SMTtoTPTP —
A Converter for Theorem Proving Formats

Peter Baumgartner

NICTA* and Australian National University, Canberra, Australia

Abstract. SMTtoTPTP is a converter from proof problems written in
the SMT-LIB format into the TPTP TFF format. The SMT-LIB for-
mat supports polymorphic sorts and frequently used theories like those
of uninterpreted function symbols, arrays, and certain forms of arith-
metics. The TPTP TFF format is an extension of the TPTP format
widely used by automated theorem provers, adding a sort system and
arithmetic theories. SMTtoTPTP is useful for, e.g., making SMT-LIB
problems available to TPTP system developers, and for making TPTP
systems available to users of SMT solvers. This paper describes how the
conversion works, its functionality and limitations.

1 Introduction

In the automating reasoning community two major syntax formats have emerged
for specifying logical proof problems. They are part of the larger infrastructure
initiatives SMT-LIB [1] and TPTP [5], respectively. Both formats are under ac-
tive development and are widely used for problem libraries and in competitions;
both serve as defacto standards in the sub-communities of SMT solving and
first-order logic theorem proving, respectively.

Over the last years, the theorem provers developed in the mentioned com-
munities have become closer in functionality. SMT solvers increasingly provide
support for quantified first-order logic formulas, and first-order logic theorem
provers increasingly support reasoning modulo built-in theories, such as inte-
ger or rational arithmetic. Likewise, the major respective problem libraries have
grown (also) by overlapping problems, i. e., problems that could be fed into both
an SMT solver and a first-order theorem prover. This convergence is also reflected
in recent CASC competitions. Since 2011, CASC features a competition cate-
gory comprised of typed first-order logic problems modulo arithmetics (TFA),
in which both SMT solvers and first-order logic theorem provers participate.

With these considerations it makes sense to provide a converter between
problem formats. In this paper I focus on the more difficult direction, from the
SMT-LIB format to the appropriate TPTP format, the typed first-order TPTP
format with arithmetics, TFF [6]. This converter, SMTtoTPTP, is meant to be

* NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

useful for, e. g., making the existing large SMT-LIB problem libraries available to
(developers of) TPTP systems, and, perhaps more importantly, making TPTP
systems available to users used to SMT-LIB. SMTtoTPTP may also help embed
TPTP systems as sub-systems in other systems that use SMT-LIB as an interface
language, e.g., interactive proof assistants. However, the SMTtoTPTP support
for that needs to remain partial as some SMT-LIB commands, e.g. those related
to proof management, are not translatable into TPTP.

On notation: the SMT-LIB documents speak about sorts whereas in the
TPTP world one has types. I use both terms below in their corresponding con-
texts, which is the only difference for the purpose of this paper.

An operator is either a function or a predicate symbol. Unlike the TFF
format, SMT-LIB does not formally distinguish between the boolean and other
sorts. Hence, all SMT-LIB operators are function symbols.

2 SMT-LIB and TFF

This section provides brief overviews of the SMT-LIB and the TFF formats as
far as is needed to make this paper self-contained. See [4,1] and [7,6], respectively,
for comprehensive documentation.

SMT-LIB. SMT-LIB provides a language for writing terms and formulas in a
sorted (i.e., typed) version of first-order logic, a language for specifying back-
ground theories, and a language for specifying logics, i.e., suitably restricted
classes of formulas to be checked for satisfiability with respect to a specific back-
ground theory. SMT-LIB also provides a command language for interacting with
SMT solvers.

All SMT-LIB languages come in a Lisp-like syntax. Assuming a fixed library
of logics, an SMT-LIB user writes a script, i.e., a sequence of commands to
specify one or more proof problems for a given logic. A script typically contains
commands for sort declarations and definitions, as well as function symbol decla-
rations and definitions. Furthermore it will contain commands for asserting the
formulas that make up the proof problem, assertions for short.

Sort declarations introduce new sorts by stating their name and arity, e.g.,
(Pair 2).Sort definitions introduce new sorts in terms of already defined /declared
ones. They can be parametric in sort parameters (see Example 2.1 below). Re-
cursive definitions are disallowed.

Function symbol declarations introduce new function symbols together with
their argument and result sorts given as expressions over the declared and de-
fined sorts. Again, recursive definitions are disallowed. The semantics of function
definitions is given by expansion, i.e., by in lining the definitions everywhere in
the script until only declared function symbols remain.

The semantics of (sort parametric) sort definitions is given by expansion, too.
Indeed, the SMT-LIB type system is not polymorphic. Polymorphism is not a
part of the type system, it is a meta-level concept. After expansion of definitions,
annotations cannot contain sort parameters, and any (well-sorted) subterm has
a sort constructed of declared sorts only.

Example 2.1. The following script demonstrates the SMT-LIB type system:

1 (set-logic UFLIA)

2 (declare-sort Pair 2)

3 (define-sort Int-Pair (S) (Pair Int S))

4 (declare-sort Color 0)

5 (declare-fun red () Color)

6 (declare-fun get-int ((Int-Pair Color)) Int)

7 (declare-fun int-color-pair (Int Color) (Pair Int Color))
s (assert (forall ((i Int) (c Color))

9 (= (get-int (int-color-pair i c¢)) 1i)))

10 (check-sat)

Here, Pair is declared as a 2-ary sort and Int-Pair is a defined sort with sort
parameter S. In line 4, Color is declared as a 0-ary sort. Lines 5-7 declare
some function symbols. Notice the use of Int-Pair in line 6 in the expression
(Int-Pair Color), which expands into the sort (Pair Int Color). Lines 8-9
contain an assertion, its formula is obvious. The (check-sat) command in line
9 instructs the SMT-LIB prover to check the assertions for satisfiability. ad

Introducing overloaded function symbols in scripts is not supported. How-
ever, theories can declare ad-hoc polymorphic function symbols. Indeed, com-
mon SMT-LIB theories make heavy use of this. For example, equality (=), in the
core theory, is of rank S x S — Bool for any sort S. The theory of arrays de-
clares a binary sort constructor Array and select and store operators with ranks
Array(S,T) x S +— T and Array(S,T) x S x T+ Array(S,T), respectively, for
any sorts S and T

TFF. The TFF format provides a useful extension of the untyped TPTP first-
order logic format by a simple many-sorted type scheme. Types are interpreted
by non-empty, pairwise disjoint, domains.

The TFF format described in [6] is just the core TFF0 of a polymorphic
typed first-order format TFF1 [2]. The paper [0] also extends TFF by predefined
types and operators for integer, rational and real arithmetics, which is the target
language of SMTtoTPTP.!

The TFF format supports declaring (0-ary) types and function and predicate
symbols over predefined and these declared types. A TFF file typically contains
such declarations along with axioms and conjecture formulas over the input
signature given by the declarations. In a refutational setting, conjectures need
to be negated before conjoining them with the axioms.

The predefined types are the mentioned arithmetic ones and a type of indi-
viduals. Equality and the arithmetic operators are ad-hoc polymorphic over the
types. All user-defined, i.e, uninterpreted, operators are monomorphic. In the

! The correct short name of this language is “TFA”, TFF with arithmetics. However,
most of the features of the translation are arithmetics agnostic, and so I use “TFF”.

input formulas only the variables need explicit typing, which happens in quan-
tifications. Together with the signature information this is enough for checking
well-typedness.

Ezample 2.2. The following is a TFF specification corresponding to Example 2.1.
It was obtained by the SMTtoTPTP program.

1 %h Types:
2 tff(’Pair’, type, ’Pair[Int,Color]’: $tType).
3 tff(’Color’, type, ’Color’: $tType).

5 %% Declarations:

¢ tff(get_int, type, get_int: ’Pair[Int,Color]’ > $int).
7 tff(int_color_pair, type, int_color_pair:

8 ($int * ’Color’) > ’Pair[Int,Color]’).

10 %% Assertions:

11 %% (forall ((i Int) (c Color)) (= (get-int (int-color-pair i c¢)) i))
12 tff(formula, axiom,

13 (! [I:$int, C:’Color’] : (get_int(int_color_pair(I, C)) = I))).

A tff-triple consists of a name, a role, and a "formula", in this order. The roles
used by SMTtoTPTP are either type, for declaring types and operators with
their ranks, or axiom, for input formulas.

The TFF syntax reserves identifiers starting with capital letters for vari-
ables. Non-variable identifiers can always be written between pairs of ’-quotes.
The example above makes heavy use of that. Lines 2 and 3 declare the types
’Pair[Int,Color]’ and ’Color’, corresponding to the sorts (Pair Int Color)
and Color in Example 2.1. Notice there is no "sort" Int-Pair, as all occurrences
of Int-Pair-expressions have been removed by expansion. Lines 6 and 7 declare
the same function symbols as in Example 2.1, however with the sorts expanded.
Finally, the asserted formula in Example 2.1 has its counterpart in TFF-syntax
in lines 11-13 above. a

3 SMTtoTPTP Algorithm

A regular run of SMTtoTPTP has four stages.

Parsing. In the first stage the commands in the input file are parsed into ab-
stract syntax trees (ASTs), one per command. The parser has been conveniently
implemented with the Scala Standard Parser Combinator Library. The ASTs
for declarations, definitions and assertions are built over Scala classes (rather:
instances thereof) corresponding to syntactical SMT-LIB entities such as arith-
metic domain elements, constants and functional terms, let-terms, ite-terms,
quantifications, sort expressions, etc.

If the set logic includes the theory of arrays, or the user explicitly asks for
it, the following declarations are added to the ASTs:

1 (declare-sort Array 2)
2 (declare-parametric-fun (I E) select ((Array I E) I) E)
3 (declare-parametric-fun (I E) store ((Array I E) I E) (Array I E))

The declare-parametric-fun command declares parametric function symbols
in the obvious way. It is meant to be useful in context with other theories as
well. See Section 5 below for an example. In particular it provides type-checking
for parametric operators for free. The declare-parametric-fun command is
not in the SMT-LIB. This is not a problem, however, because it is hidden from
the user.

Semantic Analysis. In the second stage the ASTs are analyzed semantically.
This requires decomposing the commands into their constituents, which can be
programmed in a convenient way thanks to Scala’s pattern matching facilities.
The main result of the analysis are various tables holding signature and other
information about declared and defined function symbols and sorts. With these
tables, the sort of any subterm in an assertion can be computed by expansion, as
explained in Section 2. This is important for type checking and in the subsequent
stages.

Transformations. In the third stage several transformations on the assertions
are carried out, all on the AST level.

Removal of defined functions. All function definitions are transformed into ad-
ditional assertions. This is done with a universally quantified equation between
the function symbol applied to the specified variables and its body. SMTtoTPTP
thus does not expand function definitions. The rationale is to gain flexibility by
letting a theorem prover later decide whether to expand or not.?

Let-terms. Both the SMT-LIB and TFF formats feature “let” expressions. Un-
fortunately they are incompatible. An SMT-LIB let expression works much like
a binder for local variables as in functional programming languages. The TFF
let construct is used to locally define function or predicate symbols as syntac-
tic macros. SMTtoTPTP deals with this problem by transforming SMT-LIB let
expressions into existentially quantified formulas over the bound variables. This
requires lifting these bindings from the term level to the formula level, thereby
avoiding unintended name capturing. More precisely, the transformation works
as follows.

Let ¢[(let ((z t)) s)] be an SMT-LIB Bool-sorted term, where ¢ is the
term bound to the variable in s (z must not be free in t). For the purpose
of the transformation such a term ¢ must always exist, as let-terms occur in
assertions only, which are always Bool-sorted. Assume that ¢ is the smallest
Bool-sorted subformula in an assertion containing a let term, written as above,
and that the let-term is an outermost one. Let o(t) denote the sort of term ¢.

2 Defined functions could also be removed by translation into TFF let-terms, but
this is clumsy as it may lead to individual let-terms in every axiom and conjecture.
Moreover, let-terms are not supported by many TFF systems.

If o(t) is not Bool then the let-term is removed by existential quantification.
More precisely, using SMT-LIB syntax, ¢ is replaced by the formula (exists
((xp o(t)) (and (= zp t) (¢[sp])))), where p is a renaming substitution that
maps x to a fresh variable. The renaming is needed to avoid unintended variable
capturing when lifting = outwards, as usual.

If o(¢) is Bool then the above transformation is not possible, as TFF does not
support quantification over boolean variables. In this case SMTtoTPTP removes
the let-term by substituting « by ¢ in s.

The above step is repeated until all let-terms are removed. The actual im-
plementation is more efficient and requires one subterm traversal per assertion
only.

Alternatively to existential quantification, all let-terms could be handled by
substitution. SMTtoTPTP does not do that, however, because it may lead to
exponentially larger terms.

Ite-terms. Both the SMT-LIB and TFF formats feature “if-then-else” constructs
(ite). Fortunately, they are compatible. SMTtoTPTP offers the option to either
keep ite-expressions in place or to transform them away. The latter is useful be-
cause not all TFF systems support ite. For example, the expression (< (+ (ite
(< 1 2) 3 4) 5) 6) is transformed into (and (=> (< 1 2) (< (+ 3 5) 6))
(=> (not (< 12)) (< (+ 45) 6))).

Array azioms. The TFF format has no predefined semantics for arrays. Hence,
array axioms need to be generated as needed. This is done by sort-instantiating
array axiom templates, for each array-sorted term occurring in the assertions.

Example 3.1. Assume an SMT-LIB specification

1 (set-logic AUFLIA)

2 (declare-sort Color 0)

3 (declare-fun red () Color)

4 (declare-fun a () (Array Int Color))
5 (declare-fun b () (Array Int Int))

¢ (assert (= (select a 0) red))

The sole array-sorted term in assertions here is a, which has the sort (Array
Int Color). The following axioms are added:

1 (forall ((a (Array Int Color)) (i Int) (e Color))

2 (= (select (store a i e) i) e))

3 (forall ((a (Array Int Color)) (i Int) (j Int) (e Color))

4 (=> (distinct i j) (= (select (store a i e) j) (select a j))))
5 (forall ((a (Array Int Color)) (b (Array Int Color)))

6 (=> (forall ((i Int)) (= (select a i) (select b i))) (= a b)))

These are standard axioms for arrays with extensional equality, sorted as re-
quired. O

TFF Generation. In the fourth stage the TFF output is generated. It starts
with TFF type declarations tff (name™, type, o™F: $tType) for every sort
o of every subterm in every assertion. The identifier ¢TF¥F is a TFF identifier
for the SMT-LIB sort o. The TFF type identifier ¢*FF is merely a print repre-
sentation of the sort o, and nameTFF is a prefix of that. As special cases, the
predefined arithmetic SMT-LIB sorts Int and Real are taken as the TFF types
$int and $real, respectively.

Next, a TFF type declaration consisting of the name and rank is emitted for
every operator occurring in the assertions. As explained in Section 2, SMT-LIB
theories may declare polymorphic function symbols. The equality and arithmetic
function symbols pose no problems as these have direct counterparts in TFF.
Array expressions, however, involving the polymorphic select and store operators
need monomorphization and axioms for each monomorphized operator.

Monomorphization is done by including the operators rank in the name of
the TFF operator. More precisely, if (f t; --- t,) is an application of the
polymorphic operator f to terms t¢1,...,t,, then SMTtoTPTP synthesizes an
identifier, conveniently a valid TFF one, fT5F = > f: (o(t))*- - - %0 (t,)>0p11) 7 .
The sort 0,41 is the result sort of the term (f ¢; --- t,) which is obtained
by applying the declaration of f to o(t1),...,0(t,). The rank of the operator
fTF¥ to be declared in the generated TFF hence is o™ x -« xTFF oy o THE,
Notice the identifier fTFF contains enough information to distinguish it from
other applications of f with different sorts.

A special case occurs when the result sort in the declaration of f contains a
free sort parameter. To avoid an error, explicit coercion is needed. For example,
the “empty list of integers” could correctly be expressed as the term (as empty
(List Int)), cf. Section 5. Monomorphization respects such coercions.

Finally, each assertion is written out as a TFF axiom. The axioms are ob-
tained by recursively traversing the assertions’ subterms and converting them
into TFF terms and formulas. By and large this is straightforward translation
from one syntax into another. Some comments:

— The SMT-LIB and TFF syntax of, e.g., operators and variables are rather
different. SMTtoTPTP tries to re-use the given SMT-LIB identifiers without
or only little modifications in the generated TFF. For example, an SMT-LIB
variable can often be turned into a TFF variable by capitalizing the first
letter.

— Certain SMT-LIB operators are varyadic and carry attributes like chainable,
associative or pairwise. These attributes say how to translate n-ary terms
over these operators into binary ones. For example, the equality operator is

chainable: an expression (= ¢; --- t,) is first expanded into the conjunc-
tion (and (= t; t3) -+ (= t,—1 t,) before converted to TFF.

An exception is the distinct operator, which has a pairwise attribute. An
expression (distinct t; --- t,) is optionally directly translated into the

TFF counterpart using the $distinct predicate symbol. However, $distinct
can be used only as a fact, not under any connective. If not at the top-level

of an assertion, the expression is translated into the conjunction of the ex-
pressions (not (= t; t;)), foralld,j=1,...,n with ¢ # j.

— The array operators select and store are monomorphized.

— SMT-LIB equations between Bool-sorted terms are turned into bi-implications.

— set-option commands carry over their argument into a TFF comment. For
example, (set-option :answer 42) translates into %$:answer 42. Some
options control the behaviour of SMTtoTPTP, e.g., whether to expand ite-
terms or not.

Ezample 3.2. Example 3.1 above is converted into the following TFF. The last
two array axioms are omitted for space reasons.

1 %k Types:
2 tff(’Color’, type, ’Color’: $tType).
3 tff(’Array’, type, ’Array[Int,Color]’: $tType).

5 %% Declarations:

¢ tff(red, type, red: ’Color’).

7 tff(a, type, a: ’Array[Int,Color]’).

s tff(select, type, ’select:(Array[Int,Color]*Int)>Color’:

9 (’Array[Int,Color]’ * $int) > ’Color’).
10 tff(store, type, ’store:(Array[Int,Color]*Int*Color)>Array[Int,Color]’:
1 (’Array[Int,Color]’ * $int * ’Color’) > ’Array[Int,Color]’).

13 %% Assertions:
14 %h (= (select a 0) red)
15 tff(formula, axiom,

16 (’select: (Array[Int,Color] *Int)>Color’(a, 0) = red)).

17 %k (forall ((a (Array Int Color)) (i Int) (e Color))

18 hh (= (select (store a i e) i) e))

19 tff(formula, axiom,

20 (' [A:’Array[Int,Color]’, I:$int, E:’Color’]

21 (’select: (Array[Int,Color]*Int)>Color’ (

22 ’store: (Array[Int,Color] *Int*Color)>Array[Int,Color]’(
23 A, I, E), I) = E))).

4 Limitations

SMTtoTPTP is meant to support a comprehensive subset of the SMT-LIB lan-
guage and the logics and theories in [1]. Table 1 lists the SMT-LIB language
elements for scripts and their status wrt. SMTtoTPTP.

Some of the unsupported language elements in Table 1 will be added later,
e.g., indexed identifiers such as (_ a 5). Other elements are intrinsicly problem-
atic, in particular the push and pop commands. These commands are used for
managing a stack of asserted formulas (typically) for incremental satisfiability

checks. This is not supported by the TPTP language, and hence SMTtoTPTP
throws an error on encountering a push or pop command. All other commands
(e.g., get-proof) are untranslatable and can be ignored.

Logics

Supported: [QF_][A][UF][(L|N)(TIA|RA|IRA)] Unsupported: bitvectors,
difference logic

Commands

Supported: set-logic, declare-sort, define-sort, Unsupported: push, pop

declare-fun, define-fun, assert, exit All other commands ignored

Tokens

Supported: numeral, decimal, symbol Unsupported: hexadecimal,

binary, string
Other Elements
Unsupported: indexed identifiers, logic declarations, theory declarations

Table 1. Supported SMT-LIB script language elements.

SMTtoTPTP supports a fixed set of logics. The regular expression in Table 1
denotes their SMT-LIB names. For example, QF_AUFLIRA means “quantifier-free
logic over the combined theories of arrays, uninterpreted function symbols, and
mixed linear and real arithmetics”. Notice that every logic includes the core
theory, which offers a comprehensive set of boolean-sorted operators, including
equality and if-then-else.

SMTtoTPTP does not deal with SMT-LIB theory and logic declarations. As
their semantics is described informally, SMTtoTPTP can not make much use of
them. However, as said, the core theory and the theories of arrays, integer and
real arithmetic are built-in.

5 Extensions

Inspired by the Z3 SMT solver [3], SMTtoTPTP extends the SMT-LIB standard
by datatype definitions. Datatypes can be used to define enumeration types,
tuples, records, and recursive data structures like lists, to name a few. The
syntax of datatype definitions involves sort parameters and the constructors and
destructors for elements of the datatype. Here are some examples:

1 (declare-datatypes () ((Color red green blue)))
2 (declare-datatypes (S T) ((Pair (mk-pair (first S) (second T)))))
3 (declare-datatypes (T) ((List nil (insert (head T) (tail (List T))))))

Line 1 defines an enumeration datatype with three constructors, as stated. Line
2 defines pairs over the product type SxT, where S and T are type parameters.
Line 3 defines the usual polymorphic list datatype, where nil and insert are
constructors, and head and tail are the destructors for the insert-case.

The conversion to TFF of the list datatype with a (List Int) sort instance,
for example, is equivalent to the conversion of the following SMT-LIB commands:

1 (declare-sort List 1)

2 (declare-parametric-fun (T) nil () (List T))

3 (declare-parametric-fun (T) insert (T (List T)) (List T))

4 (declare-parametric-fun (T) head ((List T)) T)

5 (declare-parametric-fun (T) tail ((List T)) (List T))

6 (assert (forall ((L (List Int)))

7 (or (= L (as nil (List Int))) (= L (insert (head L) (tail L))))))
s (assert (forall ((N Int) (L (List Int))) (= (head (insert N L)) N)))
9 (assert (forall ((N Int) (L (List Int))) (= (tail (insert N L)) L)))
10 (assert (forall ((N Int) (L (List Int)))

11 (not (= (as nil (List Int)) (insert N L)))))

SMTtoTPTP does not do type inference. All occurrences of type-ambiguous
constructor terms must be explicitly cast to the proper sort. In the list example,
(only) nil terms must be explicitly cast, as in (as nil (List Int)).

The theory of arrays has been extended with constant arrays, i.e., arrays that
have the same element everywhere.

6 Other Features

SMTtoTPTP is available at https://bitbucket.org/pebal23/smttotptp un-
der a GNU General Public License. The distribution includes the Scala® source
code and a ready-to-run Java jar-file. SMTtoTPTP can also be used as a library
for parsing SMT-LIB files into an abstract syntax tree.

References

1. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In
A. Gupta and D. Kroening, eds., SMT Workshop, 2010.

2. J. C. Blanchette and A. Paskevich. TFF1: The TPTP Typed First-Order Form
With Rank-1 Polymorphism. In M. P. Bonacina, ed., CADE-24, LNCS 7898, pp
414-420. Springer, 2013.

3. L. M. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In C. R. Ramakr-
ishnan and J. Rehof, eds., TACAS, LNCS 4963, pp 337-340. Springer, 2008.

4. SMT-LIB, The Satisfiability Modulo Theories Library. http://smt-1ib.org/.

5. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337-362, 2009.

6. G. Sutcliffe, S. Schulz, K. Claessen, and P. Baumgartner. The TPTP Typed First-
order Form with Arithmetic. In N. Bjgrner and A. Voronkov, eds., LPAR-18, LNCS
7180. Springer, 2012.

7. The TPTP Problem Library for Automated Theorem Proving. http://www.cs.
miami.edu/~tptp/.

3 http://www.scala-lang.org

10

https://bitbucket.org/peba123/smttotptp
http://smt-lib.org/
http://www.cs.miami.edu/~tptp/
http://www.cs.miami.edu/~tptp/
http://www.scala-lang.org

	SMTtoTPTP – A Converter for Theorem Proving Formats

