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Abstract. In [Nejdl and Frohlich, 1996] a very efficient system for solv-
ing diagnosis tasks has been described, which is based on belief revision
procedures and uses first order logic system descriptions. In this paper
we demonstrate how such a system can be rigorously formalized from the
viewpoint of deduction by using the calculus of hyper tableaux [Baum-
gartner et al., 1996]. The benefits of this approach are twofold: first, it
gives us a clear logical description of the diagnosis task to be solved;
second, as our experiments show, the approach is feasible in practice
and thus serves as an example of a successful application of deduction
techniques to real-world applications.

1 Introduction

In this paper we will demonstrate that model generation theorem proving
is very well suited for solving consistency-based diagnosis tasks. According
to Reiter ([Reiter, 1987]) a simulation model of the technical device under
consideration is constructed and is used to predict its normal behavior. By
comparing this prediction with the actual behavior it is possible to derive
a diagnosis. We will use a proof procedure, which is an implementation
of the hyper tableaux calculus presented in [Baumgartner et al., 1996).

This work was motivated by the study of the diagnosis system DRUM-
2 [Frohlich and Nejdl, 1996, Nejdl and Frohlich, 1996]. This system is
in essence a model generation procedure which takes into account the
particularities of logical descriptions of a diagnosis task. The basic idea is
to start with an initial model of a correctly functioning device. This model
is revised, whenever the actual observations differ from the predicted
behavior. We adapt this idea to our hyper tableaux calculus, which yields
semantic hyper tableauz. The resulting system is comparable in efficiency
to the DRUM-2 system. We know of no other general purpose theorem
prover which has been used to solve large diagnosis problems.

In the following section we formally describe the diagnosis task. We
then show how hyper tableaux can be used to compute diagnoses. In sec-
tion 4 we describe the strategy of DRUM-2 and in section 5 we adapt this



refinement coming up with semantic hyper tableaux. Finally we describe
the implementation and its results.

We assume that the reader is familiar with the basic concepts of propo-
sitional logic. Clauses, i.e. multisets of literals, are usually written as
the disjunction A; V---V A,, V-B; V---V =B, or as an implication
Afy.eo yApy < By,... B, (m >0, n > 0). With L we denote the com-
plement of a literal L. Two literals L and K are complementary if L = K.

2 The Diagnosis Task

2.1 Model-Based Diagnosis

Heuristic rule-based expert systems were the first approach to automated
diagnosis. The knowledge bases of such systems could not be easily mod-
ified or verified to be correct and complete. These difficulties have been
overcome by the introduction of model-based diagnosis [Reiter, 1987],
where a simulation model of the device under consideration is used to
predict its normal behavior, given the observed input parameters. Diag-
noses are computed by comparison of predicted vs. actual behavior (Fig.
1).

This approach uses an ex-
tendible logical description of
the device, called the system de-

.. . System . . Actual
scription (SD), formalized by a  yjodel Diagnosis System
set of first-order formulas. The
system description consists of a

set of axioms characterizing the p ogicted Behavior Observed
behavior of system components Behavior Differences  Behavior

of certain types. The topology is Fig. 1. Model-Artifact Difference
modeled separately by a set of

facts. We will now define the di-

agnostic concept mathematically. The diagnostic problem is described by
system description SD, a set COMP of components and a set OBS of ob-
servations (logical facts). With each component we associate a behavioral
mode: Mode(c, Ok) means that component c is behaving correctly, while
Mode(c, Ab) (abbreviated by Ab(c)) denotes that c is faulty.

A Diagnosis D is a set of faulty components, such that the observed
behavior is consistent with the assumption, that exactly the components
in D are behaving abnormally. If a diagnosis contains no proper subset
which is itself a diagnosis, we call it a Minimal Diagnosis.



Definition 1 (Reiter 87). A Diagnosis of (SD, COMP, OBS) is a set
A C COMP, such that

SDUOBSU{Mode(c, Ab)|c € COMP}U{—~Mode(c, Ab)|c € COMP — A}

is consistent. A is called a Minimal Diagnosis, iff it is the minimal set
(wrt. C) with this property.

Minimal Diagnoses are a natural concept, because we do not want to
assume that a component is faulty, unless this is necessary to explain the
observed behavior. Diagnosis on the basis of definition 1 is today mostly
referred to as Consistency Based Diagnosis because it postulates that the
diagnoses are logically consistent with the system description and the ob-
servations. See [Console and Torasso, 1991] for an overview of alternative
diagnostic definitions. To compute diagnoses of (SD, COMP, OBS) it is
sufficient to compute models of SD U OBS.

Corollary 2. Let M be a model of SDUOBS. Then M|Ab| is a diagnosis
of (8D, COMP, OBS).

2.2 Restricting the Cardinality of Diagnoses

The set of all minimal diagnoses can be large for

complex technical devices. Therefore, stronger cri-

teria than minimality are often used to further dis- fo]
criminate among the minimal diagnoses. These cri-
teria are usually based on the probability or cardi-
nality of diagnoses. In the remainder of this paper we | |
will use restrictions on the cardinality of diagnoses. invl v
We can restrict the cardinality of each diagnosis A | |
to at most n abnormals (i.e. |A| < n) by adding [0] [0]
the so called n—Fault—Assumption to the system de-

scription.

orl

Fig. 2. A Circuit
Definition 3. The sentence

n+1 n+1
N _Faults ;Hf z;: /\ Ab(z;) — \/
=1, z#J

is called the n—Fault-Assumption.



A widely used example of the n—Fault—Assumption is the 1-Fault—
Assumption or Single Fault Assumption. Many specialized systems for
technical diagnosis have the Single Fault Assumption implicit and are
unable to handle multiple faults. In model-based diagnosis systems the
Single Fault Assumption can be activated explicitly in order to provide
more discrimination among diagnoses and to speed up the diagnosis pro-
cess.

Ezample 4. As a running example for this paper consider the simple dig-
ital circuit in figure 2.2 consisting of an or—gate (or!) and two inverters
(invl and inv2). Its function can be described by the following proposi-
tional formulas®.

OR1 : —(ab(orl)) — high(orl, o) < (high(orl,il) V high(orl,i2))
INV1 : =(ab(invl)) — high(invl, o) <> —(high(invl,1))
INV2 : =(ab(inv2)) — high(inv2,0) < —(high(inv2,1))
CONNL1 : high(invl, 0) <> high(orl,il)
CONN2 : high(inv2, 0) <> high(orl,i2)

Thus we have SD = {OR1,INV1,INV2, CONN1, CONN2} as the

system description. We observe that both inputs of the circuit have low
voltage and the output also has low voltage, i.e.

OBS = {LOW_INV1_I,LOW_INV1_I,LOW_OR1_0} .

Or, as formulas:

LOW_INV1 I : —(high(invl i)
LOW _INV1_I : —=(high(inv2,1))
LOW _OR1_0 : —(high(orl,0))

The expected behavior of the circuit given that both inputs are low
would be high voltage at the outputs of both inverters and consequently
high voltage at the output of the or—gate. This model of the correctly
functioning device

Iy = {high(inv1, o), high(inv2, o), high(or1,il), high(orl,i2), high(orl, 0}

can be computed very efficiently even for large devices by domain—
specific tools, e.g. circuit simulators.

In the next section we will review the hyper tableaux calculus and we
will show how it can be used to generate models for a diagnosis task.

! These formulas can be obtained by instantiating a first order description of the gate
functions with the structural information.



3 Hyper Tableaux Calculus

In [Baumgartner et al., 1996] we introduced a variant of clausal normal
form tableaux called “hyper tableaux”. Hyper tableaux keep many desir-
able features of analytic tableaux (structure of proofs, reading off models
in special cases) while taking advantage of central ideas from (positive)
hyper resolution. We refer the reader to [Baumgartner et al., 1996] for a
detailed discussion. In order to make the present paper self-contained we
will recall a simplified ground version of the calculus.

i From now on § always denotes a finite ground clause set, and X' de-
notes its signature, i.e. the set of all predicate symbols occurring in it. A
(clausal) tableau T for S is an ordered tree ¢ where the nodes are labeled
with literals and in which, for every successor sequence Ny,..., N, in t la-
beled with literals K, ..., K,, respectively, there is a clause {Ky,..., K, } €
S. In the following we often will identify nodes by their labels.

A branch of a tableau T is a sequence Ny,... , N, (n > 0) of nodes
in T such that Ny is the root of T, N; is the immediate predecessor of
Niiq for 0 < i < n,and N, is a leaf of T. A branch b = Ny,... ,N, is
called regular iff N;) # Nj for 1 <i,j < nand i # j, otherwise it is called
irreqular. A tableau is reqular iff every of its branches is regular, otherwise
it is irregular. The set of branch literals of b is lit(b) = {Ny,... N, }. We
find it convenient to use a branch in place where a literal set is required,
and mean its branch literals. For instance, we will write expressions like
A € b instead of A € lit(d). In order to memorize the fact that a branch
contains a contradiction, we allow to label a branch as either open or
closed. A tableau is closed if each of its branches is closed, otherwise it is
open.

A selection function is a total function f which maps an open tableau
to one of its open branches. If f(T) = b we also say that b is selected in
T by f. Fortunately, there is no restriction on which selection function to
use. For instance, one can use a selection function which always selects
the “leftmost” branch.

Definition 5 (Hyper tableau). A literal set is called inconsistent iff it
contains a pair of complementary literals, otherwise it is called consistent.
Hyper tableauz for S and selection function f are inductively defined as
follows:

Initialization step: The empty tree, consisting of the root node only, is
a hyper tableau for S. Its single branch is marked as “open”.

Hyper extension step: If



1. T is an open hyper tableau for S, f(T) = b (i.e. b is the open branch
selected in T by f), and

2. C=4y4,... Ay, < By,... ,B, isaclause from S (m > 0, n > 0),
called eztending clause in this context, and

3. {B1,...,Bn} C b (referred to as hyper condition)

then the tree T’ is a hyper tableau for S, where 7' is obtained from T
by extension of b by C: replace b in T by the new branches

(b,A7)...,(b;Aw),(b,mBy)...,(b,~By)

and then mark every inconsistent new branch as “closed”, and the other
new branches as “open”.

We will write the fact that 7' can be obtained from T by a hyper
extension in the way defined as T +; ¢ T’, and say that C is applicable
to b (or T).

We say that a branch b is finished iff it is either closed, or else whenever
C is applicable to b, then extension of b by C yields some irregular new
branch.

The hyper condition of an extension expresses that all body literals have
to be satisfied by the branch to be extended. This similarity to hyper
resolution [Robinson, 1965] coined the name “hyper tableaux”.

It is a simple inductive consequence of the definition of hyper extension
step that a branch is closed if and only if it ends in a negative literal. We
prefer to have the definition slightly more general than needed in order
not to have to change the hyper extension step rule below, where this
situation changes in presence of the atomic cut inference rule. Also with
view at the analytic cut we define slightly more general:

Definition 6 (Branch Semantics). As usual, we represent an inter-
pretation Z for given domain X' as theset {A € X' | Z(A) = true, A atom}.
Minimality of interpretations is defined via set-inclusion.

Given a tableau with consistent branch 4. The branch b is mapped
to the interpretation [b]y := lit(b)*, where lit(b)T = {4 € lit(h) |
A is a positive literal }. Usually, we write [b] instead of [b],, and let X
be given by the context.

Definition 7 (Hyper Tableaux Derivation). Let S be a finite clause
set, called the set of input clauses, and let f be a selection function. A
(possible infinite) sequence Ti,...,Tp,... of hyper tableaux for S is
called a hyper tableaux derivation from S (or simply derivation) iff T; is



obtained by an initialization step, and for ¢ > 1, T; ; by, , ¢, , T; for
some clause C;_; € S. This is also written as T by, ¢, To -+ Ty by, c,
Tny1--- . A hyper derivation is called regular iff every tableau in the
derivation is regular (cf. Def. 7), otherwise it is irregular. A hyper tableaux
derivation is called a hyper tableauz refutation if it contains a closed
tableau.

A regular, finite hyper tableaux derivation from S of the given form is
fair iff it is a refutation or otherwise some open branch in the concluding
tableau T, is finished.

The restriction to regular derivations is essential to guarantee that only
finite derivations are possible. This holds immediately, because by Konig’s
Lemma infinite derivations are only possible if at least one branch is ex-
tended infinitely often. This however is impossible with a finite X' (which
we always assume finite, due to finite S) and the restriction to have at
most one occurrence of a literal in a branch.

Ezample 8 (Hyper Tableau Derivation). The following is the clause set
generated from our running Example 4.
OR1: ab(orl), high(orl,il), high(orl,i2) « high(orl, o)

ab(orl), high(orl, o) < high(orl,il)

ab(orl), high(orl, o) < high(orl,i2)

INV1: ab(invl) < high(invl, o), high(inv1, )
ab(invl), high(invl, i), high(invl, o) <
INV2: ab(inv2) < high(inv2, o), high(inv2, 1)
ab(inv2), high(inv2, i), high(inv2, o) «
CONNT1: high(orl, i1) < high(invl, o)
high(invl, o) < high(orl,il)
CONN2: high(orl, 12) < high(inv2, o)
high(inv2, o) « high(orl,i2)
LOWINVII: < high(invl, ) LOW.INV2I: <« high(inv2, i)

OBSERVATION: <« high(orl, o)

Figure 3 contains a derivation. Each open branch corresponds to a
partial model. The highlighted model can be understood as an attempt to
construct a model for the whole clause set, without assuming unnecessary
ab-predicates. Only for making the clauses from OR1 true is it necessary
to include ab(orl) into the model. high(orl, o) cannot be assumed, as
this contradicts the observation < high(or1, o).



In order to make the generation
of models efficient enough for the / \
large benchmark circuits used in this @b(invl)  high(invi, 1) high(invl, o)
paper, additional knowledge has to |
be used to guide this model genera- high(orl,il)
tion. This is done by starting from
a model of the correct behavior of

ab(orl) high(orl, o)

the device SD and revising the model / \
only where necessary. This idea of a ab(inv2)  high(inv2,i) high(inv2, o)
“semantically guided ” model gener- ) |
ation has been introduced first in the high(or1, i2)

DRUM-2 system [Frohlich and Nejdl,
1996, Nejdl and Frohlich, 1996].

For fair derivations, which end in
a tableau with finished open branch
b, the central property is that [b] is a model for the given clause set S.
In other words, completeness holds. This is an instance of a more general
result in [Baumgartner et al., 1996]. For our purposes of computing diag-
nosis (i.e. models), however, we need also a model completeness result:

Fig. 3. Hyper derivation.

Theorem 9 (Model Completeness of Hyper Tableaux.). Let T be
a hyper tableau such that every open branch is finished. Then, for every
minimal model Z of S there is an open branch b in T such that T C [b].

Proof. (Sketch) If no minimal model for S exists then the theorem holds
vacuously. Otherwise let Z be a minimal model for S. It trivially holds
that

S UT U T is satisfiable, (1)

where Z := X'\ Z, and =M := {=A | A € M}. It is not too hard to see
that 1 is equivalent to SU-Z |= Z. (the minimality of Z is essential here).
This holds if and only if

SU-ZU{\/ —A} is unsatisfiable. (2)
AeT

Hence, by completeness of Hyper tableaux there is a refutation of this
clause set. Further, by 1, the subset S U —Z is satisfiable. Hence, in any
hyper tableau refutation the clause \/ 4.7 -4 must be at used once for an
extension step, say at branch &. But, by definition of hyper extension step
this is possible only if the complementary literals are on the branch b,



i.e. T Clit(b)™. We can omit from the refutation all extension steps with
Vaez =4, as well as all extension steps with the negative unit clauses —Z.
The result is a hyper derivation from & alone. Now, either the branch
b is finished, and the theorem is proven, or otherwise the derivation can
be continued so that at least one open finished branch 4" with lit(b) C
1it(5") comes up. Reason: otherwise every such extension b” of b would be
closed, meaning that we could find a refutation of SU-Z alone, which by
soundness of hyper tableau contradicts the satisfiability of S U —Z. Thus,
b" is the desired branch with Z C [b"].

4 The DRUM-2 System

Since Reiter’s seminal paper [Reiter, 1987], several generic systems for
model-based diagnosis have been developed using logical inference, as-
sumption based truth maintenance and conflicts as their underlying prin-
ciples (see [de Kleer and Williams, 1987] and many others). Efficiency
problems due to administration overhead inherent to this approach have
only recently been solved [Raiman et al., 1993]. DRUM-2 ([Frohlich and
Nejdl, 1996, Nejdl and Frohlich, 1996]) has emerged from a different line
of research, where models serve as a data structure for the reasoning
process. DRUM-2 has adapted and extended implementation ideas from
model-based belief revision systems ([Chou and Winslett, 1994]).

The basic idea of DRUM-2 is to start with a model of the correct
behavior of the device under consideration, i.e. with an interpretation Iy,
such that Iy = SD U{—-Ab(c)|c € COMP}. Then the system description
SD is augmented by an observation of abnormal behavior OBS, such that
the assumption that all components are working correctly is no longer
valid. Thus, Iy is no model of SD U OBS, but DRUM-2 uses I to guide
the search for models of SD U OBS. The models are computed iteratively
by inverting truth values of literals in Iy which contradict formulas in
SD U OBS. We will now describe DRUM-2’s algorithm intuitively using
a simple circuit as an example. A formalization of DRUM-2 using belief
revision vocabulary can be found in [Frohlich and Nejdl, 1996].

We will now show how to compute diagnoses under the single fault as-
sumption. n—Fault—Assumptions are a concept of the DRUM-2 diagnosis
engine; they are therefore not represented as part of the theory. Figure 4
shows the steps performed by DRUM-2 during the search for consistent
models of SD U OBS from our example. In the first step the output ob-
servation —high(orl, o) is incorporated into Iy by deleting high(orl, o)
from the interpretation. The new interpretation I; contradicts the for-



Ip={...}
Observe —high(orl, o)
I; = Iy\{high(or1, o)}
—high(orlsi1) ab(orl)
I Is

—high(invl, o)

L
ab(invl)
Is
—.highMorI )
Ig Cutoff: Single Fault

Assumption violated

high(inv2, o)
Iy

ab(inv2)

Cutoff: Single Fault
Assumption violated

Fig. 4. “‘Repairing” an interpretation in DRUM-2.

mula, OR1. There are two possible repair steps, which can remove the
violation of this formula: removing high(or1,i1) from the interpretation
(leading to Ip) or adding ab(or1) (leading to I3). Since I3 = SD U OBS
we have found a diagnosis Ig|Ab| = {Ab(orl)}. In the left branch of
the tree the search for diagnoses continues. However, since both inverters
would have to be abnormal to explain the low voltage at the output of
the inverter no other single fault diagnosis is found.

The changes to the model performed by DRUM-2 are focused by the
initial interpretation Iy. Using this simple mechanism DRUM-2 is cur-
rently one of the fastest generic systems for model-based diagnosis as
recently reported in [Nejdl and Frohlich, 1996).

10



4.1 Effects of the Initial Interpretation

The small circuit in figure 2.2

is fine as a minimal exam-

ple for clarifying the algorithms |
throughout this paper. How-
ever, it is too small to show or0 orl or2
the focusing effect of the ini- | |—+ +—’ |
tial interpretation Iy. In the
slightly larger example depicted
in figure 5 the computation of | | | |
DRUM-2 would be exactly the [ o o (o]
same as in the smaller circuit.
The reason for this efficiency
gain is that because of the initial
interpretation only those gates appear in the revision tree, which influ-
ence the abnormal observation. Note, that the benefit gained by using an
initial interpretation is more than saving the computation of the expected
output values. The computation of the initial model is just one determin-
istic simulation of the circuit under the assumption that all components
are working. In figure 5 it is obvious that an uninformed procedure would
have to follow several useless alternatives during the search for models,
i.e. assume that inv0, or0, inv2, or or2 are faulty. In fact, it has been
shown in [Nejdl and Giefer, 1994] that the use of an initial model leads
to a constant diagnosis time for a circuit consisting of n sequentially con-
nected full adders, whereas the diagnosis time of uninformed algorithms
is quadratic in n.

inv0 invl inv2 inv3

Fig. 5. A slightly larger circuit

5 Formalizing the Diagnosis Task with Semantic Hyper
Tableaux

Recall from Section 4 that DRUM-2 uses an initial interpretation Iy to
focus on certain clauses from the clause set to be candidates for extending
or generating new models. In this section we discuss how to incorporate
initial interpretations into the hyper tableaux calculus.

Our first technique by cuts should be understood as the semantics of
the approach; an efficient implementation by a compilation technique is
presented afterwards.

11



5.1 [Initial Interpretations via Cuts

The use of an initial interpretation in DRUM-2 can be approximated in
the hyper tableau calculus by the introduction of an additional inference

rule, the atomic cut rule.

Definition 10. The inference rule Atomic cut (with atom A) is given

by: if

T is an open hyper tableau for S, f(T') =
f), where b is an open branch,

b (i.e. b is selected in T by

then the literal tree T’ is a hyper tableau for S, where T’ is obtained

from T by extension of b by AV —A (cf. Def.

5).

Note that in regular derivations it cannot occur that a cut with atom A
is applied, if either A or —A is contained on the branch. As a consequence
it is impossible to use the “same cut” twice on a branch.

We approximate initial interpretations by applying atomic cuts at the

beginning of each derivation:

Definition 11. An initial tableau for an interpretation I is given by a
tableau which is constructed by a regular derivation where only atomic
cuts with atoms from I are applied, as long as possible.

The branches of an initial tableau for an
interpretation I consist obviously of all in-
terpretations with atoms from Ij. In our run-
ning example the initial interpretation is

I, = {high(inv1, o), high(inv2, o),
high(orl,il), high(orl,i2),
high(orl,0)} .

A part of the initial tableau for this I, is de-
picted in Figure 6. Note that the highlighted
branch corresponds to the highlighted part
in Figure 3. If this branch is extended
in successive derivation steps the diagnosis

W, 0) —high(invl, 0)

high(inv2, 0)—high(inv2, 0)
high(orl, Oy high(orl, 0)
high(orl,i1) —high(orl,il)

Fig. 6. Initial tableau.

ab(or1), which was contained in the model from Figure 3 can be derived

as well.

Note that the cuts introduce negative literals into a branch. The Def-
inition 6 of branch semantics applies to the calculus with cut as well: the

12



interpretation associated to a branch assigns true to an atom if it occurs
positive on the branch, and a negated atom is interpreted as false, just
as all atoms which are not on the branch.

In the following we take an initial tableau as the initialization step of a
hyper tableaux derivation. Since this initial tableau represents semantics,
we call tableaux from such a derivation semantic hyper tableauz.

Definition 12 (Semantic Hyper Tableau — SHT). A semantic hy-
per tableau for Iy and S is a hyper tableau which is generated according
to Definition 5, except that the empty tableau in the initialization step is
replaced by an initial tableau for Iy. The definition of derivation (Def. 7)
and its properties are adapted accordingly.

It is easy to derive an open tableau starting from the initial tableau
for Iy in Figure 6, such that it contains the model from Figure 3.

Refutational completeness of semantic hyper tableaux is not an im-
mediate consequence of the completeness result given in [Baumgartner et
al., 1996]; the regularity condition does not allow to put any open tableau
generated by a hyper derivation underneath an initial tableau, since this
might lead to more than one occurrence of an atom introduced by a cut.
But it still holds:

Theorem 13 (Refutational Completeness of SHT). Every open fin-
ished branch in a semantic hyper tableau for Iy and S is a model for S.

This holds in particular for the selected open branch f(Ty) of the last

tableau in any semantic hyper tableau derivation from Iy and S.

The model completeness however follows directly from the correspond-
ing Theorem 9:

Proposition 14 (Model Completeness of SHT). Let T be a seman-
tic hyper tableau for Iy and S, such that every open branch is finished.

Then, for every minimal model Z of S there is an open branch b in T
such that T C [b].

5.2 Initial Interpretations via Renaming

The just defined “semantical” account for initial interpretations via cut
is unsuited for realistic examples. This is, because all the 2™ — 1 possible
deviations from the initial interpretation will have to be investigated as
well. Hence, in this section we introduce a compilation technique which
implements the deviation from the initial interpretation only by need.

13



Assume we have an initial interpretation Iy = {a} and a clause set
which contains b < and ¢ < a A b. By the only applicable atomic cut
we get the initial tableau with two branches, namely {a} and {—a}. The
first branch can be extended twice by an hyper extension step, yielding
{a, b, c}. The second branch can be extended towards {—a, b}. No more
extension step is applicable to this tableau. Let T,; be this tableau.

Let us now transform the clause set with respect to Iy, such every atom
from Iy occuring in a clause is shifted to the other side of the < symbol
and complemented. In our example we get the clause ¢V —a < b; the fact
b < remains, because b is not in Iy. Using b < we construct a tableau
consisting of the single branch {6}, which can be extended in an successive
hyper step be using the renamed clause. We get a tableau consisting of two
branches {b, ¢} and {b,-a}. Let T be that tableau. Now, let us interpret
a branch in T as usual, except that we set an atom from Iy to true if
its negation is not contained in the branch. Under this interpretation the
branch {b,c} in T corresponds to the usual interpretation of {a,b, c}
in T,y . Likewise, the second branch {b,—a} in T,y corresponds to the
second model in 7.

Note that by this renaming we get tableaux where atoms from I
occur only negatively on open branches; such cases just mean deviations
from I,. In contrast to the cut approach, these deviations are now brought
into the tableau by need.

The following definition introduces the just described idea formally.
Since we want to avoid unnecessary changes to the hyper calculus, a new
predicate name neg_A instead of = A will be used.

Definition 15 (I-transformation). Let C = L; V---V L, be a clause
and I be a set of atoms. The I-transformation of C is the clause obtained
from C by replacing every positive literal A with A € I by —neg_A, and
by replacing every negative literal - A with A € I by neg_A. The I-
transformation of S is defined as the I-transformation of every clause in
S.

It is easy to see that every [-transformation preserves the models of a
clause set, in the sense that every model for the non-transformed clause
set constitutes a model for the transformed clause set by setting neg_A
to true iff A is false, for every A € I.

As explained informally above, the branch semantics of tableaux de-
rived from a renamed, i.e. Iy-transformed clause set, is changed to assign
true to every atom from I, unless its negation is on the branch. This is
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a formal definition:
[6]" = (I \ {A | neg_A € 1it(b)}) U (1it(b) \ {neg-A4 | neg_A € lit(b)})

The connection of semantic hyper tableaux to hyper tableaux and renam-
ing is given by the next theorem.

Theorem 16. Let T be a semantic hyper tableau for S and Iy where
every open branch is finished; let T be a hyper tableau for the I-
transformation of S where every open branch is finished. Then, for every
open branch b% in T there is an open branch b in T such [blo]]lo = [b].
The converse does not hold.

The theorem tells us that with the renamed clause set we compute some
deviation of the initial interpretation. The value of the theorem comes
from the fact that the converse does not hold in general. That is, not every
possible deviation is examined by naive enumeration of all combinations.

In order to see that the converse does not hold, take e.g. § = {a <}
and Iy = {b}. There is only one semantic hyper tableau of the stated
form, namely the one with the two branches {b,a} and {—b,a}. On the
other side, the Iy-transformation leaves S untouched, and thus the sole
hyper tableau for S consists of the single branch {a} with semantics
[{a}]" = {a,b}. However, the semantics of the branch {—b, a} in the
former tableau is different.

6 Implementation and Experiments

We have implemented a proof procedure for the hyper tableaux calculus
of [Baumgartner et al., 1996], modified it slightly for our diagnosis task,
and applied it to some benchmark examples from the diagnosis literature.

The Basic Proof Procedure. A basic proof procedure for the plain hyper
tableaux calculus for the propositional case is very simple, and coincides
with e.g. SATCHMO [Manthey and Bry, 1988]. Initially let T be a tableau
consisting of the root node only. Let T be the tableau constructed so far.
Main loop: if T is closed, stop with “unsatisfiable”. Otherwise select an
open branch b from T (branch selection) which is not labeled as “finished”
and select a clause H < B (extension clause selection) from the input
clause set such that B C b (applicability) and H N'b # {} (regularity
check). If no such clause exists, b is labeled as “finished” and [b] is a model
for the input clause set. If every open branch is labeled as “finished” then
stop, otherwise enter the main loop again.
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In the diagnosis task it is often demanded to compute every diagnosis.
Hence the proof procedure does not stop after the first open branch is
found, but only marks it as “finished” and enters the main loop again.
Consequently, the “branch selection function” is not of real significance
because every unfinished open branch will be selected eventually. How-
ever, the “extension clause selection” is an issue. A standard heuristic
for tableau procedures is to preferably select clauses which avoid branch-
ing. For our diagnosis experiments, however, a clause selection function,
which prefers clauses with some body literal being equal to the leaf of the
branch to be extended, is superior for the benchmark circuits.

For further improvements of the proof procedure, such as factorization
and level cut see [Baumgartner et al., 1996).

Adaption for the Diagnosis Task. Recall that our diagnosis task requires
to bias the proof search with hyper tableau in two ways: incorporation of
the initial interpretation, and implementing the n-faults assumption (cf.
Section 2.2). While the former is treated by renaming predicates in the
input clause set (Section 5), the latter is dealt with by the following new
inference rule: “any branch containing n + 1 (due to regularity necessar-
ily pairwise different) ab-literals is closed immediately”. Notice that this

inference rule has the same effect as if the (|Cnoﬁp ) clauses

— G,b(01),... ,ab(Cn+1) for C; € COMP, C; 75 Cj,
where I <4,7 <n+1 and i #j.

specifying the n-faults assumption would be added to the input clause set.
Since even for the smallest example (c499) and the 1-fault assumption
the clause set would blow up from 1600 to 60000 clauses, the inference
rule solution is mandatory.

No more changes to the basic proof procedure are required.

Implementation. Our prover is called NIHIL (New Implementation of
Hyper in Lisp) and is a re-implementation in SCHEME of a former Prolog
implementation. Because the SCHEME code is compiled to C, the basic
performance is quite good. Obviously, since NIHIL is a first-order prover
and the data structures are arranged for this case, there is a significant
overhead when dealing with propositional formulas. We are confident that
this could be improved considerably by using standard techniques for
propositional logic provers (Gallier /Downing algorithm). Some operations
would have constant instead of linear complexity then. In fact, this pay-off
is demonstrated in the DRUM-2 system.
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Despite of these deficiencies, NIHIL is quite efficient due to a notable
improvement over the more naive previous Prolog implementation de-
scribed in [Baumgartner et al., 1996]. It concerns the test whether a can-
didate clause H <+ B is applicable to the selected branch b, i.e. whether
B C b holds. The naive Prolog implementation walks through the input
clauses and applies the test to each candidate until an applicable one is
found. The test itself is of complexity |B| - |b|. NIHIL improves on this
by driving the search not be the clauses, but by the branch: as soon as
a new leaf, say A, is added to a branch, indexing is used to determine
those clauses having A in the body. In each of those clauses, this informa-
tion is stored. Using this scheme, the applicability test for a given clause
becomes a constant complexity operation then?.

Of course, this idea is not new. For the propositional case it is due
to Gallier/Downing; the RETE algorithm can be seen as a generalization
towards first-order logic. However, expressed in our terminology, RETE
has the restriction that it could perform only matching from the body
literals towards the branch literals. Since we further generalized the basic
idea of RETE towards true unification, and further we avoid severe defi-
ciencies in the RETE algorithm, we consider our technique as an original
contribution.

Ezxperiments. For our experiments we ran parts of the ISCAS-85 bench-
marks [Isc, 1985] from the diagnosis literature. This benchmark suite
includes combinatorial circuits from 160 to 3512 components. Table 7
describes the characteristics of the circuits we tested. NIHIL was set up
as described above. The abovementioned optimizations factorization and
level cut were tried, but had no influence on these examples.
The results
are summarized

in Table 7 on Name|# Gates|# Inputs|# Outputs|| Time|# Clauses|# Steps
. . C499 202 41 32 2 1685 2050
theright. Time |gq) 383 60 26 1 2776 158
denotes proof C1355 546 41 32 40 3839| 21669
time proper in C2670 1193 233 140 4 8260 425
seconds, and thus |C3540| 1669 50 22(| 1403 10658| 253543
. C5315 2307 178 123 13 16122 3024

excludes time

for reading in Fig. 7. ISCAS’85 Circuits and NIHIL results.
and setup (which

2 For instance, the Pigeonhole examples are proven much faster: while the Prolog
implementation needs 260 seconds for Pigeon-6-in-5, NIHIL needs only 0.7 seconds.
Of course, the same tableau is constructed.
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is less than about

10 seconds in any case). The times are taken on a SparcStation 20. #
Clauses is the number of input clauses; # Steps denotes the number of
hyper extension steps to obtain the final tableau. We emphasize that
the results refer to the clause sets with renamed predicates according to
Section 5. Without renaming, and thus taking advantage of the initial in-
terpretation, only c499 was solvable (in 174 seconds); all other examples
could not be solved within 2 hours, whatever flag settings/heuristic we
tried!

7 Conclusions

In this paper we analyzed the relationship between logic-based diagnos-
tic reasoning and tableaux based theorem proving. We showed how to
implement diagnostic reasoning efficiently using a hyper tableaux based
theorem prover. We identified the use of an initial model as the main
optimization technique in the diagnostic reasoning engine DRUM-2 and
showed how to apply this technique within a hyper tableaux calculus. The
resulting theorem prover NIHIL very efficiently diagnoses large bench-
mark circuits from the diagnosis literature. There are some open theoret-
ical questions, e.g. we have to prove formally that by renaming we again
get a model complete calculus and it would be intersting to characterize
the computed models more exactly. Further work will also include a closer
examination of multiple faults (n-fault assumption) and further efficiency
improvements.
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