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Abstract

We demonsgtrate that theorem provers using model eimination (ME) can be
used as answer-complete interpreters for disjunctive logic programming. More
specifically, we introduce a mechanism for computing answers into the restart
variant of ME. Building on thiswe develop anew calculus called ancestry restart
ME. This variant admits a more restrictive regularity restriction than restart ME,
and, as aside effect, it isin particular attractive for computing definite answers.
The presented calculi can also be used successfully in the context of automated
theorem proving. We demonstrate experimentally that it is more difficult to com-
pute (non-trivial) answers to gods, instead of only proving the existence of an-
swers.

K eywor ds. Automated reasoning; theorem proving; model elimination; logic
programming; computing answers.

In first order automatic theorem proving one is interested in the question whether
agiven formulafollows logically from a set of axioms. Thisis arather artificial task;
whenever oneisinterested in solving problemsit is mandatory to compute answers for
given questions. It appearsto us, that in automated theorem proving thisaspect hasbeen
pushed to the background. For instance, the statements of the puzzle problemsin the
TPTPlibrary [Sutcliffeet al., 1994] alsoincludetheir solutions, and the prover hasonly
to verify them; however, it is much more interesting (and more difficult) to find a solu-
tion instead of only proving correctness of a given one.

In the early days, when automated theorem provers were understood as tools for
real world problem solving, this problem was apparent: of course the textbook-monkey
was not interested whether there is a solution of the monkey-and-banana-problem; it
was merely interested in finding a way to reach the banana hanging on the ceiling. In
[Chang and L ee, 1973] thereisawhole chapter on question answering, where the work
of C. Green on question answering isreviewed thoroughly. In modern theorem proving
literature this aspect is not payed sufficient attention.



Thisisdifferent however, when automated deduction isinvestigated with respect to

aspecial domain. For example, in the database context thereisalot of research aiming
at deriving answers and even cooperative or intensional answers (see e.g. [Demolombe
and Imielski, 1994]). In non-monotonic reasoning there are even philosophical discus-
sions which semantics have to been chosen to alow for intuitive answers.
In the logic programming area the computation of answers was an important aspect
from the very beginning. From there we learned that it is much more difficult to prove
acaculus answer completeinstead of only showing its refutational completeness. Re-
cently there is considerable effort to use full first order logic instead of only Horn
clauses as abase for logic programming. Thisdisunctivelogic programming approach
isinvestigated from various directions. From the view of theorem proving oneis con-
cerned with the problem of modifying theorem provers such that they can be used as
interpreters for logic programming purposes. The non-monotonic reasoning commu-
nity is working on finding appropriate semantics for disunctive logic programs with
negation and from a database viewpoint one is concerned with finding bottom up ap-
proaches to computations.

Theaim of thispaper istwofold: Firstly, we provethat theorem provers using model
elimination (ME) can be used as answer completeinterpretersfor digjunctivelogic pro-
gramming. Secondly, we demonstrate that in the context of automated theorem prov-
ing it is much more difficult to compute (non-trivial) answersto goals, instead of only
to prove the existence of answers. We furthermore investigate mechanismsfor finding
special answers.

Concerning thefirst aspect, it isimportant to notethat thereisalot of work towards
model theoretic semantics of positive digunctivelogic programs, and of coursethere
are numerous proposals for non-monotonic extensions. However, with respect to proof
theory, the situation is not so clear. At first glance one might be convinced that any first
order theorem prover can be used for the interpretation of disunctive logic programs,
sinceaprogramnclause A; V...V A, + By A ... A B, isarepresentation of the
clauseA;V...VA,,V-B;V...Vv—B,.Indeed, in[Loboet al., 1992] SLI-resolution
isused asacalculusfor digunctivelogic programming. From logic programming with
Horn clauses, however, welearn that for aprocedural interpretation of program clauses
itiscrucial that clauses can only be accessed by theliterals A;, i.e. by the head literals.
Technically, this means that only those contrapositives are alowed to be used which
contain apositiveliteral in the head. The approach from [Lobo et al., 1992] completely
ignores this aspect by using SL1 resolution which requires all contrapositives.

There are proposals for first order proof calculi using program clauses only in this
procedural reading, e.g. Plaisted’s problem reduction formats [Plaisted, 1988], or the
near-Horn-Prolog family introduced by L oveland and hisco-workers[Loveland, 1991].
These approachesintroduce new calculi or proof procedures, for which efficient imple-
mentations still have to be developed. (For a thorough discussion we refer to [Baum-
gartner and Furbach, 1994al.) Our aim was to modify ME such that it can be used for
logic programming in the above sense. Thisgives usthe possibility to use existing the-
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orem provers for digunctive logic programming. As afirst step towards this goal, we
introduced in [Baumgartner and Furbach, 19944] the restart variant of ME and proved
its refutational completeness. In this paper, we introduce an answer computing mech-
anism into restart model elimination . Furthermore we define a variant called ancestry
restart ME which allows extended regul arity checking (i.e. loop checking) wrt. the ordi-
nary restart ME. Additionally thisvariant prefers proofswhich permit definite answers.

For the second aspect, namely computing answer s, we accommodated our PRO-
TEIN system [Baumgartner and Furbach, 1994b] for answer computing as described
bel ow.

We demonstrate with some of Smullyan’s puzzles [Smullyan, 1978] that it ismuch
more difficult to compute answers instead of only to prove unsatisfiability. We show
how the model elimination calculus can be modified such that it preferably computes
definite answers.

Finally we give acomparative study, of high performance theorem provers, includ-
ing OTTER, SATCHMO, SETHEO and our PROTEIN system.

A short version of thiswork has appeared in [Baumgartner et al., 1995].

1 From Tableau to Restart Model Elimination

1.1 Tableau Modd Elimination

In this subsection we use the clause notation, mirroring the fact that we review a calcu-
luswhichis, asit stands, not suited for programming purposes. We use aME calculus
that differsfrom the original one presentedin [Loveland, 1968]. It isdescribedin[Letz
et al., 1992] as the base for the prover SETHEO. In [Baumgartner and Furbach, 1993]
this calculusis discussed in detail by presenting it in a consolution style [Eder, 1991]
and compared to various other calculi. ME (in this sense) manipulates trees by exten-
sion and reduction steps. In order to recall the calculus consider the clause set

{{Pa Q} ) {_'Pa Q} ) {_'Qa P} ) {_'Pa _‘Q}} )

A model elimination refutation is depicted in Figure 1 (Ieft side). It is obtained by
successive fanning with clauses from the input set (extension steps). Additionally, it
is required that every inner node is complementary to one of its sons. Such sons are
decorated with a “x” in Figure 1. A dashed arrow indicates a reduction step, i.e. the
closing of a branch due to a path litera complementary to the leaf literal. Extension
and reduction steps are allowed at any leaf of the tree and for extension steps any literal
from an input clause can be used to form acomplementary pair of literals. For example,
in the right subtree of Figure 1 (left side) the clause {—P, Q} was used to extend the
positive leaf P, i.e. we used the program clause Q < P viathe body literal P and
hence disposed with a procedural reading of the clause.



—goal
/\ //\
-P -Q goal -P -Q
= A S =
// /\ /\ \\ */ /\ /\
:_‘Q P Q P\l tlﬁQ PQ//PS\
71 ~
1/\ * * /\l 1/\ * * / ‘ \\
P -P P !
* 8 * 8 * (3 '\ —goal \u
//\ I
goal -P -Q I'
* * NN
Q -P'
* *
A Model Elimination
Refutation A Restart Model Elimination refutation

Figure 1. Model Elimination (left side) vs. Restart Model Elimination (right side).

Now we show how restart model elimination treats this example. Asapreliminary
step, the input clause set hasto be transformed into what we call goal normal form: ev-
ery purely negative clauseis conjoined with the new literal goal. Thus, inthe example,
we replace {—P, —=Q} by {goal, =P, —Q}. Further, as query the unit clause —goal
isused. Figure 1 (right side) displaysarestart model elimination refutation. Besides us-
ing the goal normal form, the only differenceis that extension steps at positive literals
are not allowed; instead either areduction step is carried out, or else the root literal —
which isalways -goal — is copied, and then an extension follows.

In avariant called strict restart model elimination not even reduction steps are a-
lowed at positive leaves. Hence the calculus is forced to apply restart steps wherever
possible. Note that the purpose of the goal normal form transformation is simply to
“restart” derivations at positive literals with any negative clause from the input set.

These simple modifications obviously allow only extension steps with a positive,
i.e. ahead literal of aclause, and hence support aprocedural reading of program clauses.
In thefollowing subsection we giveaformal presentation of the calculusalong thelines
of [Baumgartner and Furbach, 1993].

1.2 Restart Modd Elimination

Instead of trees we now manipulate multisets of paths, where paths are sequences of
literals. We will state some basic definitions.

A clauseisamultiset of literals, usually written asthe digunctionL; V...V Ly,.
A programis a consistent set of clauses (thus possibly including negative clauses).



A connection is a pair of literas, written as (K, L), which can be made complemen-
tary by an application of a substitution. A path is a sequence of literals, written as
p = (Li,...,Ly). L, iscaled theleaf of p, whichisaso denoted by leaf (p); simi-
larly, the first element L; isalso denoted by first(p). The symbol “o” denotes the ap-
pend function for literal sequences.

In the sequel both path sets and sets of literals are aways understood as multisets,
and usual set notation will be used. Multisets of paths are written with caligraphic cap-
ital letters.

From now onweusethenotation A, Vv...VA_ < B{A...AB, asarepresentation
of theclauseA,Vv...VA_,,V—-B;V...vV—B,. Such clausesare caled programclauses
with head literals A; (if present) and body literals B;.

We assume our clause setsto be in goal normal form, i.e. there exists only one goal
clause (a clause containing only negative literals) which furthermore does not contain
variables. Without loss of generality this can be achieved by introducing a new clause
+ goal wheregoal isanew predicate symbol, and by modifying every purely negative
clause—B; V...V —-B,togoal + By,...,B,.

IfC = A;VvV...VAL, <« B; A... ANB,isaclause then its path set P¢ is
{(L) | Le{A,...,An,By,...,7B,}}.

The inference rule extension from the restart ME calculus,will be defined in such
away that oneisfreein selecting any head litera as part of a connection. For thiswe
introduce a head selection function.

DEFINITION 1.1

(Head selection Function) A head selection function f isafunction that maps aclause
A V..VA, +~ B A...ABwithn > 1toanatomL € {A;,...,A,}. Lis
called the selected literal of that clause by f. The head selection function f is required
to be stable under lifting which meansthat if f selects Ly in the instance of the clause
(A V...VA, < By A... ABp)y (for some substitution ) then f selects L in
AivV..VA,«+ B/ A...AB. (END DEFINITION)

Note that this head selection function has nothing to do with the selection function
from SLD-resolution which selects subgoals. Thiswill be discussed later.

DEFINITION 1.2
(Strict Restart Model Elimination) Given aset of clausesS and ahead sel ection func-
tion.

The inference rule extension is defined as follows:

PuUu{p} A;V...VA;V...VA,+< B/ A...AB,
R

where

1. Pu{p}isapahmultiset,and A; V...VA;V...VA, < B;A...AB,isa
variable digoint variant of aclausein S; A; isthe selected literal, and
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2. (leaf(p), A;) isaconnection with MGU o, and

3 R=(PU{po(K) |
K e {A-17- . -:A-i—laAi—f—l;- ..,Am,ﬁBl,...,_'Bn}})O'

The inference rule reduction is defined as follows:
Pu{p}

Po

where

1. P U{p} isapath multiset, and

2. thereisapositiveliteral L in p such that (L, leaf(p)) is aconnection with
MGU o.

Theinferencerulerestart is defined as follows:
Pu{p}
PU{po (L)}

1. P U {p} isapath multiset, and

where

2. leaf (p) isapositiveliteral, and

3. L = first(p).

A dtrict restart ME derivation from the clause set S consists of a sequence
(Po, Py, ..., Pn) and asubstitution oy - - - o, Where

1. Py isapath multiset {(L,), ..., (Ly)} consisting of paths of length 1, withL; Vv
...VL,inS (alsocaled thegoal clause),andfori=1...n

2. P;isabtained fromP;_; by meansof an extension step with an appropriate clause
C from S and MGU g3, or

3. P; isobtained from P;_; by means of areduction step and MGU oy, or

4. P; is obtained from P;_; by means of arestart step.

Thepath p iscalled selected pathin all threeinferencerules. A restart step followed
immediately by an extension step isalso called arestart extension step. Finally, arefu-
tation is a derivation where P, = {}. (END DEFINITION)



Note that in extension steps we can connect only with the head literals of input
clauses. Sincein general thisrestriction istoo strong, we haveto “restart” the computa-
tion with afresh copy of anegative clause. Thisisachieved by the restart rule, because
refutations of programsin goal normal form always start with first(p) = —goal, and
thus only extension steps are possible to ~goal, which in turn introduce a new copy of
anegative clause (cf. Figure 1, right side).

The reduction operation is permitted from negative leaf literals to positive ances-
tor literals only. This condition can be relaxed towards disregarding the sign, which
then yields the non-strict cal culus version. See [Baumgartner and Furbach, 19944] for
adiscussion of the differences. The reader acquainted of this work will notice that in
the present text we define the calculus slightly differently. Thishappensin order to con-
veniently express another calculus variant defined bel ow.

Note that the restart ME calculus does not assume a specia selection function for
determining which path is to be extended or reduced next. Correctness and complete-
ness of this calculus follows immediately from aresult in [Baumgartner, 1994]. From
the definition of the inference rule extension, it follows immediately, that this calcu-
lus only needs those contrapositives of clauses which contain a positive literal in their
heads.

Thefollowing result is due to [Baumgartner and Furbach, 1994al:

THEOREM 1.3
(Ground completeness of Strict Restart M odel Elimination)

Let f be a head selection function and S be an unsatisfiable ground clause set in
goal-normal form. Then there exists a strict restart model elimination refutation of S
with goal <+ goal and selection functionf.

In [Baumgartner and Furbach, 1994a] we also gave the lifting arguments, but we
did not carry out the proof explicitly. In this paper, thisis done.

2 Computing Answers

In this section we introduce the notion of computed answers and we prove an answer
completenessresult for restart ME. We assume as given aprogram P together with one
singlequery <+ Gi A...A Gy, wherethe G;sare positiveliterals. We will often abbre-
viate such aquery as+ Q, where Q standsfor the conjunction of G;s. Theclauseset S
isthetransformation of P U {«+— Q} into goal normal form. In the following definition
of computed answer we collect applications of the query clause, but not applications of
negative clauses from the program P.

DEFINITION 2.1
(Answers) If + Qisaquery and 6., ..., 0y, are substitutions for the variables from
Q,thenQf, V...V Qb isananswer (for S). Ananswer Qf; V...V Qb,, isacorrect



answer if P = V(Q6; V...V Qfm). Now let arestart ME refutation of S with goal
clause + goal and substitution o be given. Assume that this refutation contains m
extension stepswith the query, i.e. it contains m-times an extension step with the clause
goal < Qp;, where p; is the renaming substitution of thisstep. Let o; = pio\dom(pi).
Then Qo V ...V Qoy, isacomputed answer (for S). (END DEFINITION)

THEOREM 2.2

(Lifting Theorem for Restart Model Elimination) Let S’ bea set of ground instances
of clauses taken from a clause set S. Assumethere existsarestart ME derivation D' =
Py, P, ..., P, from S’ with goal clause C; € S'. Then there exists a restart ME
derivationD = Py, P4,...,P, from S with some goal clause Cq € S and substi-
tution o such that P,, is more general than P!,. (A path set P is more genera than a
path set Q iff for some substitution§ we havePé = Q.)

Furthermore, there exists a substitution § such that P is obtained fromP}_, by an
extension step with clause C' € S’ if and only if P; is obtained from P;_, by an ex-
tension step with a clause C € S such that Cp;od = C', where p; is the renaming
substitution gpplied in that extension step.

Thefirst part of the theorem will be used in the proof of refutational completeness
(because for a refutation on the ground leve, i.e. a derivation of P, = {}, only the
empty path set P, = {} can be more genera), while the second part will be used in
the proof of answer compl eteness (Theorem 2.3). In particular, to obtain thiswe haveto
demand one single substitution § which mapsany of the clauses Cp;o used in extension
steps to the respective clause on the ground level.

Clearly, thisresult is harder to establish and more relevant than alifting result for
SLI-resolutionin [Lobo et al., 1992] which “moves the 3 quantification inside”: in our
words, they state that for every application of an input clause at the ground level there
exists an application at the first-order level, and there exists a substitution to map this
instance to the ground level. We may even conclude that the approach of [Lobo et al.,
1992] cannot handle the case correctly if there are variable interdependencies in dis-
junctive answers.

Let us consider the program P = p(f(x)) and the query Q = ?-p(z). Then ac-
cording to [Lobo et al., 1992] A = p(z) Vv p(f(z)) is acorrect and complete answer
set, although A does not subsumep(f(x)). Thuswewould beincomplete. On the other
hand, if we permit each literal to be substituted separately, in order to fix this problem,
then we would beincorrect. For thislet us consider the program P’ = p(x) v p(f(x)).
Then we could get also the answer A with respect to the query Q from above. But we
could factor it to p(f(z)) which isnot entailed by P’.

Now follows the proof of the theorem.

PROOF. Thebasic proof planisto show by induction onn that P,, can be mapped by ap-
plication of acertain substitution é,, to P’ . Thisapproach would sufficeto lift aderiva-
tion to the first-order level. However, as stated in the second part of the theorem, we
need moreover alifting result for the clauses used in extension steps. The difficulty in
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proving thisisthat in P! aclause used in aformer extension step need no longer be
present in P, (for instance, in arefutation P;, = {}). Thisis due to the fact that both
extension and reduction steps del ete paths. We thus have to explicitly keep track of the
used clauses.

In order to make things technically manageable we first define a clause set S, as
follows: S, isa set of, say 1, pairwise variable digoint clauses, and S, contains for
every ground instance Cyy, € S' (k = 1,...,1) of aclause Cx € S avariant Cy 7.
Furthermore Cy 7y IS supposed to be variable digoint from S.

At first wewill show that there exists one single ground substitution + which can be
used instead of theindividual v;’'s. More precisely, we definefirst v = 7o' lveod(ri)s
because then we have

(Cx7ic) Y = Crne (1

Moreover, since the clauses in S, are assumed to be parwise variable digoint
(by means of the 7s) and because of the domain restriction of the ;s it follows
(Cxmi) Ve = (Cx7i)7, - - -1 But then, defining v = ~; - - - 4 and using (1) we recog-
nise more generaly that S,y = S'.

It followswith D’ being aderivation from S’ that D’ isalso aderivation from S, .
We will show how to lift D’ from S,y to thefirst-order level. In order to do so we have
to define aslightly more general induction invariant I(n) than the theorem givesus. In
present notation it reads as follows:

I(n): thereexistsarestart ME derivation Py, Py, . .., P, from S with sub-
stitution o; - - - 0, and there exists a substitution §,, such that

Invariant 1. P,é, = P! and

Invariant 2: whenever P; (i = 1...n) isobtained from P} ; by an ex-
tension step withaclause Cyy € Sy, then P; isobtained from P;_4
by an extension step with some clause C € S such that

Cpioy -+ 0ndy = Cyy

where p; is the renaming substitution used in the i-th step to obtain a
new variant of C.

Clearly, I(n) proves the theorem using the identity C' = C,, and defining o :=
o1---0q and d := 6,. The if-direction of the theorem’s statement (i.e. that D does
not need more clauses for extension stepsthan D’) follows from the construction given
bel ow.

It thus remains to prove I(n) (induction on n):

[n = 0] P} isapath set for the query Coy € S,v. By construction of S, C is ob-
tained by renaming with 7, a certain clausein S, i.e. Cor; ' € S. Now take P, as the
path set for the query Cy7, *, and define the desired substitution 5, = 7¢. It follows
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immediately that Pydy = Pj, which provestheinvariant 1. Withn = 0 theinvariant 2
holds vacuously.

(n—1)—>n| Letn > 0 and suppose I(n — 1) to hold for the derivation
Py, P, ...,P,_,.I(n — 1) givesusthat there exists a substitution ¢/, _, such that

P, 10n1 = Plnil and (2)
Cpio1 -+ on_10n1 = Cyvy (3)

under the provisos stated above in the definition of I(n).

In order to prove I(n) we make a case analysis wrt. the inference rule applied to
P!
‘Reduction step‘: P’ _, contains a path p of theform p’ = (..., A,...,A) to be
deleted, i.e. P, = P! , — {p'}. From the given invariant (2) we learn that P,, ;
in particular contains a path p with pé,_; = p’. The path p is of the formp =
(..,K,...,L),where K§,,_; = A = Lé,_;. In other words, §,,_; is a unifier for
K and L. Since S, isassumed to be a set of variants completely variable digoint from
S we can aso assume that v neither acts on the variables from S nor on the variables
occurring in the variants taken from S to build the derivation Py, ..., P, ;. But then
P, 1v=P, 1. Application of §,, ; yields

2
P, 17001 =Pn 1001 2 P, =P, 1701 4)

The last identity istrivial (P._, isground) and is needed below.
More specifically the following holds

K’}/dn_l = K(Sn_l =A= Lén—l = L/Yén—l (5)

Next we turn to the clauses used in previous extension steps (cf. given invari-
ant 2). Again, since v does not act on the variants taken from S it aso holds
Cpior -+ 0n_170n_1 = Cp;o1 - - 0n_16n_1. Thus we conclude

3
Cpial e O'nflfyénfl = C,Oi0'1 e O-nflénfl (:) Cv7 = Cvfyénfl (6)
The last identity holdstrivially because C,y is ground.

The equations (4,5,6) tell usthat vd,, ; isasimultaneous unifier for the respective
leftmost and rightmost terms in these equations. Hence there also existssaMGU ¢, and
asubstitution §,, such that

Onln = Yon_1 (7)

By construction, ¢, isaMGU for K and L. Hence we can apply a reduction step to
p € P, ; withMGU o, toobtainP,, = P, 10, — {pon}-
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Altogether we conclude

Podn = (Pao10n = {pon})dn = Ph70n1 — {P'10n 1}
(* PI { } PI
Thestep () isjustified by thefact that P! _, isground. Note that this chain just proves

the invariant 1.
It remainsto proveinvariant 2:

Cpio1 -+ On_10n0n g Cpio1 -+ On_1Y0n1 (©) Coy

Since thiswas to be demonstrated the proof for this case is now done.
Extension step ‘: P! , containsapath p of theformp’ = (..., A) to be extended with

aclauseAV R € Sy, i.e

P,=P, ,—{p}u{p'o(B) | BER}

From the given invariant (2) we learn that P,,_; in particular contains a path p with
pon_1 = p’. Thepathpisof theformp = (..., L), and thus, in particular A = Lé,,_;.
Let K, V Q, € S, bethelifted versionof A VR, i.e.

(K.VQ)y=AVR (8)

Recall from the assumption stated at the beginning, that K, V Q. isanew variant by
means of some renaming substitutionr,i.e. K, vVQ, = (KVvQ)7 forsomeKVvQ € S.
Let (KVQ)pn beanew respective variant. We will show how to carry out an extension
step with that variant.

From the last equation and (8) it follows

AVR = (K, VQ,)y=KVQ)ry=(KVQ)pm)oa ™y
= (KVQ)pn)pnli7v0n1 (9)

Thelastidentity isjustified by thefact that 6,, ; isapplied toaground clause, and hence
does not alter the clause.

The renaming substitution p,, introduces new variables; hence p;' does not affect
P,_1. Also, 7 doesnot affect P,,_{, because P,,_ isbuilt from new variants (possibly
except the query clausewhich hasto bevariabledigointto all other clausesin advance).
Together we obtain that P,, ; = P, 1p 7. Further, asin the case of reduction step,
we can also assumethat v does neither act on the variablesfrom S nor on the variables
occurring in the variants taken from S to build the derivation Py, ..., P, ;. But then
P,_17 = P,_1. Putting things together we obtain:

@)

Pn_lp;1775n_1 = Pn_15n_ P, 1= Pn lpn T’}/(Sn_l (10)
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The last identity istrivial (P._, isground) and is needed below.

Recall from above that we extended P!, _, at a path p’ with leaf A to obtain P.,.
From A = Lé, i, as given, we can now conclude with (10) even Lo t7vd, 1 = A.
But then we have

Loa' mv0n1 = A 2 (Kpa)pa 7700 (11)

Next we turn to the clauses used in previous extension steps (cf. given invariant 2).
By the same line of reasoning as for P,,_; above we can assume that p_'7 does not
affect a clause C, whose ground instance C,y is used in the ground derivation. Thus
we conclude

Cyvy = Cypa'm = Cypp ' 700 1 (12)

The last identity holds because §,, ; is applied to a ground clause.
Since the derivation from S uses new variants, and the MGUs used there can be
supposed to introduce no new variables we have

Cpioy - -On—1 = Cpioy -+ On_1py'T

Again, since v does not act on the variants taken from S Cpio1 - on_1y7 =
Cpjo: - - - 0,1 dso holds. Using these identities and applying 6,, ; we conclude

Cpial Tt o'nflp;llTryénfl = Cpial o 'O'nflénfl
(i) CV’Y (g) Cvpr_117'75n71

The equations (10, 11, 13) tell usthat p,; '7vd,_; isasimultaneous unifier for the
respective leftmost and rightmost terms in these equations. Hence there also exists a
MGU ¢,, and a substitution é,, such that

Onln = Py 17'75,,_1 (13)

By (11) and (13), o, isaMGU for L and K p,,. Hence we can apply an extension step
top € P,_; withthevariant clause (K V Q) p, and MGU ¢, to obtain

Po=(Po1 —{p}U{po(B) | B €Qpu})on
Altogether we conclude
Py = (Paoi—{ptU{peo(B) | B€ Qpn})ondn
(Pa—1 = {PHoudnU{po (B) | B € Qpn}ondn
"2 P~ {p'}U{po(B) | BE Qpaloud
P2YP —{p}u{p'o(B) | BER)
- P
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Note that this chain of reasoning just provesthe invariant 1.
We dtill have to proveinvariant 2: First, it has to be proved for all clauses used up
to, but not including this extension step:
CPi01 v 'O'n—lo'nfsn (2) Cpi0'1 *On—1Pn 775n 1 1_) CV’Y
Second, invariant 2 hasto be proved for the clause used in this extension step. For this
note that p, renames K v Q to anew variant. Hence (K V Q)pn)o1 -+ - on_1 = (K V
Q)pn. Fromthisit follows

(K \ Q)Pn)‘ﬁ Tt O'nflo'nén

(
= (KV Q)pn)0ndn
2 (K V Q) pn 100
2 (K, vQu)y
Now invariants 1 and 2 have been shown, which concludes the proof of the extension
Slt?egtart step|: Sincein arestart step no substitution is applied we cantake é,, := d,_1.
ogether with the induction hypothesis the result follows trivialy. Q.E.D.

THEOREM 2.3

(Answer completeness of restart ME) If Qf; Vv ...V Q6 is a correct answer for a
progranP, then thereexistsastrict restart ME refutation from S with computed answer
Qo1 V...VQom suchthat Qo V...V Qo entailsQé, v ...V Qb,, i.e

BVie{l,...,m}dje {1,...,1} Qoid = Q¥;.

Informally, the theorem states that for every given correct answer we can find a
computed answer which can be instantiated by means of a single substitution § to a
subclause of the given answer (and hence impliesit). Unfortunately we can not obtain
aresult stating that the computed answer containsless (or equal number of) literalsthan
the given answer.

This behaviour sometimes results in confusing answers. For instance, let the pro-
gram be

P: P(X) + Q(X), Q(X)
Q(A),Q(B) +

Therefutation in Figure 2 computesthe answer P (a) VP (b) vV P(b). AlthoughP(a) v
P(b) isacorrect answer, restart ME will not computeit. The reason for thisisthat two
identical instances <— P (b) of the query have to be used. In Section 3 below we will
describe a calculus variant which ismore optimal wrt. the length of the disjuncts. — The
proof follows now.

PrROOF. Now for the proof of Theorem 2.3, proper:
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Given the correct answer Q6 V ...V Q6, we know by definition P = V(Q6,; Vv
...V Q#6,). Hence we conclude that P U {=V(Q#6; V ... V Q6)} is unsatisfiable.
By transforming this into CNF we get the unsatisfiable set of clauses S’ = P U
{-Qb:11,...,7Qbn} whereeach 7;(1 < i < 1) substitutes new Skolem constants
for the free variables of Q6;.

With the abbreviation ¢! = 6;; foral 1 < i < 1, we get an unsatisfiable set of
clauses

S'=PuU{-QF,...,~Qb}

By the Herbrand-L dwenheim-Skolem Theorem there exists an unsatisfiable ground
clause set

S" =P'U{-Q¥,,...,—QH}

where P’ is a finite set of ground instances of clauses from P. From S” we select a
minimal unsatisfiable subset

S" =P"U{-Qf,...,~Qb:}

where P C P’, and (without loss of generality) r < 1. From ground compl eteness of
restart ME (Theorem 1.3) we learn that there exists arestart ME refutation of the goal
normal form of S”, i.e. there exists arestart ME refutation D’ of

S" =P U{goal + Qb,...,goal + QO.} U {+ goal}.

Here, a clause set P, iS obtained from a clause set P by replacing every purely
negative clause-B; V ---V =B, by goal vV =B, V - - - V =B,,.

The minimality condition ensures that each of clauses {goal + Q#,, ..., goal «
QO.} inS"" isused at least once for an extension step. Let m > r be the total number
of extension steps carried out with clauses from that set.

D’ isarefutation, i.e. a derivation of the empty path set P, = {}. By thelifting
theorem there exists arestart ME derivation D of some more general path set P,, from
Pgoa1 U {goal + Q} U {«+ goal}. Since only the empty path set is more general than
itself we conclude that P,, is also arefutation. This proves refutational compl eteness.

Next weturnto answer compl eteness, proper. The second part of thelifting theorem
gives us that for any extension step in D’ with clause goal « Qb (where f isa
surjection from {1,...,m} onto {1,...,r}) there is exactly one extension step in D
withtheclause {goal +— Qp;} (i € {1, ..., m}), where p; isthe renaming substitution
of that step. Furthermore (by the lifting theorem) thereis a substitution ¢’ such that

goal < Qpiod’ = goal + Qb (14)
This, however, is equivaent to the condition that every element in the digunction

Ans =Qo1V...VQo,r,VQori1 V...V Qo
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where 0; = pi0ldom(;) (fOr i = 1...m), is mapped by application of ¢’ into some
element of Q4] Vv --- Q6. Note here that Ans is nothing but the computed answer
substitution.

Recall that Q8 = Qb7 (for k =1,...,r), and hence with (14) we have

Qoid" = Qe Te(i) (15)

However, in order to prove the theorem we have to find a substitution ¢ such that
Qoid = Q). In order to define § recall that 7 is a Skolemizing substitution and
hence can be written as

Tk = {Xo ¢ @, | 0 € O}

for some finite index set O and new constants a,,. In this case we can treat in the refu-
tation D the a,S as new variables and define the substitutions

Tl = {20 ¢ Xo | Xo ¢ Ao € Tic}

Every 7 introduces new Skolem constants. Hence the domains of the 7, 'sare pairwise

digoint. But then with defining 7! := 7, - - - 771 we get

T_l |d0m('rk_1) = Tk_1 (16)
Next define

§ =811

Thisisthe desired substitution since

_1 (15 _1 (16 _
Qoi6 = Qoio'r & (QOgyTeqy) T © (Qbeciye)) ety = Qb
Finally, with the fact that f is a suitable surjection the theorem is proved. Q.E.D.

3 Definite Answersand Regularity

From theorem proving with ME we know that the regularity check is an important
means for improving efficiency. Regularity for ordinary ME meansthat it is never nec-
essary to construct a tableau where a literal occurs more than once along a path. Ex-
pressed more semantically, it saysthat it is never necessary to repeat in aderivation a
previously derived subgoal (viewing open leaves as subgoals).

Unfortunately, regularity is not compatible to restart ME. In this section we will
present avariant of restart ME, the ancestry restart variant, which allows for extended
regularity checks. Thisvariant is motivated by Loveland’s UnH-Prolog [L oveland and
Reed, 1992].

As an interesting side effect it turns out that this variant offers considerable bene-
fits with respect to logic programming: occasionally one is interested in the question
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—goal

/\

—Q(X) —Q(X)

N

Q(a) Q(b) Q(a) Q(b)

—goal —goal

| |

-P(Y) -P(Z)

N N
-Q(Y) —Q(Y) -Q(2) —Q(Z)

Figure 2: A refutation of P U {< goal, goal < P(X)} depicted as a tree; the com-
puted answer isP (a) VP (b) VP (b) wherethe substitution {X +- a,Y < b,Z < b}
isapplied.

whether a given program with query admits adefinite answer, i.e. an answer whichisa
single conjunction of atoms, but not a disjunction. Of course, in general, anon-definite
program does not always admit a definite answer, but some programsdo. It isthe latter
class of problemswe are interested in now.

Consider theprogram Pp.s = {P(X,a)VP(b,Y) «} andthequery «+ P(X,Y).
Note that, among others, P(b,a) and P(X,a) vV P(b,Y) are correct answers. Now,
by Theorem 2.3 strict restart ME is answer complete; hence we can find a refutation
yielding a computed answer which entails P(b, a) (Figure 3, left side). As noted af-
ter the statement of Theorem 2.3 restart ME will not always compute minimal (wrt.
length) answers. It is easily verified that in this exampl e the shortest computed answer
isP(X,a)VvP(b,Y),which can befactored to P(b, a). Thisis due to repeated use of
the query in the refutation.!

Thekey ideato the direct computation of definite answersisto restrict the use of the
guery to one single application in the refutation, namely at itstop. Then, by definition,
definite answers are obtained. However, such arestriction isincomplete. But if restart

"However, in this example we could find a non-strict restart ME using the query only once. Hence,
one might object that this example is vacuous. This, however, misses the point because there exists a
more complicated example where this argumentation would not work.
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ME is modified in such away that every negative literal along a branch, not only the
topmost literal, may be used for the restart step then completeness is recovered. This
followsfrom amore general result which statesthat we can restrict our cal culusto glob-
ally regular refutations (i.e. no literal except the literal used for the restart occurs more
than once along a branch). Let us now introduce al this more formally.

DEFINITION 3.1

(Ancestry Restart M odel Elimination) The calculus ancestry restart ME is the same
as strict restart ME (Definition 1.2), except that the inference rule restart is modified
by replacing the condition 3. by the new condition 3'.:

3. L isanegative literal occurring in p. In this context L is also called the restart
literal.

The modified ruleis called ancestry restart. (END DEFINITION)

The term “ancestry” in the definition is explained by the use of ancestor literals for
restart steps. Note that any reduction from a positive leaf literal to a negative ances-
tor literal can be simulated in ancestry restart ME by arestart step followed by a strict
reduction step. Thus, non-strictnessis “built into ” ancestry restart ME.

Note that the ancestry restart rule includes the restart rule since the first literal can
be used for the restart as well.

Figure 3 (right side) shows an example ancestry restart ME refutation of Ppes With
query «< P(X,Y). Note that no new copy of the query clause is used, but instead
the present instance is copied by the ancestry restart rule, and then the resulting path
is closed by a reduction step. This example also demonstrates that — unlike in strict
restart ME — it makes sense to apply a reduction step to a restart literal. This moti-
vated us to change the definitions in [Baumgartner and Furbach, 1994a] in now letting
the restart step be an explicit inference rule.

Clearly, in terms of a proof procedure the ancestry restart rule induces a larger |o-
cal search space than therestart rule. On the other hand, refutations may become much
shorter. In order to see this think of a derivation containing a path =B, - - - =B, A.. It
might be necessary in restart ME to repeat all the —=B;’s in order to find a refutation.
This derivation of =B, - - - -B,A—B; - - - =B, can be abbreviated in ancestry restart
MEto—-B; - - - -B,A—-B, by guessing theright -B,, for therestart. Indeed, thisisthe
rationale for our proof procedure to search the restart literals from the leaf towards the
top. Asafurther benefit of this search order note that a definite answer will be enumer-
ated before a non-definite answer, provided it allows for a shorter proof.

Now we proceed to an appropriate completeness result wrt. definite answers. As
mentioned above, thisresult shall be aconsequence of amore general result concerning
aregularity restriction. Let us define this notion precisaly:
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Restart ME refutation Ancestry Restart ME refutation
—goal —goal
-P(X,Y) -P(X,Y)
P(X',a) P(b,Y") P(X’',a) P(b,Y')
* ‘ * ‘
—goal -P(X,Y)
*
Substitution: " " Substitution:
{X+X' Y<+a —P(X",Y") {X+b, X'« b
X"« b, Y" « Y} * Y<«<a Y «a
Answer: Answer:
P(X’,a)VP(b,Y') P(b,a)

Figure 3: A restart ME (left side) and an Ancestry restart ME (right side) refutation of
{P(X,a) VP(b,Y) <, < goal, goal + P(X,Y)} depicted as trees

DEFINITION 3.2
(Regularity) Let p be path written as follows (the As and Bs are atoms):

p= ﬁB% e ﬁBllquﬁBf . ﬁBi2A2 e AnflﬁBi1 - —BR
Then p iscalled blockwise regular iff
1. At£Aifor1<i,j<n-1,i#j (Regularitywrt. positiveliterals) and
2. Bi#Bjfor1<1<n,1<i,j<k,i#j (Regularityinsideblocks).
If additionally it holds that
3B #BPforl <1<m<n1<i<k,2<j<ky (Global negative
regularity)

then p is caled globally regular. A path set is called (blockwise, globally) regular
iff every path in it is (blockwise, globally) regular. Smilarly, a derivation is called
(blockwise, globally) regular iff every of its path setsis (blockwise, globally) regular.
(END DEFINITION)

Condition 1 states that all positive literals along a path are pairwise different, and
condition 2 states that negative literalsinside blocks are pairwise different, where by a
block we mean asmallest subpath delimited by positive literals or the ends of the path.
Condition 3 means that a negative literal may be equal to one of its ancestors only if
it follows a positive literd, i.e if it is used as a restart literal. Thus we have a global
regularity condition, except for restart literals. In all example refutations given so far,
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al branches are blockwise regular. However, the refutation in Figure 1 (right side) is
not globally regular, as can be seen by the two occurrences of —Q in the rightmost path.
From this example we learn that restart ME is incompatible with the global regularity
restriction. However we have:

THEOREM 3.3

(Completeness of Ancestry Restart Model Elimination) Let f be a head selection
function and S be an unsatisfiable clause set in goal-normal form. Then there exists a
globally regular ancestry restart ME refutation of S starting with <+ goal and selection
functionf.

PROOF. The proof builds on the above answer completeness Theorem 2.3, which in
turn relies on the ground completeness proof in [Baumgartner and Furbach, 19944].
Although not stated here explicitly, that proof in [Baumgartner and Furbach, 19944
shows the ground compl eteness for the blockwise regular strict restart ME with selec-
tion function. We can thusrely on thisresult, and show how to transform a given block-
wiseregular refutationin restart ME on the ground level to aglobally regular refutation
in ancestry restart ME (also on the ground level).

This suffices to prove the theorem on the first-order level. Reason: Suppose some
unsatisfiable clause set in goal normal form is given. From the cited results we know
that there exists a blockwise regular refutation, say D, in restart ME which is lifted
from a refutation D& on the ground level. By the supposed transformation then there
existsaglobally regular refutation D | . in ancestry restart ME. It isstraightforward to
adapt the lifting theorem (Theorem 2.2) to take into account the ancestry restart step.
Now supposg, to the contrary of the theorem, that the lifted version D 4, 1S not glob-
aly regular. Then some path p along the refutation D 4, iSnot globally regular. This
means that one of the inequality constraints stated in the definition of globally regular
isviolated. Thus p contains two occurrences of alitera B which violate one of these
constraints. However, with the path p being a lifted version of a path p& in D} .. the
inequality constraint must be violated in p8 as well. This plainly contradicts the as-
sumption that D, . isglobaly regular. Hence D 4, is aso globally regular.

It remains to prove the desired transformation. For this let D8 again be the given
blockwise regular refutation in restart ME from above. By the completeness result
in [Baumgartner and Furbach, 1994a] we can further assume that D8 is a strict refu-
tation (no reduction steps from positive literals). Since by definition an ancestry restart
step includes the possibility of arestart step, D# is aso a blockwise regular ancestry
restart ME refutation. Let n be the number of violations of the global negative regular-
ity constraint (Condition 3 in Definition 3.2). Either n = 0 and we are done, or else D8
can be transformed to contain strictly less than n such violations, without sacrificing
the blockwise regularity constraints. Repeated application will eventualy result in the
desired refutation.

The transformation step can most easily be expressed using the tree view of ME.
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Figure 4 (left) showsthe general situation: assume D8 contains a path
p = —goal---Ak—goal---—B---A'-goal --- —-B

where A! isthe bottommost (rightmost) positive literal dominating —B. Further, asin-
dicated by the two occurrences of =B in p, the global negative regularity constraint is
violated for p. Let D' be the tableau corresponding to the refutation of the path p.

—goal —goal
AX AX
—goal —goal
~B ~B
Al Al
W Replace by
jgoal Restart -B
.

*

Figure 4: Transformation step removing aviolation of aglobal negative regularity con-
straint.

Now del ete the subtree between A'! and =B bel ow (bounds excluded from deletion).
We arrive a a new tableau with path

p' = —|goal- : -Ak—|goal ----B- - A1—|B

Next append D’ to p’. Since only negative literals have been deleted, and we assume
that D8 isastrict restart ME refutation, in D’ no reduction steps from positive literals
to negative literals have occurred. Thus D’ isalso a closed tableau below p’ (right side
in Figure 4).

It is clear from the definition that this new tableau can be constructed by means of
an ancestry restart step, using —B asrestart literal. Furthermore, (at least) oneviolation
of the global negative regularity constraint has been removed, and since we only have
deleted some literals from p the blockwise regularity constraints will not be violated.
Thus we have found a suitable transformation step. Q.E.D.

We can usethisresult to obtain the desired compl etenessresult for definite answers.
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THEOREM 3.4

(Answer completeness of ancestry restart ME) Ancestry restart ME is answer com-
pletein the sense of Theorem 2.3. In particular, if Qf is a correct definite answer for a
program P, then there exists an ancestry restart ME refutation from P with computed
answer Qo suchthat Qoo = Q#, for somesubstitutiond. Furthermore, theinput clause
goal + Q isused exactly once, namely at the first extension step of < goal.

Thislast theorem enables us to enumerate definite answers only, by simply restrict-
ing the use of goal < Q to one extension step at the beginning. So we have the desir-
able properties of loop checking by regularity and the computation of definite answers.
PROOF. The answer completeness follows directly from the fact that the ancestry vari-
ant still permits restart steps with the goal, i.e. it allows for additional derivations. The
proof of the last part isgiven by a careful analysis of the proof of Theorem 2.3. Recall
from that proof that Q6 is a correct answer for P impliesthat S’ = P U {-Q#f7} is
unsatisfiable, where 7 is some substitution introducing new Skolem constants for the
variables of Qf. Then we considered a set S of ground instances of the goal normal
form of S'. It isimportant to recognise that the goal normal form S”” contains exactly
one instance of the query, namely goal < Qfr. Since we assume that P is a pro-
gram, and hence consistent, it followsfrom the proof of Theorem 1.3 that there existsa
strict restart ME refutation of S where thefirst extension step is done with the clause
goal + Q67. In other words, every path in the refutation is of the form

—goal-Q;f7 - - -

where Q; issomelitera in Q (recall that Q isan abbreviationfor Q; A-- - A Q,). Now
suppose that goal <+ Q@7 isused once again in the refutation. For syntactical reasons
thiscan only happen if goal < Q7 isextended to a path resulting from arestart step.
This path takes the form

—goal-Q;f7 - - - A—goal

where A issome positiveliteral. Extension with goal < Q@7 results (among possible
others) in a path

—goal-Q;f7 - - - A—goal—-Q;07

But now notethat this extension step leadsto aviolation of the global negative reg-
ularity restriction and thus will be eliminated by the transformation given in the proof
of Theorem 3.3. To be more precise, the path

—goal-Q;f71 - - A-Q;601

will come up instead. Since every extension with goal + Q&7 will be eliminated in
thisway, the query clausegoal + Q67 isused precisely oncein thistransformed refu-
tation, namely for the first extension step. The lifting argument for this refutation then
is the same as in Theorem 2.3. Thus we arrive at a refutation with computed answer
Qo which is more general than Q#, which was to show. Q.E.D.
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4 Implementation

All variants and refinements of ME discussed so far, i.e. the restart, strict and ancestry
variants (possibly with selection function), loop checking by regularity and factorisa-
tion, are implemented in the PROTEIN system [Baumgartner and Furbach, 1994b]. It
isafirst order theorem prover based on the Prolog technol ogy theorem proving (PTTP)
technique, implemented in ECLiPSe-Prolog [ECRC, 1995].

Since ME is a goal-oriented, linear and answer complete calculus, it iswell suited
as an interpreter for digunctive logic programming. PROTEIN facilitates computing
digunctive and definite answers. In its newest release their is aso aflag which allows
usto look for definite answers only.

5 Comparative Theorem Prover Study

Inthe sequel, wewant to relate our experiencesin computing answers by using theorem
provers. First of al, we had to overcome some technical problems because theorem
provers usualy do not supply answers apart from "yes’ or (possibly) "no”. We will
illustrate our experiences with apuzzle examplewhich allowsfor indefinite and definite
answers.

5.1 Knightsand Knaves

The example follows problem #36 in [Smullyan, 1978]. A similar example is studied
in [Ohlbach, 1985]. The natural language description of the problem is stated below.

1. Onanidand, therelive exactly two types of people: knights and knaves.
2. Knights alwaystell the truth and knaves always lie.

3. | landed on the island, met two inhabitants, asked one of them: ”Is one of you a
knight?” and he answered me.

4. What can be said about the types of the asked and the other person depending on
the answer | get?—

5. We assume, that either a proposition or its negation istrue.

6. If the digunction of two propositions is true then at least one of them must be
true.

The last two pieces of information 5 and 6 explicitly state some knowledge about
inferencing. We need themin order to be able to cope with theinformation in 2 because
our description language isfirst order. — The reader may think about the problem solu-
tion for awhile, before he looks at the solution which is given afterwards. For that, we
have to make a case distinction:
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() Suppose, the asked person answers with yes. Then he may be a knight, because
then of courseit istrue that one of them isaknight. In this case, the other person
can be a knight or a knave. — We cannot even exclude that the asked personisa
knave. Then it must be true that none of them is a knight, hence the other person
isaso aknavein this case.

(b) Let usnow assume, the asked person answers with no. Then this person must be
aknave, since aknight cannot answer with no honestly. It follows, that the other
person is aknight, because one of them must be aknight. So, in this case we get
a definite answer.

In our formalization of the problem below, the formulaein 1 and 2 express the cor-
responding pieces of information from above. Depending on the case considered, we
choose one of theformulae (a) or (b) in 3. We view the fact that a person denies a ques-
tion asthat he saysthat the thing in question is not true using the binary predicate says
(instead of aternary predicate). Formula 4 can be considered as the query. We have to
express the pieces of information 5 and 6 explicitly by introducing the unary predicate
true. The transformation of the formulae below into clausal form is straightforward
and therefore omitted here. It consists of 11 clauses. — The symbol Vv denotes exclusive
or.

[EEN

. true(isa(Q, knight))Vtrue(isa(Q, knave))
2. says(P,S) — (true(S) «+> true(isa(P, knight)))

3. (a) says(asked, o) ("yes’)
(b) says(asked, not(e)) ("no”)
where e = or(isa(asked, knight), isa(other, knight))

4. —true(isa(asked, X)) V —true(isa(other, Y))

5. true(not(C))Vtrue(C)

o

. true(or(A,B)) + (true(A) V true(B)))

We can provethe query in many different ways. Asaconsequencewe get many triv-
ial and hence useless answers. The (most) trivial one— afour part disjunction —can be
obtained in both cases. We only need formula 1 and the query in order to infer it. But it
only saysthat each of both personsare either knightsor knaves. In case (a) (if the asked
person says yes) we can get an indefinite answer consisting of only three diguncts. In
theother case (b) thereexistsadefiniteanswer. It followsalist of these possibleanswers
where X /Y isan abbreviation of true(isa(asked, X)) A true(isa(other,Y)).

1. knave/knave V knave/knight V knight /knave V knight /knight (trivial)
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true(isa(Q, knight)) true(isa(Q,knave))

Figure 5: Derivation of thetrivial answer

2. knave/knave V knight/knave V knight /knight (indefinite)
3. knave/knight (definite)

TheFigures5, 6 and 7 show tableaux for the derivationsof thetrivial, indefinite and
definite answer respectively. All occurrences of the query are emphasised with dashed
boxes. Substitutions are not annotated in order to keep the presentation clearer. Dashed
upward links denote reduction steps. Dashed downward links abbreviate the presen-
tation. They indicate proof parts that can be used repeatedly which can aso also be
explained by factorisation.

Before turning to our experiments we want to mention some interesting facts.
Firstly, answer completeness requires that we are able to compute the indefinite and
definite answer in the respective cases. Secondly, to derive these answers we need a
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true(isa(Q, knight)) true(isa(Q,knave)) true(isa(Q,knight)) true(isa(Q,knave))

true(isa(P,knight)) —true(S) -says(P,S)

)

true(or(A,B)) —true(B) - """ """"-"-"- ‘

says(asked, or(isa(asked, knight), isa(other, knight)))

Figure 6: Derivation of the indefinite answer

clause set which is not minimally unsatisfiable; notice that the clauses of 1 and 4 to-
gether are (minimally) unsatisfiable yielding the trivial answer. Thirdly, 9 extension
steps are needed to derive the indefinite or the definite answer respectively, while only
7 extension steps are needed to derive the trivial answer (in both cases). — These re-
marks indicate that it can be more difficult to find the more precise answers.

5.2 Experimental Results

We tried to get the answers from above automatically by using the theorem proving
systems OTTER [McCune, 1994] which is aresolution-style theorem proving program
coded in C for first order logic (with equality), SETHEO [Letz et al., 1992] which is
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true(isa(Q, knight)) true(isa(Q,knave)) true(A) true(B) —true(or(A,B))
‘ /\
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|
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|
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|

|
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””””””” > true(isa(P, knight)) —true(S) -says(P,S)

N

true(S) —true(isa(P, knight)

A
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—says(P, S))

—true(not(C —true(C)

N

|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
true(or(A,B)) —true(A)

says(asked, not(or(isa(asked, knight), isa(other, knight))))

Figure 7: Derivation of the definite answer

atop-down prover for first order predicate logic based on the calculus of the so-called
connection tableaux which generalisesweak ME. SETHEO usesaWAM-compiler sim-
ilar to Prolog, and the resulting code isinterpreted by a C program. Of course, we also
used our PROTEIN prover ([Baumgartner and Furbach, 1994b], Section 4).

We used the clause ordering given by the problem description, but our experiments
show that the (run time) results depend on the ordering.

OTTER has some problems with computing answers because it enumerates resol-
vents but not all (refutational) proofs. Especially during the subsumptiontest, it did not
takethe answer literalsinto account which are provided for computing answers. That is
the reason why OTTER with (forward and backward) subsumption is not answer com-

26



Prover Answer | Time () Settings
OTTER trivial 2.1 | plainhyper-resolution
indefinite 0.3 | hyper-resolution + factor.
definite 00 several trids
SETHEO trivial 05 with constraints
indefinite 10 with constraints
definite 0.6 with constraints
PROTEIN trivial 05 any setting
indefinite 00 plain ME
41.4 restart + sel. function
definite 2022.8 plain ME
384 ancestry restart
SATCHMO | trivia 00 any setting
indefinite 00 any setting
definite 00 any setting

Table 1: Timings |: Knights and Knaves #36

plete. An example which illustratesthisis case (a) where the search stops after finding
15timesonly thetrivial answer with binary resolution. However, we find aproof by us-
ing hyper-resolution with factorisation immediately within 0.4s. — There is a solution
to the problem with subsumption; it can be shown that we only have to take the answer
literal sinto account during the subsumption steps. Unfortunately, it isnot (yet) possible
totest OTTER inthissetting and find out whether thisimprovesthe behaviour, because
itisnot builtin.

We generate answerswith SETHEO by using global variables. Theanswersare kept
inalist. By thisand other technical tricks, we find the indefinite answer within 1.0sand
the definite answer within 0.6s. That is quite good and may be explained by the subgoal
reordering heuristicsbuiltinto SETHEO, which are not (yet) incorporated into our sys-
tem. But in addition, SETHEO also has subsumption constraints which are used in the
default setting. It isnot quite clear, whether these constraints destroy answer compl ete-
nessin SETHEO.

Table 1 showsthe timingsfor OTTER and SETHEO. All timings are measured on
a Sparc 10. The symbol oc denotesthe fact that no proof was found within 1 hour; that
is true for OTTER applied to case (b) of our example. It also shows the timings for
PROTEIN and SATCHMO. Since SATCHMO differs from the provers mentioned so
far because it can be used for model generation, we will discuss SATCHMO later in
Section 5.4.

PROTEIN isanswer complete; that has been stated in this paper. It finds the indef-
inite and definite answer for the respective case. Table 1 also shows some timings for
finding these answers with PROTEIN. We tried both, plain and restart ME. In the case
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Prover Problem | Time(s) Settings
OTTER #27 00 binary resolution
#35 281.8 binary resolution

#39 0.7 plain hyper-resolution

#42 00 binary resolution

SETHEO #27 45 with constraints
#35 12 with constraints

#39 296.8 with constraints

#42 144 with constraints

PROTEIN #27 00 any setting
#35 153.1 plain restart

#39 906.5 ancestry restart

#42 00 any setting

SATCHMO #27 0.2 any setting
#35 0.2 any setting

#39 0.4 any setting

#42 0.2 any setting

Table 2: Timings|l: Other Puzzles

of the restart variant we aso tried its refinements: with or without ancestry restart or
selection function (no contrapositives). We tried to compute the desired answers with
settingswhere all solutionsare computed in case (a) (indefiniteanswer). For the case (b)
(definite answer) we used the setting where only definite answers are searched for. By
this, we get asignificant speed up of the search. — Asone can see, using restart helpsfor
thisproblem, since plain M E does not find the desired answers quickly, althoughit does
so for trivial answers. But it is not quite clear which flags should be used in addition.

5.3 Other Examples

We investigated more puzzle examples from [Smullyan, 1978] as formulated in the
TPTP problem library [Sutcliffe et al., 1994] that allow for definite answers. Table 2
shows the best run times we achieved for the considered examples. SETHEO behaves
quite well on these examples because we only searched for definite answers; there are
some technical problems to compute digunctive answers. Again, OTTER has some
problems and runs out of set of support with hyper-resolution while binary resolution
does not find the desired answers concerning the examples #27 and #42. Look also at
Table 3 where sometimings for the so-called Blind Hand problem are shown. The ver-
sion number corresponds to that in the TPTP problem library.

All our experiments corroborate the following facts: resolution has difficultiesin
solving puzzles because of the problem with subsumption; model elimination is better
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Prover Version | Time(s) Settings
OTTER 1 7.13 plain hyper-resolution
2-1 7.47 plain hyper-resolution

2-2 7.21 plain hyper-resolution

SETHEO 1 137 default setting
2-1 0.08 default setting

2-2 0.08 default setting

PROTEIN 1 112 ancestry + sdl. function
2-1 0.13 plain ME

0.60 ancestry restart

2-2 0.10 plain ME

0.47 ancestry restart

SATCHMO 1 00 any setting
2-1 o0 any setting

2-2 00 any setting

Table 3: TimingslIl: Blind Hand Problem

suited although it could not solve all puzzles that we tested. Further investigations are
necessary. Last but not least, we want to point out that both, OTTER and SETHEO do
not support a procedural reading of program clauses — they all need contrapositives —
but PROTEIN does; and that is useful if we want to use logic as areal programming
language.

5.4 Modd Elimination versus M odel Generation

It seems also that amodel generation approach isvery adequate for these kind of prob-
lems because they often allow for finite models. In this special case we can derive the
answers from the models by the following non-deterministic procedure: Extract from
each of the (finitely many) models one instance of the query, and combine them into
one disunctive answer. The proof that justifies this procedure is trivial for the finite
case and hence | eft out here.

With SATCHMO [Manthey and Bry, 1988], we get all answers quitefast by using it
for model generation since all considered puzzlesallow for finite model s— except #36.
That is clear becausein our formulation only infinite modelsexist: Assoon astrue(S)
isvalid for some expression S, it must hold true(not(not(S))) too; that means, we
can derive facts with any number of double negations. Thisincreases the search space
to such adegreethat therefutationally compl etelevel-saturation version of SATCHMO
isnot able to find the desired answers.

Therefore, we investigated two other formalisations of this problem (due to
Francois Bry) which have finite models and are a bit longer than ours. Both versions
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permit the coding of the problem into one single clause set. Concerning version #1,
SATCHMO finds the desired (disjunctive) answer within 0.05s. But PROTEIN aso
finds the answer within this time in proof depth 6. Version #2 is a bit tricky since it
uses athe SATCHMO rule (false < S) «+ true(not(S)) which mixes object- and
meta-level. On the one hand, thisis an advantage of SATCHM O; but on the other hand,
it isnot quite clear whether compl eteness can be assured. Ordinary first order theorem
provers need three additional lemmatain order to be able to find out the solution.

In conclusion, model generation seems to be promising for examples which allow
for finite domains whereas model elimination approaches are more robust for a wider
range of applications.

6 Conclusion

To conclude, it seemsto be very promising to use ME as a base cal culusfor computing
answers in digunctive logic programming. In this paper, we introduce (among others)
the ancestry restart variant which is quite well suited for this purpose. We also give
some practical evidence. Nevertheless, further investigationisnecessary in order tofind
out yet more efficient calculi and to incorporate nonmonotonic extensions.
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