23 � ,4 5
means that component

3
is behaving

correctly, while
- /01 23 � � 65

(abbreviated by� 6 235
) denotes

that
3

is faulty.
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is a set ∆ G + ,- .
, such that

)* H ,� ) H I- /01 23 � � 65 J3 K
∆L H I� - /01 23 � � 65 J3 K

+ ,- . M
∆L is consistent.∆ is called aMinimal Diagnosis,

iff it is the minimal set (wrt.G) with this property.N
The set of all minimal diagnoses can be large for complex

technical devices. Therefore, stronger criteria than minimal-



ity are often used to further discriminate among the minimal
diagnoses. These criteria are usually based on the probability
or cardinality of diagnoses. In the remainder of this paper we
will use restrictions on the cardinality of diagnoses. We say
that a diagnosis satisfies the%-fault assumptioniff

J
∆

J � % .
Other minimality criteria which prefer e.g. more probable di-
agnoses are conceivable as well, but are not treated in the
present paper.

A widely used example of the%-fault assumption is the
1-fault assumption orSingle Fault Assumption. Many spe-
cialized systems for technical diagnosis have the Single Fault
Assumption implicit and are unable to handle multiple faults.

[0] [0]

[0]

inv1 inv2

or1

In model–based diagnosis systems the
Single Fault Assumption can be acti-
vated explicitly in order to provide more
discrimination among diagnoses and to
speed up the diagnosis process.
As a running example consider the sim-
ple digital circuit on the right consisting of
an or–gate (

/��
) and two inverters (�%��

and �%�� ). The system description)*
is given by the following propositional
clauses:1.
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We observe that both inputs of the circuit have low volt-
age and the output also has low voltage, i.e. the clause set
of

,� ) is given byI! � ��� 2�%�� � � 5 � ! � ��� 2�%�� � � 5 � !
� ��� 2/�� � /5L.

The expected behavior of the circuit given that both inputs
are low would be high voltage at the outputs of both inverters
and consequently high voltage at the output of the or–gate.
This model of the correctly functioning device, namely� � (
I� ��� 2�%�� � /5 � � ��� 2�%�� � /5 �� ��� 2/�� � �� 5 �� ��� 2/�� � �� 5 �
� ��� 2/�� � /5L � can be computed very efficiently even
for large devices by domain–specific tools, e.g. circuit
simulators.

1These formulas can be obtained by instantiating a first or-
der description of the gate functions with the structural infor-
mation. For instance, the clauses for the OR1 gate stem from
the formula� �� ���� : �� �� ��� ����� � �� ��� ��� ���� 
 	�  
�� ��� ��� ���� 
 �� � ! � ��� ��� ���� 
 �� ����

3 Hyper Tableaux Calculus
In [1] a variant of clausal normal form tableaux called “hyper
tableaux” is introduced. We briefly recall the ground version
here.

From now onS always denotes a finite ground clause set,
andΣ denotes its signature, i.e. the set of all predicate sym-
bols occurring in it. We consider finite ordered trees" where
the nodes, except the root node, are labeled with literals. In
the following we will represent a branch6 in " by the se-
quence6 ( & � �    � &� (% # $ ) of its literal labels, where& �
labels an immediate successor of the root node, and&� la-
bels the leaf of6. The branch6 is calledregular iff & # $( &%
for

� � � �& � % and � $( & , otherwise it is calledirregular.
The tree " is regular iff every of its branches is regular,
otherwise it isirregular. The set ofbranch literalsof 6 is
lit

265 ( I& � �    &� L. For brevity, we will write expressions
like � K 6 instead of� K

lit
265

. In order to memorize the
fact that a branch contains a contradiction, we allow to label
a branch as eitheropenor closed. A tableau isclosedif each
of its branches is closed, otherwise it isopen.
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A literal set is calledin-

consistentiff it contains a pair of complementary literals, oth-
erwise it is calledconsistent. Hyper tableauxfor S are induc-
tively defined as follows:

Initialization step: The empty tree, consisting of the root
node only, is a hyper tableau forS . Its single branch is marked
as “open”.

Hyper extension step:If (1) " is an open hyper tableau forS

with open branch6, and (2)
+ ( � � �    � � � ! � � �    � ��

is a clause fromS (" # $ , % # $ ), calledextending clausein
this context, and (3)I� � �    � � � L G 6 (equivalently, we say
that

+
is applicable to6) then the tree"/ is a hyper tableau

for S , where"/ is obtained from" by extension of6 by
+

:
replace6 in " by thenewbranches

26 � � � 5    � 26 � � � 5 � 26 �� � � 5    � 26 �� � � 5

and then mark every inconsistent new branch as “closed”, and
the other new branches as “open”. We say that a branch6 is
finishediff it is either closed, or else whenever

+
is applica-

ble to 6, then extension of6 by
+

yields some irregular new
branch.N
The applicability condition of an extension expresses thatall
body literals have to be satisfied by the branch to be extended
(like in hyper resolution). From now on we consider only
regular hyper tableaux. This restriction guarantees that for
finite clause sets no branch can be extended infinitely often.

7 89:;<;=: ' ?> A0C+:12 384+:<;15F
As usual, we represent

an interpretationI for given domainΣ as the setI� K
Σ

J
I

2�5 ( true, � atomL. Minimality of interpretations is de-
fined via set-inclusion.



Given a tableau with consistent branch6. The branch6 is
mapped to the interpretation��6��Σ :( lit

265�
, where lit

265� (
I� K

lit
265 J � is a positive literalL. Usually, we write��6��

instead of��6��Σ and letΣ be given by the context.N

���� ���	 
 �	 �
�
���	 � � ��� ���	 
 ��

�
����� � � ��� ����� 
 � � � ��� ����� 
 ��
� ��� ���	 
 �� �

*

*

*

�
����	 � � ��� ���� 	 
 � � � ��� ����	 
 ��

Figure 1: Hyper tableau.

Figure 1 contains a
hyper tableau for the
clause set from our
running example. Each
open branch for the
clause set)* H ,� )
corresponds to a partial
model. The high-
lighted model can
be understood as an
attempt to construct a
model for the whole
clause set, without
assuming unnecessary�6-predicates. Only for
making the clauses from

,� �
true is it necessary to include�6 2/�� 5

into the model.� ��� 2/�� � /5
cannot be assumed, as

this contradicts the observation! � ��� 2/�� � /5
.

A refutational completeness result for hyper tableaux was
given in [1]. For our purposes of computing diagnosis (i.e.
models), however, we need a (stronger) model completeness
result:
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Let " be a hyper tableau forS such that every open branch
is finished. Then, for every minimal modelI of S there is an
open branch6 in " such thatI ( ��6��.
This theorem enables us to compute in particular minimal di-
agnosis by simply collecting all� 6-literals along ��6��, be-
cause every minimal diagnosis must be contained in some
minimal model ofS .

3.1 Lessons from the Specialized Diagnosis System
DRUM-2

In order to make the generation of models efficient enough
for the large benchmark circuits used in this paper, additional
knowledge has to be used to guide this model generation.
This is done by starting from a model of the correct behav-
ior of the device)* and revising the model only where nec-
essary. This idea of a “semantically guided ” model gener-
ation has been introduced first in the DRUM-2 system[5;
9]. The basic idea of DRUM-2 is to start with a model of
the correct behavior of the device under consideration, i.e.
with an interpretation� � , such that� � J( )* H I� � 6 235 J3 K
+ ,- . L. Then the system description)* is augmented
by an observation of abnormal behavior

,� ) , such that the
assumption that all components are working correctly is no
longer valid. Thus,� � is no model of)* H ,� ) , however it
is used to guide the search for models of)* H ,� ) .

Note, that the initial model� � usually already takes into
account a part of the observations which correspond to the
inputs of the device under consideration. These input values
are needed to simulate the correct behavior of the device. In
our example, the initial model reflects the fact that the inputs
of the inverters both have low voltage (� � was given at the end
of Section 2).

4 Formalizing the Diagnosis Task with
Semantic Hyper Tableaux

In this section we discuss how to incorporate initial interpre-
tations into the calculus. Our first technique bycutsshould
be understood as the semantics of the approach; an efficient
implementation by acompilation techniqueis presented af-
terwards.

4.1 Initial Interpretations via Cuts
The use of an initial interpretation can be approximated in the
hyper tableau calculus by the introduction of an additional
inference rule, theatomic cut rule.

7 89:;<;=: � ?@
The inference ruleAtomic cut (with atom

�) is given by: if

" is an open hyper tableau forS with open branch6,

then the literal tree"/ is a hyper tableau forS , where"/ is
obtained from" by extension of6 by � � � � (cf. Def. 3.1).
N
Note that in regular tableaux it cannot occur that a cut with
atom � is applied, if either� or � � is contained on the
branch. As a consequence it is impossible to use the “same
cut” twice on a branch.

We approximate initial interpretations by applying atomic
cuts at the beginning of each hyper tableau:

7 89:;<;=: � ?>
An initial tableau for an interpretation� � is

given by a regular tableau which is constructed by a applying
atomic cuts with atoms from� � as long as possible.N

���� ��� ! " # $
���� ��� % " # $ & ���� ��� % " # $

& ���� �'( ! " # $���� �'( ! " # $
���� �'( ! " �! $ & ���� �'( ! " �! $

& ���� ��� ! " # $

Figure 2: Initial tableau.

The branches of an initial
tableau for an interpretation� �
consist obviously of all inter-
pretations with atoms from� � .
A part of the initial tableau
for the initial interpretation� �
given at the end of Section 2 is
depicted in Figure 2. Note that
the highlighted branch corre-
sponds to the highlighted part
in Figure 1 (a negative literal
in an initial tableaux, such as�� ��� 2/�� � /5

, is represented
implicitly in a hyper tableau as theabsenceof the comple-
mentary positive literal). If this branch is extended in succes-
sive hyper extension steps, the diagnosis�6 2/�� 5

, which was
contained in the model from Figure 1 can be derived as well.
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A se-

mantic hyper tableaufor � � andS is a hyper tableau which is
generated according to Definition 3.1, except that the empty
tableau in the initialization step is replaced by an initial
tableau for� � . N

It is easy to derive an open tableau starting from the initial
tableau for� � in Figure 2, such that it contains the model from
Figure 1.

�C=* =5;< ;=: � ?� A� = �8 - �=4*-8<8:855 = � 3(� F
Let "

be a semantic hyper tableau for� � and S , such that every
open branch is finished. Then, for every minimal modelI of
S there is an open branch6 in " such thatI ( ��6��.
4.2 Initial Interpretations via Renaming

The just defined “semantical” account for initial interpreta-
tions via cut is unsuited for realistic examples. This is, be-
cause all the� � M �

possible deviations from the initial in-
terpretation will have to be investigated as well. Hence, in
this section we introduce a compilation technique which im-
plements the deviation from the initial interpretation only by
need.

Assume we have an initial interpretation� � ( I � L and
a clause set which contains6 ! and

3 ! � � 6. By the
only applicable atomic cut we get the initial tableau with two
branches, namelyI� L andI� � L. The first branch can be ex-
tended twice by an hyper extension step, yieldingI � � 6 � 3L.
The second branch can be extended towardsI� � � 6 L. No
more extension step is applicable to this tableau. Let"�� �
be this tableau.

Let us now transform the clause set with respect to� � , such
that every atom from� � occurring in a clause is shifted to the
other side of the! symbol and complemented. In our ex-
ample we get the clause

3 � � � ! 6; the fact 6 ! remains,
because6 is not in � � . Using 6 ! we construct a tableau
consisting of the single branchI6L, which can be extended
in an successive hyper step by using the renamed clause. We
get a tableau consisting of two branchesI 6 � 3L andI 6 � � � L.
Let " be that tableau. Now, let us interpret a branch in" as
usual, except that we set an atom from� � to true if its nega-
tion is not contained in the branch. Under this interpretation
the branchI6 � 3L in " corresponds to the usual interpretation
of I � � 6 � 3L in "�� � . Likewise, the second branchI6 �� � L in
"�� � corresponds to the second model in".

Note that by this renaming we get tableaux where atoms
from � � occur onlynegativelyon open branches; such cases
just mean deviations from� � . In contrast to the cut approach,
these deviations are now brought into the tableau by need.

The following definition introduces the just described idea
formally. Since we want to avoid unnecessary changes to the
hyper calculus, a new predicate name%1� � instead of� �
will be used.
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Let

+ ( & � � � � � � &�
be a clause and� be a set of atoms. The� -transformation of+

is the clause obtained from
+

by replacing every positive
literal � with � K � by � % 1� �, and by replacing every nega-
tive literal � � with � K � by %1� �. The� -transformation of
S , written asS � , is defined as the� -transformation of every
clause inS . N
It is easy to see that every� -transformation preserves the
models of a clause set, in the sense that every model for the
non-transformed clause set constitutes a model for the trans-
formed clause set by setting% 1� � to true iff � is false, for
every� K � , and keeping the truth values for atoms outside
of � . More formally we have:

�C=* =5;< ;=: � ?	 A� = �8 - �C858C
+<;=: = � � �<C+: 5�=C4+<;=: F
For every interpretation� : � J( S iff

�1% �" 1
�

2� 5 J( S � ,
where

�1% �" 1
�

2� 5 2%1� �5 ( � 2� 5
iff � K � , and else�1%�" 1

�
2� 5 2� 5 ( � 2�5

.

As explained informally above, the branch semantics of
tableaux derived from a renamed, i.e.� -transformed clause
set, is changed to assigntrue to every atom from� , unless its
negation is on the branch. This is a formal definition:

��6�� � ( 2� � I� J %1� � K
lit

265L5 H2
lit

265 � I%1� � J % 1� � K
lit

265L5

The connection of semantic hyper tableaux to hyper tableaux
and renaming is given by the next theorem.

�28=C84 � ?E
Let " be a semantic hyper tableau forS and�

where every open branch is finished; let" � be a hyper tableau
for the � -transformation ofS where every open branch is fin-
ished. Then, for every open branch6 � in " � there is an open
branch6 in " such��6 � �� � ( ��6��. The converse does not hold.

The theorem tells us that with the renamed clause set we com-
pute some deviation of the initial interpretation. The value of
the theorem comes from the fact that the converse does not
hold in general. That is, not every possible deviation is exam-
ined by naive enumeration of all combinations.

In order to see that the converse does not hold, take e.g.
S ( I � ! L and � � ( I6L. There is only one semantic hy-
per tableau of the stated form, namely the one with the two
branchesI6 � � L and I� 6 � � L. On the other side, the� � -
transformation leavesS untouched, and thus the sole hyper
tableau forS consists of the single branchI� L with seman-
tics ��I� L�� �
 ( I� � 6 L. However, the semantics of the branch
I� 6 � � L in the former tableau is different. The set of mod-
els which are computed in" � can be characterized by an
ordering,# �
 , which takes into account the deviation from
the initial interpretation. If6� and 6� are branches in a se-
mantic hyper tableau forS and � , 6� # �
 6� iff ��6� �� � � �
��6� �� � � and ��6� �� � � ( ��6� �� � � .



�28=C84 � ?D
Let " and " � be given as in Theorem 4.7.

Then, for every open# �
 -maximal branch6 of " there is an
open branch6 � in " � , such that��6 � �� � ( ��6��.

To conclude, the semantic hyper tableau approach serves
us as a tool forunderstandingthe effects of initial interpreta-
tions. Forefficient computingwe rely on the next theorem:

�28=C84 � ?� A� ;: ;4+- 7 ;+�:=5;5 �=4*-8<8:855F
Let � �

be an interpretation such that� � � I� 6 235 J 3 K + ,- . L ( /0,
and " be a hyper tableau forS �
 such that every open branch
is finished. Then, for every minimal diagnosis∆ G +,- .
there is an open branch6 in " such that

∆ ( I3 K + ,- . J �1%�" 1
�


2 ��6��5 J( � 6 235L
( I3 K + ,- . J � 6 235 K 6L  

�C== � ?
(Sketch) We need Theorem 3.3 and Proposition 4.6:

suppose∆ is a minimal diagnosis. Consider all atom sets-
such that

- H I� 6 235 J 3 K
∆L J( S . As a consequence

of the model correspondence expressed in Proposition 4.6,
thereby using the facts that� � does not contain� 6-literals
and that∆ is a minimal diagnosis, we can find an

-
such that

� :( �1% �" 1
�


2- H I� 6 235 J 3 K
∆L5

is a minimal model
for S �
 . Hence, by Theorem 3.3 this model, and in particular
this diagnosis∆, will be computed along some finished open
branch6. Q.E.D.

5 Implementation and Experiments
We have implemented a proof procedure for the hyper
tableaux calculus of[1], modified it slightly for our diagno-
sis task, and applied it to some benchmark examples from the
diagnosis literature.

The Basic Proof Procedure. A basic proof procedure for
the plain hyper tableaux calculus for the propositional case is
very simple, and coincides with e.g. SATCHMO[8]. Initially
let " be a tableau consisting of the root node only. Let"
be the tableau constructed so far.Main loop: if " is closed,
stop with “unsatisfiable”. Otherwise select an open branch
6 from " (branch selection) which is not labeled as “fin-
ished” and select a clause� ! � (extension clause selec-
tion) from the input clause set such that� G 6 (applicability)
and� � 6 ( IL (regularity check). If no such clause exists,
6 is labeled as “finished” and��6�� is a model for the input
clause set. In particular, the set of literals on6 with predicate
symbol� 6 (simply called� 6-literals) constitutes a (not nec-
essarily minimal) diagnosis. If every open branch is labeled
as “finished” then stop, otherwise enter the main loop again.

In the diagnosis task it is often demanded to compute ev-
ery (minimal) diagnosis. Hence the proof procedure does not
stop after the first open branch is found, but only marks it as
“finished” and enters the main loop again.

Adaption for the Diagnosis Task. While incorporation of
the initial interpretation is treated by renaming predicates in
the input clause set (Section 4), and thus requires no modifi-
cation of the prover, implementing the minimality restriction
is dealt with by the following new inference rule: “any branch
containing% � � (due to regularity necessarily pairwise dif-
ferent)� 6-literals is closed immediately”.

Notice that this inference rule has the same effect as if
the �����	 �� � � 
 clauses! �6 2 +� 5 �    � �6 2+� � � 5

(for
+# K

+ ,- .
,

+# $( +% , where
� � � �& � % � � and � $( & ) spec-

ifying the %-faults assumption would be added to the input
clause set. Since even for the smallest example (c499) and the�

-fault assumption the clause set would blow up from 1600
to 60000 clauses, the inference rule solution is mandatory.

Computing Minimal Diagnoses From Theorem 4.9 we
know that for each minimal diagnosis∆ the hyper tableau
contains an open finished branch. However, there are also
branches corresponding to non–minimal extensions of� 6.
Since the number of non–minimal diagnoses is exponential in
the number of components of the device, our goal is to avoid
extension of branches which correspond to non–minimal di-
agnoses. This can be achieved by a combined iterative deep-
ening/lemma technique. It can be basically realized by a
simple outer loop around the just described proof procedure.
The outer loop includes a counter� ( $ � � � � �    , which
stands for the cardinality of the diagnosis computed in the
inner loop. Theinvariant for the outer loop is the following:
all minimal diagnosis with cardinality

� � M �
have been

computed, say it is the set∆� 
 � , and every such diagnosis
I3� �    � 3� L K

∆� 
 � has been added to the input clause set
as a lemma clause� � 6 23� 5 � � � � � � � 6 23� 5

. Before enter-
ing the proof procedure in the inner loop we set∆� :( ∆� 
 � ,
and the proof procedure is slightly modified according to the
following rule: whenever a finished open branch6 is derived,
a new diagnosis∆� ( I 3 J � 6 235 K 6L is found. Hence we
set∆� :( ∆� H I∆� L and add∆� as a lemma clause to the
input clause set, as just described. No more modifications are
necessary.

Notice that the lemma clauses are purely negative clauses
and hence can be used to close a branch. Since we give prefer-
ence to negative clauses, no diagnosis will be computed more
than once, because as soon as a diagnosis is computed the
first time, it is turned into a (negative) lemma clause which
will be used to immediately close all branches containing the
same diagnosis. Furthermore, we compute onlyminimaldi-
agnosis as an immediate consequence of the iterative deepen-
ing over� : any branch containing a non-minimal diagnosis
would have been closed by a lemma clause stemming from
a diagnosis with strictly smaller cardinality, which must be
contained in the input clause set due to the invariant for some
value� � . Thus, the invariant holds for all� .

Although this procedure computing minimal diagnosis un-
der the%-fault assumption is so simple, it has some nice prop-
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C499 202 1685 2 5 3015 no
2-fault: 67 50 27323 yes

C880 383 2776 19 2 161 yes
C1355 546 3839 5 47 24699 no

2-fault: 5 2948 1284454 no
C2670 1193 8260 31 6 533 yes
C3540 1669 10658 3 10853 1473572 yes
C5315 2307 16122 5 13 3071 yes

Figure 3: ISCAS' 85 Circuits and runtime results.

erties. First, it can be implemented easily by slight modifica-
tions to the basic hyper tableau proof procedure. Second, in
the hyper tableau proof procedure we look at one branch at
a time, which gives a polynomial upper bound for the mem-
ory requirement for the tableau currently constructed. Ad-
mittedly, there are possibly exponentially many minimal di-
agnosis wrt.

J+ ,- . J
, but we assume that those will be kept

anyway. Further, it is important to notice that we compute
minimal models only wrt. the extension of the� 6-predicate,
but not of minimal models wrt. all predicates. Since

J+ ,- . J
will be usually much smaller than the number of atoms in the
translation

2)* � +,- . � ,� ) 5
to propositional logic, com-

puting minimal models wrt. all predicates would usually re-
quire considerably more memory (such an approach to mini-
mal model reasoning was proposed in[2]).

Experiments. We implemented a prover according to the
proof procedure as outlined above. It is a prover (written in
SCHEME) for first-order logic, and thus carries some signifi-
cant overhead for the propositional case. For our experiments
we ran parts of the ISCAS-85 benchmarks[7] from the di-
agnosis literature. This benchmark suite includes combinato-
rial circuits from 160 to 3512 components. Table 3 describes
the characteristics of the circuits we tested. The observations
which were used can be obtained from the authors.

The results are summarized in Table 3.# Clausesis the
number of input clauses stemming from the problem descrip-
tion. We ran our prover in 1-fault and 2-fault assumption set-
tings.Timedenotes proof time proper in seconds, and thus ex-
cludes time for reading in and setup (which is less than about
10 seconds in any case). The times are taken on a Sparc-
Station 20. # Stepsdenotes the number of hyper extension
steps to obtain the final tableau, and# Diagdenotes the num-
ber of diagnosis. When two rows for a circuit are given, the
upper one is for the 1-fault assumption, and the lower one
is for the 2-fault assumption (recall that the 2-fault diagnosis
includethe 1-fault diagnosis). We emphasize that the results
refer to the clause sets with renamed predicates according to
Section 4. Without renaming, and thus taking advantage of
the initial interpretation, in the 1-fault assumption only c499

was solvable (in 174 seconds); all other examples could not
be solved within 2 hours, whatever flag settings/heuristic we
tried!

In the “All?” column a “yes” entry means that there are
no diagnosis with cardinality�

�
, resp. � � for the 2-fault

rows. That is, only for c1355 there are possible diagnosis
with cardinality� � which we did not compute, for all other
examples all minimal diagnosis were computed. We can de-
tect if all minimal diagnoses were found by checking if some
tableau branch was closed due to the%-fault assumption. To
our impression, increasing% usually drastically increases the
time to compute diagnosis.

6 Conclusions
In this paper we analyzed the relationship between logic-
based diagnostic reasoning and tableaux based theorem prov-
ing. We showed how to implement diagnostic reasoning ef-
ficiently using a hyper tableaux based theorem prover. We
identified the use of an initial model as the main optimization
technique in the diagnostic reasoning engine DRUM-2 and
showed how to apply this technique within a hyper tableaux
calculus. We slightly modified an implementation of the ba-
sic hyper tableau calculus by augmenting it with a combined
iterative deepening/lemma technique. This guarantees com-
pleteness for minimal diagnosis computation.
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