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Abstract

The Model Elimination (ME) calculus is a refutational complete, goal-oriented
calculus for first-order clause logic. In this paper, we introduce a new variant
called disjunctive positive ME (DPME); it improves on Plaisted’s positive re-
finement of ME in that reduction steps are allowed only with positive literals
stemming from disjunctive clauses.

DPME is motivated by its application to various kinds of subsumption dele-
tion: in order to apply subsumption deletion in ME equally successful as in
Resolution, it is crucial to employ a version of ME which minimizes ancestor
context (i.e. the necessary A-literals to find a refutation). DPME meets this
demand. We describe several variants of ME with subsumption, with the most
important ones being MFE with backward and forward subsumption and the T*-
Context Check. We relate their pruning power, also taking into consideration the
well-known regularity restriction.

All proofs are supplied. The practicability of our approach is demonstrated
with practical experiments.

*The first author is supported by the DFG within the “Schwerpunktprogramm Deduktion” under
grant FU 263/2-2



1 Introduction

The last four decades of research in the field of Automated Deduction have brought
forth a couple of exceptionally successful proof systems for first-order logic. In many
cases, their success is based on the high inference rates which are achieved using
modern computers. Often one can obtain thousands (even millions [van de Riet,
1993]) of true first-order inferences per second. In most cases, however, the problem
is not speed but control. While searching for a proof of a theorem, a machine is
mostly unable, unlike human beings, to distinguish between relevant and irrelevant
information. Since the amount of irrelevant information naturally overwhelms the
relevant part, it is impossible, even with the highest inference rates, to examine the
whole search space. Therefore, one of the main goals in the field of Automated
Deduction is to augment calculi with the possibility to reduce search spaces as much
as possible.

Basically, a calculus has to cope with two different kinds of redundancies. First,
information can be redundant because of its logical form such that it can be removed
without loss of logical information. Second, information can be redundant because
it cannot contribute to a successful derivation. Such information can be removed
without affecting the satisfiability of the respective formula.

In this paper, we study the problem to avoid logical redundancies during Model
Elimination (ME) deductions (e.g. see [Loveland, 1986, Letz et al, 1992, Letz et
al., 1994, Baumgartner and Furbach, 1994a] for descriptions of ME calculi). A lot of
work done in the field of Automated Deduction to avoid logical redundancies has been
carried out in the context of resolution. In resolution based systems this kind of re-
dundancy is traditionally handled by mechanisms which remove tautological and sub-
sumed clauses (e.g. see [Chang and Lee, 1973, Loveland, 1978]). One distinguishes two
basic kinds of subsumption: Forward-subsumption discards newly generated clauses
which are subsumed by already existing clauses whereas backward-subsumption re-
moves old clauses which are subsumed by new ones. In [Overbeek and Wos, 1989] it
was shown that although subsumption tests can be rather expensive, these mecha-
nisms are very effective to prevent logical redundancy.

Unfortunately, such reduction mechanisms are not applicable in a straightforward
manner in model-elimination-like calculi. This is because ME, which — like PROLOG
— performs a top-down backward-chaining proof search, does not enumerate derivable
clauses but tries to find a proof by enumerating derivations. Needed are therefore
mechanisms which prevent logically redundant derivations. Within this context, one
has to distinguish two basic approaches. The first (and more investigated) one is
based on the fact that many subderivations are similar and therefore sometimes in-
terchangeable. Mechanisms which make use of this fact are factorization [Fronhdéfer,
1985, lemma handling [Fronhéfer and Caferra, 1988], and caching [Astrachan and
Stickel, 1992].

In what follows we shall pursue the second basic approach which aims at avoiding
a derivation if the possibility to extend it to a refutation would imply the same
possibility for a different and (hopefully) smaller derivation.

There already exist some techniques following this general approach. Popular ones
are the so-called Identical Ancestor Check and its generalization, regularity, which are



successfully used in several theorem provers (e.g. see [Stickel, 1988, Letz et al., 1992]).
These refinements prune a derivation if some literal is identical to one of its ances-
tors. Other restrictions on ME to prevent redundant derivations are cut-freeness and
subsumption-freeness [Letz, 1993] (which can be seen as restricted versions of tau-
tology and subsumption deletion in resolution based systems). The first one ensures
that tableaux do not contain tautological tableau clauses. The latter one demands
that no tableau clause is properly subsumed by some clause of the input set.

A further possibility to avoid redundant derivations, which is mostly neglected
in connection with top-down backward-chaining calculi, is the use of subsumption.
As shown in [Besnard, 1989, Bol et al., 1991], SLD-resolution, which can be seen as
a restricted variant of ME, can be combined with a technique which compares (via
subsumption) sets of open goals.! Whenever the set of open goals after applying a
sequence of inference steps di, ..., d, is subsumed by some former set of open goals
(that is the set of open goals after some d; with j < n), the last inference step, dy,
can be withdrawn.

Unfortunately, a straightforward application of this kind of forward-subsumption
to ME only preserves completeness in case Horn clause sets are considered. Roughly
speaking, this is due to the fact that ancestor goals which may become important to
perform reduction steps, are ignored. Hence, a first step to retain completeness would
be to compare entire ME tableaux. However, it it becomes clear quite immediately
that without further refinements such a proceeding would be (rather) useless: A
ME tableau T, generated after a a sequence D = dy, ..., d, of inference steps usually
contains more ancestor goals than the tableau T; generated by dy,..., d; where j < n.
Since every ancestor of an open goal is a potential candidate for the application of a
reduction step, one cannot prune D unless, roughly speaking, each of the “additional”
ancestors in T', also occur in T} in the corresponding tableau branches. This, however,
only happens very rarely to be the case.

In this paper, we propose two approaches to overcome this problem. Both of
them provide criteria which allow to identify ancestor goals (i.e. positive A-literals
in Loveland’s terminology) that can be safely ignored as potential candidates for the
application of reduction steps. Hence, in case these criteria tell us that, for instance,
none of the ancestors in T, is necessary for the application of reduction steps, we can
safely prune D if the set of open goals of T; subsumes the set of open goals of T,.

The first and more important approach is based on the positive refinement for
ME. This refinement restricts reduction steps to those that use a positive ancestor
goal [Plaisted, 1990] and therefore allows to ignore all negative ancestors. However,
one can do better. In Section 3, we prove that it is additionally possible (without
loosing completeness) to ignore positive ancestors which originate from Horn clauses.
Thus, the sole ancestors which have to be taken into account by a subsumption-based
pruning technique are non-negated literals which stem from non-Horn clauses (called
disjunctive clauses).

The second approach is to predetermine which ancestors of a goal G cannot be used
for reduction steps in order to solve G. This is achieved by the concept of reachability
originally proposed in [Neugebauer, 1992] (in a different context). Roughly speaking

!Note, that in terms of resolution, the set of open goals is in fact a resolvent.



the idea is as follows: in a preprocessing step it is determined which literals are
reachable from @G, i.e. which literals (modulo additional substitutions) may occur as
subgoals of G. Then, one can safely ignore any ancestor A of G in case no literal,
which can be made complementary to A (via unification), is reachable from G.

With these two approaches at hand, we define several pruning techniques based
on subsumption for ME. Besides a generalized version of the aforementioned variant
of forward-subsumption we also introduce backward-subsumption, which, similarly to
the concept of backward-subsumption in resolution based calculi, prunes a derivation
D, if it is subsumed (in the above sense) by a derivation Dy which is generated after
D; in the course of the deduction process (Section 4).

Furthermore, we propose a variant of forward subsumption which only compares
one open goal with one of its ancestor goals, rather than comparing sets of literals
(“T-Context Check”, Section 5). Roughly speaking, the idea is to prune a deriva-
tion if some open goal is an instance of one of its ancestor goals. Clearly, such a
proceeding only preserves completeness if variable dependencies with other goals are
taken into account. The resulting pruning technique is (in case Horn clause sets are
considered) a true generalization of the loop check proposed in [Besnard, 1989] and of
the aforementioned identical ancestor check. Further, we shall illustrate in Section 4
that it does not suffer from one main problem of other subsumption-based techniques,
namely a dependence of the employed search strategy.

Finally, it is worth emphasizing that the techniques proposed in this paper not
only allow to reduce the search space in order to find proofs more quickly. Additionally
they make it possible to detect that formulas cannot be proven. This is particularly
interesting for applications where false conjectures or incorrect theorems have to be
identified. Note, that many other techniques, for instance factorization or the use of
lemmata, do not contribute to this problem.

The paper is structured as follows: In Section 2 we provide some basic definitions to
make this paper self-contained. Section 3 is devoted to the introduction of the positive
refinement and its generalization, the so-called disjunctive positive refinement. There,
the completeness of ME in combination with the disjunctive positive refinement is
proved. In Section 4 and Section 5 we introduce the aforementioned subsumption-
based pruning techniques. We discuss their relation as well as their connection to other
known refinements of ME. In Section 6 we illustrate the usefulness of our techniques
by presenting some experimental data. In Section 7 and Section 8 we discuss our
results and point out some future research perspectives. Figure 10 in Section 7 is a
graphical summary of our results; it might be a good idea to occasionally have a look
at it for orientation during reading.

2 Preliminaries

In what follows, we assume the reader to be familiar with the basic concepts of
first-order logic. A clause is a multiset of literals. As usual, the variables occurring in
clauses are considered implicitly as being universally quantified, a clause is considered
logically as a disjunction of literals, and a clause set is taken as a conjunction of
clauses. A clause is Horn iff it contains at most one positive literal. Let L% denote



the complement of a literal L. Two literals L and K are complementary if L% = K.
The set of variables occurring in an expression E is denoted by var(E).

Throughout this paper, we consider a variant of ME which uses so-called ME
tableaux as basic proof objects (e.g. see [Letz et al., 1992, Letz et al., 1994]), rather
than ME chains [Loveland, 1986]. An alternate, and equally usable approach would
have been to follow [Baumgartner and Furbach, 1993] and view ME as a transforma-
tion on path sets.

Definition 2.1 (Literal tree) A literal tree is a pair (¢, ) consisting of an ordered tree
t and a labeling function A assigning literals or multisets of literals to the non-root
nodes of ¢. The successor sequence of a node N in an ordered tree ¢ is the sequence
of nodes with immediate predecessor N, in the order given by ¢t.  (End Definition)

Definition 2.2 (Tableau) A (clausal) tableau T of a set of clauses S is a literal tree
(t,A) in which, for every successor sequence Np,...,N, in ¢ labeled with literals
Ki,..., K,, respectively, there is a substitution o and a clause {L1,...,L,} € S with
K; = Lio forevery 1 < i < mn. {Ki,..., K} is called a tableau clause and the elements
of a tableau clause are called tableau literals.

A tableau is called model elimination tableauw (ME tableau) if each inner node N
labeled with a literal L has a leaf node N’ among its immediate successor nodes which
is labeled with the literal L¢. (End Definition)

Let T6 denote the tableau which is obtained from a tableau T by application of
the substitution ¢ to all literals of 7. Furthermore, given a tableau T containing
some node N, we often denote the literal attached to N in T by L(N, T).

Definition 2.3 (Branch, Open and Closed Tableau, Open Goal, Frontier) A branch of
a tableau T is a sequence Ni,..., N, of nodes in T such that Nj is the root of T', N;
is the immediate predecessor of N;11 for 1 < ¢ < n, and N, is a leaf of T. A branch is
complementary if the labels of Ny,..., N, contain some literal L and its complement
L%, In order to distinguish the simple presence of a complementary branch and the
detection of this fact, we allow to label branches as either open or closed. A tableau
is closed if each of its branches is closed, otherwise it is open. Let OB(T') denote the
set of open branches of T'.

Let b be an open branch of a ME tableau T. If L is the label of the leaf node of
b, then L is called an open goal of T. Further, the set of leaf nodes in T which are
labeled with open goals is called the frontier of T. (End Definition)

The motivation to distinguish between complementary and closed tableau branches
will be given after the ME calculus has been defined. Given a branch Ni,..., N, we
sometimes say that N; dominates N; if ¢ < j.

Theorem 2.4 ([Letz, 1993]) Let S be clause set. S is unsatisfiable iff there exists a
closed ME tableau of S.

Based on the above definitions we now introduce the inference steps of ME. Their
purpose is to allow for systematical construction of ME tableaux. Throughout the
following definitions, let S be a set of input clauses.



Definition 2.5 (Initialization step) Let N be the root of a one-node tree. Select a new
variant {Ly,..., L, } of a clause C € S, attach n new successor nodes to N, and label
them with Lq,..., L,, respectively. C is called top-clause. (End Definition)

Definition 2.6 (Extension step) Select a leaf node N of an open branch labeled with
literal L. Let C' = {Ly,...,Ly,} be a new variant of a clause C' € S such that there
exists a MGU o and a literal L; € C' with L% = L;o. Then attach n new successor
nodes Ny,..., N, to N, label them with Ly,..., L,, respectively, and apply o to all
tableau literals. Finally, the new branch with leaf node N; is marked as closed.

We call N; an eztension node, and each element of {Ny,..., N} — {N;} a non-
extension node. A literal attached to an extension node is called extension literal,
otherwise non-extension literal. (End Definition)

Definition 2.7 (Reduction step) Select a leaf node N’ of an open branch b labeled
with literal L'. If there is a dominating node N on b labeled with literal L such that

there exists a MGU o with L'c = L%0, then apply o to all tableau literals and mark
b as closed. (End Definition)

Note that as an immediate consequence of these definitions we have that a branch is
closed only if it is complementary (but not necessarily vice versa).

Definition 2.8 (Model Elimination) A sequence of T1,..., T, of ME tableaux is called
a ME derivation for a clause set S (called the set of input clauses) if Ty is obtained
by an initialization step, and for 1 < 7 < n, T; is obtained either by an initialization
step, or by one single application of a reduction step or an extension step to some
node in T; 1. Furthermore, each clause used in an extension step has to be a variant
of an element of S. A ME derivation is called a ME refutation if it generates a closed
tableau.

It turns out to be practical to confuse a derivation, i.e. a sequence of tableaux,
with the process generating it. We will thus write di, ..., d, instead of T1,..., Ty,
where the d;s shall denote the used instances of the respective inference rules to obtain
the T;s.

Let L be an open goal attached to a node N in a ME tableau T. A ME sub-
derivation D for N (or L) is a sequence of derivation steps where the first element of
D selects N and each further element selects a descendant of N. D is called a ME
subrefutation if after applying D to T, each branch containing N is closed.

We simply say “(sub)derivation” instead of “ME (sub)derivation” and “(sub)refu-
tation” instead of “ME (sub)refutation”.

A derivation D is called unrestricted if the substitution used to apply the elements
of D need not to be MGUs. (End Definition)

Now we can motivate the explicit closing of a branch: firstly, it is natural in view of a
proof procedure to make the detection of a complementary branch explicit; secondly,
it facilitates the definition of the disjunctive positive variant of ME below; thirdly,
(a technical motivation) the lifting of derivations from the ground level to the gen-
eral level is less complicated, because otherwise reduction steps at the general level
become necessary which do not have a counterpart at the ground level; fourthly, if



the distinction were not made, it would be mandatory to check the selected branch
for complementarity because a complementary (and hence closed) branch cannot be
selected for a derivation step.

Figure 1 contains a sample subrefutation for the node = A in tableau .

e ed e e

-A -B ~A B -A -B -A -B
d d d
A B A B A B
e e
-B A -B A

Figure 1: A subrefutation for —A. It is the shortest possible one for the input clause
set {7AV—-B,-AVB, AV-B, AV B}. Tableaux|2|and |3]|are obtained by extension
steps, and tableaux by a reduction step. All substitutions involved are the empty
substitution. The leaf literals of closed branches are underlined. Note that although
the branch with leaf A in tableau is complementary, it is not closed.

Theorem 2.9 ([Letz, 1993]) Given any ME tableau T of a clause set S there is a ME
derivation of S generating a tableau T' such that T is an instance of T'.2

Definition 2.10 ((Local) Computation Rule) A computation rule r is a mapping as-
signing to each open tableau T a leaf node N in T which is labeled with an open
goal. N is called the node selected by r. Alternatively, we often say that the literal
attached to N is selected by r.

A derivation via a computation rule v is a derivation di,..., d, such that for all
1 <4 < n, di41 is applied to the node selected by r in the tableau generated by
di,...,d;.

We call a computation rule r local if every derivation di, ds,... generated via r
satisfies the following property: whenever a node N is selected for the application of
a derivation step d;, then a brother node N’ of N is selected for a derivation step d;
with j > ¢ only in case each path containing N has been closed previously. Further,
we require local computation rules to be stable under substitution, that is a node is
selected in a tableau T by r if and only if it is also selected in T'o for every substitution
o. (End Definition)

For instance, a computation rule which always selects the “leftmost” open branch is
local. Likewise, always selecting a longest open branch is also local.

2A tableau T is an instance of another tableau 7' iff there is a substitution ¢ such T'o = T.



Proposition 2.11 ([Letz, 1993]) Any closed ME tableau for a set of ground clauses can
be constructed with any possible computation rule.

3 A Disjunctive Positive Refinement of Model Elimination

In this section we will introduce a disjunctive positive refinement of ME. This is a
strengthening of the positive refinement of [Plaisted, 1990]. Let us first motivate it
by its application for subsumption deletion.

When attempting to define a subsumption relation among ME tableaux, one soon
recognizes that the situation is more complicated than in resolution. In order to
explain this let us take the view of a ME tableau as a generalized clause, whose
literals are the tableau’s leaf literals (thus, we are talking about the “frontier” in the
sense of Def. 2.3). The ancestor literals then can be thought of as additional literal
lists attached to the clause literals (See [Baumgartner and Furbach, 1993] for a more
detailed treatment). Clauses as used in Resolution then can be seen as frontiers of
ME tableaux.

In order to adapt the notion of subsumption of resolution® to ME, a first idea is
to apply subsumption among tableaux frontiers to discard subsumed tableaux. This
approach is appealing because no ancestor context needs to be examined. Unfortu-
nately, completeness is lost then, because some ancestor context present only in the
discarded tableaux might be necessary to complete the proof. Thus, ancestor context
has to be obeyed for the subsumption check. On the other hand, if the whole an-
cestor context for every literal is obeyed, then chances are low to apply subsumption
successfully very often.

In order to overcome these problems we propose to use a variant of ME which
minimizes ancestor literals. In [Plaisted, 1990] D. Plaisted has shown that it suffices
for completeness to keep only positive literals as ancestors. Using this calculus a
larger subsumption relation can be defined, since only the positive ancestor literals
have to be obeyed for the subsumption test. We will further improve on this by
restricting ancestor context to those positive literals which stem from disjunctive
clauses®. For example, if a leaf literal A is extended with the clause B V —A then
both ordinary ME and Plaisted’s positive refinement will keep B in the ancestor
context (and thus allowing reduction steps to B) of the subrefutation of B, while in
our positive disjunctive refinement it will not be kept. These cases occur every time
when a definite clause is used with a “body” literal as entry point. In order to state
a positive example consider C'V B V —4; then after an extension step to A both C
and B have to be kept for reduction steps in the subrefutations of C' and B.

Since only these positive disjunctive literals are needed to get a complete calculus,
it is thus sufficient to restrict subsumption to obey these literals only. A detailed
treatment on this can be found in Section 4.

The possibility to restrict ancestor steps to disjunctive positive literals has been
observed independently from our work in [Mayr, 1995]. This result is obtained as

*Recall that a clause C' subsumes a clause D iff for some substitution o we have Co C D, where
a clause is a multiset of literals.
‘By a disjunctive clause we mean a clause which contains at least two positive literals



a by-product of the completeness proof there. That proof proceeds by transforming
a given restart ME [Baumgartner and Furbach, 1994a] refutation into an ordinary
ME refutation in such a way that the absence of reduction steps to non-disjunctive
positive literals carries over to the transformed proof (below we will give another,
more direct proof).

In the following we will formally introduce the positive disjunctive refinement and
prove its completeness.

3.1 Definition of the Disjunctive Positive Refinement

As indicated above, the information whether a certain literal stems from a positive
disjunctive clause is crucial. The next definition accounts for this formally.

Definition 3.1 A disjunctive clause is a clause which contains at least two positive
literals. The complementary class of Horn clauses is also called non-disjunctive clauses
in this context. We think of the positive literals attached to tableau nodes as being
labeled respectively: a tableau node N; being part of a successor sequence Ni,..., N,
is labeled as N, iff the attached tableau clause {Ki,..., K,} is disjunctive and K; is
a positive literal. The (type of a) node N7 is also classified as disjunctive positive.
As a notational convention, we will allow labeling the literal instead of the node.
Further we often call literals disjunctive positive, if they are attached to disjunctive
positive nodes. (End Definition)

Based on this we can define the disjunctive positive refinement:

Definition 3.2 (Disjunctive Positive Reduction Step and Disjunctive Positive Refine-
ment) In the following let N be an open goal node in a tableau 7. Suppose a
computation rule r as given.

We are going to define a restricted version of “reduction step” (cf. Definition 2.7):
if N’ is selected in T by r, and if there is a dominating positive disjunctive node N T of
N’ on the same branch, and if there exists a MGU o with L(N', T)o = L(N*, T)%0,
then apply o to all tableau literals. Such reduction steps are called disjunctive positive
reduction steps (via r).

The definition of extension step (Definition 2.6) via r remains unchanged. In
particular, the type of the extension node is understood to be disregarded, i.e. both
disjunctive positive and non-disjunctive positive nodes have to be extended. As in
the disjunctive positive reduction step, only extension of a selected node is allowed.

Finally, the notion of derivation (Definition 2.8) is adapted to incorporate these
changes, and we will speak of disjunctive positive derivations and refutations. The
calculus is termed disjunctive positive refinement of ME (DPME). (End Definition)

Figure 2 contains a sample refutation.

Note 3.3 (Extra literals) Since the non-disjunctive positive literals and the negative
literals of a branch cannot be subject to reduction steps, it would in a strict sense not
be necessary to store them along a refutation. Nevertheless it may be advisable to do
so. One reason is that occasionally allowing (ordinary) reduction steps helps to find
a refutation more quickly. For instance, in Figure 2, tableau the path ending in
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Figure 2: A subrefutation for —A. It is the shortest possible one for the input clause
set {7AV B, ~AV B, AV -B, AV B}. Tableau , and are obtained by
extension steps. Note that the node A in tableau |3 | cannot be closed by a disjunctive
positive reduction step, but the node —B in can. A similar subrefutation exists
for —B.

A could immediately be closed by an (ordinary) reduction step. Indeed, a respective
strategy for the restart version of ME (see Note 3.5 below) turned out to be essential
in practice [Baumgartner and Furbach, 1994b).

Another application concerns the possibility of regularity checks based upon the
extra literals. Although the disjunctive positive refinement is not compatible with full
regularity® ([Letz, 1993] has shown that regularity is incompatible even to Plaisted’s
positive refinement), it is possible to safely combine it with blockwise regularity.

(End Note)

Definition 3.4 (Blockwise Regularity, Disjunctive Regularity) Let b denote a branch
Ny, Ni,..., N, of a ME tableau. A block of b is a maximal sequence Nj, ..., N; with
1 <1 < j < n such that none of its elements is disjunctive positive.

A branch in a ME tableau is called blockwise regular if it contains no block with
two different nodes that are labeled with the same literal. A ME tableau is called
blockwise regular if all its open branches are blockwise regular.

Further, a branch is is called disjunctive regular if it does not contain two different
positive disjunctive nodes that are labeled with the same literals. A ME tableau is
called disjunctive reqular if all its open branches are disjunctive regular.

A ME deduction is called blockwise (and disjunctive) regular if each derivation
generating tableaux which violate blockwise (or disjunctive) regularity is pruned.

(End Definition)

5The regularity restriction forbids to generate tableaux containing a branch with two identical
literals on it.
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Note 3.5 (Restart Model Elimination) The completeness proof below is similar to that
of restart ME [Baumgartner and Furbach, 1994a]. This suggests to impose restrictions
defined for restart ME also on disjunctive positive ME. Indeed, blockwise regularity
holds for both calculi. However, while the analogue to disjunctive regularity — a
“global” regularity wrt. all positive literals in a branch — is compatible to restart
ME, things are more involved for disjunctive regularity. Since we did neither find a
respective proof nor a counterexample this problem must remain open.

Another feature of restart ME is the possibility to introduce a selection function. A
selection function is a function which maps a clause to one of its positive literals. Now,
in restart ME, extension steps can be restricted in such a way that only the selected
literal may be used as extension literal. It soon becomes obvious that for disjunctive
positive model elimination at least the negative literals of a clause must be selected as
well. But, unfortunately, even such relaxed selection functions cause incompleteness.
The canonical counterexample consists of the clauses {-A, AVB, -BVvV-C, AV C}
and a selection function which selects A in both positive clauses. Then no refutation
exists. (End Note)

3.2 Soundness and Completeness

While soundness of the disjunctive positive refinement follows immediately from the
soundness of ordinary ME, completeness is harder to establish.

Theorem 3.6 (Completeness) Let S be an unsatisfiable clause set and r be a compu-
tation rule. Then there exists a blockwise reqular disjunctive positive ME refutation
via T of S with some negative clause from S as top clause.

The proof of the theorem proceeds by assuming a set SY of ground instances
of clauses of § which is unsatisfiable. Such a set exists according to the Skolem-
Herbrand-Lowenheim theorem (see e.g. [Gallier, 1987] for a proof). Without loss
of generality we can think of §9 as being minimal unsatisfiable. Furthermore, SY
must contain a negative clause G (because otherwise SY would be satisfiable). Then
by ground completeness (which is to be proven below) a refutation on the ground
level with top clause G exists. However, this proof does not give us the claimed
independence of the computation rule. A respective result (for the ground case) was
proven explicitly in [Baumgartner, 1994]. This proof works for any set of inference
rules which work “locally”, which means that only one single branch is affected by
the inference rules. Since this applies in our case we can take the respective result for
our calculus as granted.

The lifting to the first-order case can be carried out by using standard techniques.
See [Baumgartner et al., 1995] for a lifting proof for ME. In particular, independence
of the computation rule is an easy consequence from the result for the ground level
(because if a refutation at the first-order level via some computation rule r would
not be possible, it would neither be possible at the ground level, where corresponding
nodes are selected).

Ground completeness reads as follows:

11



Lemma 3.7 (Ground Completeness) Let S be a minimal unsatisfiable ground clause
set, and G € §. Then there exists a blockwise regular disjunctive positive ME refuta-
tion of S with top clause G.
Informally, the proof is by splitting the non-Horn clause set into clause sets which
are “more Horn” and assuming by the induction hypotheses ME refutations of these
sets, and then assembling these refutations into the desired disjunctive positive ME
refutation. The base case in the induction proof deals with Horn clause sets.

Reduction steps come in when assembling back the splitted refutations. More
precisely, extension steps with split unit clauses have to be replaced by reduction
steps to the literals where the split occurred. While blockwise regularity carries over
from the regularity of the base case (Horn case), the disjunctive regularity is more
complicated. Since we did neither find a respective proof nor a counterexample this
problem must remain open.

As mentioned, the base case consists of Horn sets. The respective result reads as
follows:

Lemma 3.8 (Ground Completeness for Horn clause sets without reduction steps) Let
S be a minimal unsatisfiable ground Horn clause set and G € S be a (not necessarily
negative) clause. Then there exists a blockwise reqular ME refutation of S with top
clause G where no reduction step is applied.

It is well-known that ME is complete for Horn clause sets without reduction steps for
negative top clauses. In fact, the result follows immediately from the completeness
of ME for general clause sets and the simple observation that reduction steps are not
possible at all in that special case. However, the situation is different if any (not
necessarily negative) clause is allowed as a top clause, because the simply syntactic
argument is no longer valid. Thus, Lemma 3.8 is non-trivial.

A completeness result similar to Lemma 3.8 has been proven in [Antoniou and
Langetepe, 1994] in the context of SLD-Resolution. However, they do not consider
regularity. Thus we need a new proof.

Unfortunately, we cannot demand a stronger version of regularity which also con-
siders already closed branches. This difference is crucial for Lemma 3.8. Consider for
instance the Horn clause set

{A, —-AV B, =BV —|A},

and select A as top clause. Both existing refutations without reduction steps have
to violate the full regularity restriction. Nevertheless, regularity wrt. open branches
holds.

Proof. (Lemma 3.8) If G is a negative clause we will rely on earlier completeness
proofs (e.g. [Baumgartner, 1994]). Thus suppose from now on that G is a definite
clause. By the completeness theorem from [Baumgartner, 1994], we know that there
exists a ME refutation R of & with top clause G. Now we proceed in two stages:
we will show (1) how possibly applied reduction steps in R can be transformed away,
yielding R’, and then, (2) how regularity violations in R’ can be eliminated.

Ad (1): Let Tgr be the closed tableau generated by R, and let B be the multiset of
closed branches of T'r. The top clause can be written as G = AV-G1V---V-G,. Let
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R4 be the subrefutation of A. For syntactical reasons, reduction steps can only occur
in Ry. Let By C B be the multiset of branches generated by R4. Also for syntactical
reasons, every branch in b € By is of the form b = Ki,...,K;, Kit1,-.., Ky where
m>1,i>1, Ky,...,K; (K; = A) are positive literals and K;1 is a negative literal.
Furthermore, b is closed by a reduction step if and only if K, is a negative literal,
and in this case K¢ = K; for some j € {1,...,i}. In words, reduction steps can
occur only from negative to positive literals, the latter of which are all in the prefix
of the branch being closed.

Next, we locate the reduction step to a “bottommost” positive literal, because this
is the one to be transformed away. In this transformation new reduction steps will
possibly be introduced, but each of them reduces to a dominating node. This gives
us the termination of the procedure.

For the formal treatment we define for a branch b € B4 in the form above the
functions fy : {Ki,..., K;} +— {0,1}% and, based on this, the function f:

) 1 if bis closed by a reduction step to K
To(K) = { 0 else

f(b) = fo(K3), ..., fo(K1)

Thus, f(b) maps b to a sequence of Os and 1s, containing at most one occurrence of
1 (depending whether b is closed by a reduction step or not). The “reverse” ordering
of indices is motivated by the way branches are to be compared: for two branches
b1, by € By we define b; < by iff by is strictly smaller in the lexicographical extension
of the usual ordering “<” on naturals. Informally, branches get smaller as reduction
steps are applied to more “topmost” literals. The ordering “<” is extended to branch
multisets by defining B’ < B iff F(B/;) < F(Bys) where F(By) = {f(b) | b € B4}
and “<” denotes the multiset extension of “<”. When we write R’ < R for (sub-
)refutations we mean the corresponding generated multisets of branches.

It is well-known that with “<” being well-founded, so is “<” and “<”. Thus we
can apply well-founded induction.

Base case: every element in F(By) is a sequence 0,...,0. In other words, the sub-
refutation R4 is constructed without any reduction step. Since, if at all, reduction
steps can occur only in R4, R does not contain reduction steps either. Thus the result
holds.

Induction step: As the induction hypothesis, suppose the result to hold for all refu-
tations R’ with R’ < R.

F(Bj4) contains an element f(b) = f3(K;),...,fy(K1) for some branch b € By
which is not a sequence of 0s, i.e. fy(K;) =1 for some j € {1,...,4}. By construction
of tableaux, K; is contained in an input clause

C=K;Vée

where ¢ denotes the rest literals of C.
We distinguish two cases:

5To be precise, in the domain of f, we mean the occurrences, i.e. the nodes, but not the labels.
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Case j =1 (f(b) =0,...,0,1)7, i.e. a reduction step to the topmost positive literal of
b, K1 (= A), occurred (cf. Figure 3). In this case we first replace in R, this reduction
step from K;? to K; by an extension step with K; V @ Let us by Rz denote the
collection of subderivations of the (negative!) literals of ¢. These exist, because we
are given that R is a refutation, and furthermore, because K V ¢ is the top-clause,
none of these uses a reduction step. Then we append the subrefutations Rz in order to
close the newly introduced open leafs ¢. Call the resulting subrefutation R';. It holds
R!y < R4 (formally: the element 0,...,0,1 € F(Bx) has been replaced by finitely
many sequences of 0s, which is decreasing). This in turn is a consequence of the facts
that the reduction step has been replaced by an extension step, and that Rz does not
need reduction steps.

Reduction step to A Extension step with AV —B

> A -B A -B
! A % A < No reduction steps!
! —
\\ * *

~ -4 L2 0A

* \/
Y4 B
C A
*

Figure 3: A prototypical example for case 1 in the proof of lemma 3.8: a reduction
step to the topmost positive literal occurred.

Case j > 1 (f(b) =0,...,0,1,0,0,...,0), i.e. a reduction step occurred to a positive
literal in b, which is not topmost (cf. Figure 4). We have to rewrite C as

CZKJ'V—!LVC_;

where —L is the (negative!) literal in C' which was used as extension literal when C
was entered into the tableaux by extending K;_i.

In this case we first replace in R4 the reduction step from K;? to K; by an extension
step with K; VLV ¢'. Then we close the resulting branch b, —L by a reduction step
to K;_1. We still have to close the rest literals ¢'. For this let us by R; denote the

collection of subderivations of the (negative!) literals of ¢!. These exist, because we
are given that R is a refutation, and furthermore, any reduction steps used therein
must reduce to a predecessor node of K;. Next we append the subrefutations R in
order to close the newly introduced open leafs . Call the resulting subrefutation R,.
It holds Ry < R4 (formally: the element f(b) = 0,...,0,1,0,0,...,0 € F(By) has

"The expression 0, ..., 0 stands for a sequence of zero or more 0s.
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been replaced by (a) a sequence of 0s, stemming from the extension step, and (b)
a sequence 0,...,0,0,1,0,...,0<0,...,0,1,0,0,...,0 stemming from the reduction
step from =L, and (c) by some sequences stemming from the subrefutations R ;, each
of them being strictly smaller wrt. < than f(b)).

Reduction step to C Extension step with =BV C V —D
A A
| |
i i
B - replace> __.-=p =~
/I\ \\ // /I\ \\ \\
-B _C -D" " =B (C =D \
* //7 \\ II * ii \\ ‘\
i | | \ \
i ] | ] \
\ / | / |
\ / \ / |
A —|C —|B / \\ , —|C —|B / |
- CTNE
‘-BNC -D ,'
* * I
!
/
/
/
-B -~
*

Figure 4: A prototypical example for case 2 in the proof of lemma 3.8: a reduction
step occurred to a positive literal which is not topmost.

This concludes the case analysis. Note that in both cases we have obtained R/ <
R,. Let us denote by R’ the refutation which is obtained from R by replacing R4
with R/;. It follows, by definition, that R’ < R. Hence we can apply the induction
hypothesis to R’, which concludes the proof of (1).

Ad (2): Having achieved the property (1), (2) is now rather easy. The proof is by
induction on the number N of violations of the blockwise regularity restriction in a
refutation R without reduction steps. If N = 0 we are done, otherwise R contains a
tableau with open branch b = Ki,..., K,, which is to be extended in the course of
the refutation to an open branch ' = K,...,K,,,...,K,. Now, since no reduction
steps are applied, we can safely delete from R the subderivation which leads from b to
b', and use b instead of b’ in the subrefutation of (the open leaf of) &’. This decreases
N by one, and we can apply the induction hypothesis. Q.E.D.

Before we turn to the proof of the main lemma (Lemma 3.7) we need one more
lemma:

Lemma 3.9 Suppose a ground clause set

S={G, A,..., Ay, — By,...,Bp}uS (n>2,m>0)

15



where G s a ground clause, is minimal unsatisfiable. Then, for some i, 1 < 1 < n,
the set
S; = {G, Al;---aAiflyAi—H,---,An — Bl,...,Bm} us’

is unsatisfiable, and furthermore S; \ { G} is satisfiable.

Proof.  Clearly, S; is unsatisfiable (for every i), because otherwise a model for S;
would be a model for S.

Let Z be a model for S\ {G}. Such a model exists because S is minimal unsat-
isfiable. It holds that Z is a model for 44,..., A, < Bi,..., By, (because this clause
is contained in §). We distinguish two cases:

Case 1: T is a model for some A; (j € {1,...,n}). But then, Z is a model for
Al;---aAi—laAi+1;--- ,An — Bl,...,Bm, where

S 2 =1
) 1 else

Thus, 7 is a model for S; \ {G}

Case 2: T is not a model for some A, i.e. Ajis falseinZ forallj =1,...,n. Since Z
is a model for Ay,..., A, < Bi,..., By it must be that 7 is a model for some body
literal Bj. But then, 7 is a model for e.g. Ay,...,A,_1 < Bi,..., By, i.e. we set
i == n. Thus, also in this case we have that Z is a model for S; \ {G}. Q.E.D.

Now for the general case:

Proof.  (Lemma 3.7) Some terminology is introduced: if we speak of “replacing a
clause C in a derivation by a clause C'V D” we mean the derivation that results when
using the clause C'V D in place of C' in extension steps. Also, if L € C is used as
extension literal, then L must be used as extension literal in C'V D as well.

By a “derivation of a clause C” we mean a derivation that generates a tableau
with frontier C.

Let k(S) denote the number of occurrences of positive literals in S minus the
number of definite clauses® in S (k(S) is related to the well-known ezcess literal
parameter). Below we will make use of the obvious fact that S’ C § implies £(S') <
k(S).

Now we prove the claim by induction on k(S).

Induction start (k(S)=0): S must be a set of Horn clauses. Apply Lemma 3.8.

Induction step (k(S) > 0): As the induction hypothesis suppose the result to hold
for minimal unsatisfiable ground clause sets S’ with £(S') < k(S).

Since k£(S) > 0, S must contain a non-Horn clause

D=A1,...,An<—Bl,...,Bm

with n > 2. We distinguish two cases:

Case 1.G = D, i.e. the selected non-Horn clause is the desired top clause. Let

DI:Al,...,Anfl%Bl,...,Bm

8A definite clause is a clause containing exactly one positive literal.
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Clearly, Spr := (S\ {D}) U{D'} is unsatisfiable (because otherwise, a model for Sp
would be a model for §). Furthermore, Sy \ {D'} is satisfiable, because otherwise
S would not be minimal unsatisfiable. Hence, if we select a minimal unsatisfiable
subset 8}, C Spr it must be that D' € SY,,.

With k(S)) < k(Spr) = k(S) — 1 < k(S) we can apply the induction hypothesis
to S}, and obtain a refutation Rp: of S}, (and thus also of Spr) with top clause D’.

Let Sa,, := (S\{D})U{A,}. By the same line of reasoning as for Spr we can find
a minimal unsatisfiable subset 51’47Z C 84, and it must be that 4, € qun. Similarly,
k(S},) < k(Sa,) = k(S)—(n—1) < k(S), and we can apply the induction hypothesis
to 8 and obtain a refutation Ry, of &) (and thus also of Sa,) with top clause
A,

Now replace in Rp: every occurrence of the clause D’ by D. This gives us a
derivation Rp from the input set S. Rp is a derivation of, say, k& occurrences of the
disjunctive positive literal A,.

Now append k times the refutation R4, to Rp in order to obtain subrefutations
for every occurrence of A, in the tableau generated by Rp. Call this new refutation
R. Since R4, might possibly contain extension steps with A,, R is a refutation of
SU{A,}. In order to turn R into a refutation of S alone, replace every extension step
with A, in the appended refutations R4, by a reduction step to A,. This is possible,
because A, is the top clause in R4, and hence can be accessed. Further, these
reduction steps are in accordance with the disjunctive positive refinement, because
A, stems from a disjunctive positive clause. The resulting refutation is a desired
disjunctive positive ME refutation of S. Furthermore, since Rpr and R4, can be
assumed by the induction hypothesis to be blockwise regular, and the construction of
the final refutation keeps the block structure of its constituents, the final refutation
must be blockwise regular, too.

Case 2:G # D, i.e. the selected non-Horn clause is different from the desired top
clause. According to Lemma 3.9 there exists an appropriate literal A; (1 < i < n) to
be deleted from D. More formally, we can define

Di=Ay,...,A; 1,Ai1,..., Ay < B1,..., By,

in such a way that Sp, := (S\{D})U{D;} is unsatisfiable and Sp, \ { G} is satisfiable.
Further, as for Spr above, Sp, is unsatisfiable and Sp, \ {D;} is satisfiable. Hence,
if we select a minimal unsatisfiable subset Sbi C Sp; it must be that G € Sbi and
D; € SlDz"

With k(Sp,) < k(Sp,) = k(S) — 1 < k(S) we can apply the induction hypothesis
to Sp. and obtain a refutation Rp, of S (and thus also of Sp,) with top clause G.

Let Sa; = (S\{D}) U{4;}. As in the previous case for A,, there exists a
refutation R4, of S with top clause A;, where S is defined analogously to &7
above.

The rest of the proof is literally the same as for the previous case, except that D’
is replaced by D; and A, is replaced by A;. Q.E.D.
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4 Backward and Forward Subsumption for Model Elimination

In this section we will refine ME in such a way that it can take advantage of the sub-
sumption deletion techniques which have been applied so successfully in the resolution
paradigm.

As described in the introduction, it is crucial in the ME case to define the sub-
sumption relation among tableaux in such a way that as few ancestor literals as
possible have to be considered. To assure that subsumption deletion based on such a
subsumption relation is complete, a version of ME has to be used which is complete
when reduction steps are restricted to just that considered ancestor context. To this
end, we defined in Section 3 the “disjunctive positive refinement” of ME.

We will consider both forward subsumption and backward subsumption. At a
superficial level one might think that both of them are quite similar and easily incor-
porated into any reasonable calculus. While this might be true for resolution systems,
it is not for ME, at least if the “usual” definition of refutation is used. Let us explain
this now in more detail.

It is more straightforward to incorporate into ME a concept of forward subsump-
tion than backward subsumption. For forward subsumption, the definition of “deriva-
tion” (Definition 2.8) can be extended to forbid the derivation of a tableaux T if some
prefix of this derivation generates a tableaux T’ which subsumes T (wrt. some sub-
sumption relation to be defined). Such an approach has already been considered in
[Loveland, 1978].

Usually?, derivations are constructed in ME proof procedures by nondeterminis-
tically guessing the inference steps and backtrack on failure. Forward subsumption
is straightforwardly incorporated into such a regime by setting up a failure in case a
forward subsumption applies. However, this requires to store tableaux ezplicitly —
which is usually not done, for instance, in SETHEO and PTTP based procedures.

Now, backward subsumption is dual to forward subsumption. A first attempt to
define backward subsumption within the given framework is to say that tableau T
backward subsumes a tableau 7’ in a derivation D iff T (strictly) subsumes 7" and
T' was generated in D prior to 7. The information which can be gained from a
concrete backward subsumption case can be expressed as follows: “if T cannot be
extended to a refutation, then also 7" cannot be extended to a refutation”. In terms
of a proof procedure this means that failure to prove T should immediately backtrack
to the tableau before 7' and explore an alternative to 7. In addition to explicitly
store tableaux, this requires to manipulate the backtracking scheme in depth.

We will not elaborate on the practicability of such an approach. Instead we will
return to the calculus level and propose a new notion of derivation which supports
our needs. More precisely, instead of guessing the “next” tableau we will explicitly
generate all possible successor tableaux. By this we change ME from an enumera-
tion procedure of derivations into a saturation procedure for formulas. This is the
approach of resolution, and, as there, it allows us to conveniently express backward
subsumption as a simply deletion operation.

A general subsumption concept which is related to ours is defined in [Letz et al.,

For instance, in SETHEO and the whole class of PTTP theorem provers.
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1994]. As we do, they consider explicitly generated tableaux. Unlike our approach,
which enumerates these tableaux sequentially, they generate AND/OR search trees
whose nodes are labeled with tableaux. They define a notion of subsumption deletion
which allows to give up a tableau if it is (not necessarily strictly) subsumed by a com-
petitive tableau in the search tree. Our approach differs from that wrt. the following
aspects: for the first, they do not restrict the ancestor context for the subsumption
test; they even do not consider permutations for this. Thus, subsumption will apply
only rarely. For the second, as they note by themselves, their approach is incomplete.
Our work can be seen to solve open issues in their work by identifying several tech-
nicalities which are needed to obtain a complete calculus. In our terminology, their
calculus is incomplete at least for the reason that they do not use the strict version
of the subsumption test for backward subsumption.

4.1 Definition of Model Elimination with Subsumption

Definition 4.1 (Subsumption) Let T be a tableau and b = Np,..., N, be a branch of
T. Define the disjunctive positive ancestor context of b, anc™t(b), as

anct(b) = {L; | N; is a disjunctive positive node, labeled with
Li,i=1,...,n}

Thus we simply collect the disjunctive positive literals.
Let b1 and bs be branches of tableaux 77 and Ts, respectively. We say that by is
an ancestor extension of by, by > by, iff

leaf (b1) = leaf (by) and anc™(by) D anc™(bs)

In words, by is an ancestor extension of bs iff the leaves are equal and b; has at least
the disjunctive positive ancestor context of bs.

Extending to branch sets, we say that a branch set Bj is an ancestor extension
of a branch set By, By > B, iff there exists a bijective function f from B; into B
such that b > f(b) for every b € B;. Thus, in particular, subsumption is based on
comparing multisets of goal literals.

We intend to generalize towards tableaux. In the sequel let T, Ty, T denote
tableaux and let § denote a substitution.

We say that Ty is more gemeral by § than for Ty iff'® OB(T16) > OB(Ty); Tj is
more general than Ty iff T1 is more general than T, by some substitution 6. Note that
this relation is reflexive and transitive, but not antisymmetric, and hence a preorder.

We say that Ty strictly §-subsumes T, Ty <5 To iff OB(T16) > By for some
subset By C OB(Ty). Furthermore, Ty strictly subsumes Ty, T1 < To, iff there exists
a substitution ¢ such that T) <5 T2. In words, T4 strictly subsumes Ty if by some
substitution the branches of T} are an ancestor extension of some of the branches of
T>. We note that as a consequence of the well-foundedness of strict multiset inclusion,
strict subsumption is also well-founded.

Finally, we say that T subsumes To, T1 < Ty, iff T1 <1 T9 or T} is more general than
Ty. Note that this is a slight abuse of notation as the “more general” relation is not
an equivalence relation, not even if no substitutions are involved.  (End Definition)

10«0B” is defined in Definition 2.3.
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Example 4.2 Figure 5 depicts some tableaux and subsumption relations among them.
(End Example)

qrﬂ) p(z) —q(y) B /p(ﬁ‘ﬁ) —q(y) /p(ﬂ‘ﬂ)Jr —q(y) r(z)*
p(z) -p(z)  p(f(z)) -p(z)  p(f(2))

Figure 5: Subsumption relations among some tableaux.

Definition 4.3 (Model Elimination with Subsumption (MES)) Let r be a computation
rule. For brevity of notation we define T' Fpfer,» T" iff the tableau 7" can be obtained
from the tableau T by one single application of one of the inference rule eztension
step or reduction step of the disjunctive positive refinement (Definition 3.2) to the
goal node selected by rin T.

We define the binary relations “Fipfer,r” and “Fpelete” On sets of tableaux as
follows: S Finfer,r S’ (resp. S Fpelete S') if S’ is obtained from S by one single
application of the following respective inference rules (also called derivation rules
from now on):

. Su{T} !
Infer: W { tT |_Infer,'l‘ T
Sy {T7 TI} !
Delete- T{T} { If T < T

The calculus forward and backward subsumption ME, (MES) consists of the deriva-
tion rules Infer and Delete; the calculus forward subsumption ME consists of the
derivation rule Infer only.

A derivation (wrt. one of these calculi) for a clause set S, goal set G C S and
computation rule r is a sequence

S = (S0, S15---,5p,-..)
of sets of tableaux of S, where
1. So={T¢ | Ge€gG, Tg is an initial tableau for G}, and

2. for ¢ > 0, either S; 1 Finfer,r Si Or S;—1 FDelete Si (“Backward subsumption”
— only for the forward and backward variant).

Finally, a refutation of a clause set S is a derivation for S such that one of its elements
contains a closed tableau. (End Definition)
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In words: beginning with a set of initial tableaux, we generate new tableaux by
means of the traditional inference rules, and we also allow to delete a previously
derived tableau, provided that it is strictly subsumed in the current proof state. By
this backward subsumption deletion we avoid further exploration of the subsumed
tableau. It is important to use the strict version of subsumption here in order to
avoid infinite loops. Forward subsumption is covered by a certain property of fair
derivations (cf. Definition 4.4 below). Informally, it says that a tableau need not be
generated in presence of a subsuming tableau.

In the traditional definition of derivation (Def. 2.8) the transition from one tableau
to the next can be thought of as a nondeterministical guess. In the new framework
we will use a fairness condition instead. Roughly, fairness means that no application
of an Infer derivation rule is deferred infinitely long. Fairness is important since it
entails that “enough” tableaux will be generated; in particular a closed tableau will
be generated after finitely many steps for unsatisfiable clause sets.

Our definition of fairness is an adaption of standard definitions in the term-
rewriting literature (see e.g. [Bachmair, 1991]).

Definition 4.4 (Limit, Fairness) Let S = (So, S1,...,5n,...) be a derivation for some
clause set S. The limit of S is defined as

Soi= U (18

(i>0) (j=>4)

The elements of Sy, are also called the persisting tableaux of S.
The derivation S is called fasriff S is either a refutation, or else whenever Sy, Finfer,r
Soc U{T'} then for some £ > 0 and some T € S we have T <1 T'. (End Definition)

The first item in the definition of derivation above (Definition 4.3) guarantees in
conjunction with fairness that every clause given from the goal set G is tried as a
top clause; when instantiated with all negative clauses from S this corresponds to the
result for “traditional” ME which states that if a refutation exists at all, then also a
refutation with negative clause as top clause exists.

The fairness condition, proper, means that it is sufficient to generate a new tableau
from the persisting tableaux!! only if it is not subsumed in some stage of the derivation
(provided S is not a refutation). Since this case includes the possibility of discarding a
tableau in favor of a subsuming previously derived tableau, we have a case of forward
subsumption. Note further that we need not insist on strict subsumption here.

The presence of a computation rule is most important in the fairness condition. It
is sufficient to consider inferences to the selected branch only, but not to all branches
of a tableau.

Our notion of fairness enables the use of a “delete as many tableaux as possible”
strategy in implementations, since a tableau once shown to be subsumed will be
subsumed in all subsequent stages and thus need not persist.

"nformally, these are the tableaux generated eventually and never deleted afterwards.
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Example 4.5 (1) Consider the clause set

~ o~~~
~— e

(a) < »p(y)
(a) <« r(2)
c)
— p(z),q(z)

Suppose a computation rule which selects the bottom-most leftmost goal. It follows
a fair derivation for the goal clause (4). Since this example is Horn, it suffices to
depict the frontiers of the tableaux as clauses instead of the tableaux themselves. The
clause sets in parenthesis need not be built as the generated tableau in these steps
are subsumed. The selected literal in each step is underlined.

So
S1

(52

So

53

Sy

(S5

{-p(z) vV —q(z)}
{=p(z) V —q(2),

-p(y) V—-q(a)}
{-p(z) Vv ~q(2),

-p(y) V ~q(a),

-p(y) vV —q(a)})
{-p(z) V ~q(z),

-p(y) V ~q(a),

—7(2) V-q(a)}

{—-p(z) V —q(z),

-p(y) V —gq(a),

-q(a)}

{-p(z) Vv ~q(2),

-q(a)}

{-p(z) Vv —q(z),

_'Q(a)a

-p(y) vV —q(a)})

{-p(z) V —q(z),
—q(a),
-r(2) V ~q(a)})

Initial tableau with (4)

By extension with (1)

By extension with (1)

By extension with (2)

By extension with (3)

By deletion of =p(y) V —¢(a)

By extension with (1). Unnecessary, because
the new tableau is subsumed by -p(y) V
—g(a) € 51

By extension with (2). Unnecessary, be-
cause the new tableau is subsumed by —r(2z)V
—g(a) € 52

Thus, the derivation is finite and ends in Sy.

22



(2) Consider the clause set

(1) z==z —

(2) y=2 — z=y

3) z==2 — =y, y==z
4) f(z)=f(y) <« z=y

(5) p(z,y) — z=1,p(y)
(6) p(z,y) — y=1v, p(z,9)
(7) — z=f(y), p(z,9)

—~~

Of course, clauses (1)-(6) are an axiom set for the theory of equality in the presence
of a predicate symbol p and a function symbol f. Sure, there are better ways to
handle equality, but this example should demonstrate that part of the improvements
achieved for inference rules for equality, notably paramodulation [Robinson and Wos,
1969], can be obtained as instances of subsumption.

When started with the top clause (7) and equipped with the same computation
rule as above, our subsumption prover stops after 9 inferences and (correctly) reports
failure, while other provers (PROTEIN — a PTTP prover, and SETHEO) loop forever
on this example.

We will only develop some key inferences of the derivation. Let it start with
the tableau'? —(z = f(y)) V =p(z,y) for (7). Extension with (4) yields a tableau
=(z = f(y)) V —p(z,y) which is immediately (forward) subsumed. More generally, a
frontier of one of the forms

“(mn=y)VR

(1 = f(y1y---,9yn) VR
~(f(21,.-,20) =9y1) VR
=(f(z1y-- @) =f(y1,---syn)) VR

where R is a clause which does not contain one of the variables {z1,...,Zn, ¥1,--- Yn}
need never be subject to an extension step with a functional reflexive axiom (4)
because the resulting tableau would be subsumed. Of course, this holds only if the
ancestor context is in accordance.

This is an important restriction because it avoids many infinite branches. This
restriction has an interesting interpretation from the viewpoint of “paramodulation”.
It is well-known that goal-oriented calculi, such as ME or linear Resolution system
[Furbach et al., 1989], require to paramodulate into and even below variables when
equipped with a paramodulation inference rule. Now, the purpose of the functional
reflexive axioms is to simulate paramodulation into and below variables. Together
with our considerations above, this suggests that paramodulation into and below
variables can be avoided under the stated conditions.

Let us now continue the example. Extension of =(z = f(y)) V —p(z,y) with (1)
yields —p(z, y) which backward subsumes the initial tableau. Extension of —p(z,y)
with (5) yields —p(z’,y) V —=(z' = z), which is extended by (1) to —p(z,y). Here
forward subsumption applies again. Intuitively, paramodulation (by means of the sub-
sumption replacement axiom) into the variables of —p(z, y) is redundant. (End Example)

12 Again, since we deal with a Horn example we write clauses instead of tableaux.
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Subsumption is a concept strong enough to to generalize some well-known refine-
ments of ME. For instance, blockwise regularity is covered by forward and backward
subsumption in the case of a local computation rule (cf. Theorem 5.13 below).

Another well-known refinement of ME is factorization [Loveland, 1978]. The fac-
torization inference rule allows to close a branch b iff leaf(b) is identical to a left
brother node of some ancestor node of leaf (b). It is allowed to apply some (most gen-
eral) substitution to achieve this condition. An important special case is that the two
literals in question are identical without application of a substitution'®. In ME proof
procedures, often a folklore-like heuristic allows to close the branch b without need
for backtracking. Backward subsumption explains why this step is correct: suppose
a tableau T’ is obtained from a tableau T by factorization with empty substitution.
Then it is easy to see that T’ <1 T. Hence T can be deleted in a fair derivation without
affecting completeness; this corresponds to non-backtracking over this inference step
in backtracking procedures.

4.2 Soundness and Completeness

Since ordinary ME is sound, the disjunctive positive refinement of the previous section
must be sound, too (because the latter case is more restricted). But then, MES must
be sound, too, because it is more restricted (i.e. whenever a tableau can be constructed
in MES, it can also be constructed in the disjunctive positive refinement). Altogether,
this sketch convinces us of the soundness of the calculus. We will thus turn towards
completeness now.

Completeness reads as follows:

Theorem 4.6 (Completeness) Let r be a computation rule. Let S be an unsatisfiable
clause set, and let

S = (S0, 51,1 Sn,-.)

be a fair MES derivation for S with goal clause set G, where G is the set of negative
clauses from S. Then for some q > 0, S, contains a closed tableau, i.e. S is a
refutation.

Before we can prove this theorem we find it helpful to introduce some notation
and lemmas. Unless otherwise noted, we will for the rest of this section always refer
to the disjunctive positive refinement of ME (Definition 3.2), and r will always denote
a given computation rule.

Let D = dp,...,dn be a derivation via r generating a tableau 7,. We call D
promising iff D can be extended to a refutation, i.e. iff a refutation
doy ...y dm, dm+1,-..,dy via T exists, for some n > m. In this case we shall restrict

among all possible refutations to those of minimal length. Hence suppose without loss
of generality n to be minimal, and define steps(D) := n — m as the minimal number
of inference steps necessary to extend D to a refutation; obviously, steps(D) = 0 iff
D is a refutation. The value steps(D) will be of central importance below, since it
is the measure to be decreased in the induction step. It is important to have that
steps(D) does not depend from the computation rule r. Indeed, this independence

13This option is included in Loveland’s original definition of ME [Loveland, 1978].
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is a consequence of the proof of the independence of the computation rule. For this
proof (cf. [Baumgartner, 1994]) it requires only to switch inference steps of a given
derivations, but never to delete or add some.

The previous definitions shall also be applicable to T,,, and in this case it is
understood that T, is generated by some appropriate derivation which is left implicit.

Now let S be a set of tableaux and T be a tableau. We say that S is minimal
for T iff T is promising and for every promising tableau 7' € S it holds steps(T) <
steps(T"). Note that according to this definition T' € S does not necessarily hold.

We start with two lemmas:

Lemma 4.7 Let T' be a promising tableau, and let D be a derivation generating a
tableau T which is more general than T'. Then T is promising, and furthermore
steps(T) < steps(T').

Proof.  In the sequel if we speak of a “subrefutation of a tableau 7”7 we mean the
concatenation of the subrefutations of the nodes of the frontier of T'.

We are given that 7’ is promising, which means that there exists a subrefutation
of T'.

By definition of “more general” we find a substitution § such that for every open
branch in 7' there is exactly one open branch in T'¢ (and these are all the open
branches of T'§). Furthermore, two corresponding branches b € T'é and b’ € T’ have
the same leaf literals, and, anct(b) 2 anc™(b’'). Hence the existing subrefutation of
the leaf of b’ can also be applied to the leaf of b. If this is done for every such branch
b € T' we finally arrive at a subrefutation of T'¢, and it holds steps(T6) = steps(T").
However, since anct(b) D anc™(b') might hold in some cases, reduction steps could
be enabled in the refutation of T'§ which have no counterpart in 7'. Hence even
steps(T6) < steps(T") is possible.

We have to show the claim for 7', but not for 7'6. This can be done by lifting the
subrefutation of T'6 to a subrefutation of T'. For this we need a lifting theorem for ME
derivations. There exist several such results; the lifting theorem needed in our case
can be proven with methods developed in [Baumgartner et al., 1995]. Notably, lifting
does not change the number of inference steps which gives us steps(T) < steps(T').
Q.E.D.

Lemma 4.8 Let T' be a promising open tableau, and let D be a derivation generating a
tableau T with T <« T'. Then T is promising, and furthermore steps(T) < steps(T").

Proof. The proof is very similar to the one of the previous lemma. The major
difference is that we now have a one-to-one correspondence between the open branches
B of Té and a strict subset B’ of the open branches of T'. Thus we can apply the
subrefutations of the leafs of the branches of B’ to their corresponding branches
B. This gives us a subrefutation of T'6. Again using a lifting theorem we obtain
a subrefutation of T using the same number of inference steps. Since T’ contains
strictly more open branches than T, the subrefutation of T’ needs strictly more
inference steps than that of T, or, equivalently, steps(T) < steps(T"). Q.E.D.
The next lemma is central:
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Lemma 4.9 Let S = (So, S1,-.-,Sn,...) be a fair derivation which is not a refutation
(i.e. the empty tableaux is never generated). If Sy, is minimal for Ty and steps(Ty) > 0
then there exists an index | > 0 and a tableauw Ty € S; such that S is minimal for Ty
and steps(T;) < steps(Ty).

Proof. By definition of minimality, T} is promising. Since steps(Ty) > 0 at least
one inference step has to be applied to extend T} to a refutation. Let

Tk }_Infer T, (]-)

be such an inference step. It holds steps(T’) = steps(Ty) — 1 < steps(Tx) (¥).
Now we distinguish two cases:

1. Tk € Ugisk) Nii>iy Sj» 1-e. T is generated at some point > & and then never deleted
afterwards. But then also

T € U ﬂ Sj (=Soo)

(¢20) (1)

because this is a superset. From this and Equation 1 it follows Se Finfer,r Sooc U{T"}.
But then, by fairness, there exists an index [ > 0 and tableau 7" € S; such that
(a) T < T or (b) T is more general than 7'. In case (a), if T is closed we have
steps(T) = 0 (< steps(Ty)) or otherwise T is open. But then, by Lemma 4.8, T
can be extended to a refutation such that steps(T) < steps(T'), and together with
(*) above we conclude steps(T) < steps(Ty). In case (b) we apply Lemma 4.7 and
conclude that T can be extended to a refutation such that steps(T) < steps(T'),
which also gives us steps(T) < steps(T},).

2. Ty ¢ U(izk) ﬂ(jzi) S;, i.e. for some [ > k + 1 we have Ty € S;_; and Ty ¢ S;. In
other words, T} is deleted. This can only be done by backward subsumption pruning,
i.e.

(Si—1 =) S1U{T%} Fpelete S

By definition of Delete there exists a tableau T € S; with T'< T}. By Lemma 4.8, T
can be extended to a refutation such that steps(T) < steps(T}). This concludes the
second case.

Now, in both cases, we have shown that there exists a tableau T € S; such that
steps(T) < steps(Ty). Either S; is already minimal for 7' (and in this case define
T; := T), or otherwise S; is minimal for some different T} € S; (and in this case even
steps(Ty) < steps(T) holds). Thus, in any case we can find a tableau Tj as claimed.
Q.E.D.

Now we can proof our main theorem of above:

Proof. (Theorem 4.6). By the completeness theorem for the disjunctive positive
refinement (Theorem 3.6) there exists a refutation of S with some negative clause
G € S as top clause. Without loss of generality assume that among all negative
clauses for which a refutation exists, G is chosen minimal wrt. the length of the
shortest possible refutation.

We are given that the goal clause set G used for S consists of all negative clauses
from S. Hence, by definition of derivation also Tg € Sy, where T is an initial
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—q(a) —r(a) —q(a) —r(a)
PN PN
q(a) -p(y) g(a) -p(2)

Figure 6: Tableaux for Example 5.1

tableau for . Further, by the choice of G we have in present terminology that T¢
is promising, T¢ > 0, and Sy is minimal for Tg.

Now suppose, to the contrary of the theorem, that S is not a refutation. But then,
by repeatedly applying Lemma 4.9, starting with Sy and Ty = T¢ we can find an
infinite chain steps(Ty) > steps(T1) > ... > steps(Ty) > ... > 0 which is impossible.
Hence, S is the refutation as claimed. Q.E.D.

5 A Context Check for Model Elimination

An interesting alternative to the techniques presented in the last section are so-called
context checks which were originally proposed in [Besnard, 1989] and further developed
in [Bol et al., 1991] in the context of SLD-resolution. Context checks are based on
forward subsumption; but instead of comparing two multisets of open goals, the idea
is to prune a derivation if a subrefutation for only one open goal would constitute a
subrefutation for one of its ancestor goals. Hence, such pruning techniques can be
interpreted as loop checking mechanisms.

Clearly, in order to prune a derivation, one cannot concentrate on one open goal
and its ancestors. Additionally, variable dependencies with other open goals have to
be taken into account. For illustration consider the following example.

Example 5.1

(1) r(a) «

(2) p(f°(b)),q(a)

(3) p(z) < p(f(2)
(4) q(a) « p(y)

(5) — q(z),r(z)

The task is to find a ME refutation of the (non-Horn) clause set with top-clause
(5). After an initialization and one extension step with clause (4) we get the tableau
depicted in Figure 6 on the left. One further extension step applied to the open goal
—p(y) results in the tableau shown on the right. Now, it is quite easy to see, that
the last extension step is redundant: Every subrefutation R for —p(f(z)) immediately
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constitutes a subrefutation for —p(y) (via an additional substitution) {y\f(z)}. This
is because due to the positive refinement, we know that none of the ancestors of
—p(f(z)) is needed for the application of reduction steps. Further, since the variable
y does not occur in other open goals, the application of R to —p(y) does not affect
the possibility to find an overall refutation.!4 (End Example)

In order to define a loop check which shows the desired behavior we first have to
explain what it means to undo derivation steps. Intuitively speaking, the derivation
steps applied to a node N (and its successors) are undone by cutting away all suc-
cessor nodes of N (and removing the substitutions that are due to the corresponding
derivation steps.)

Definition 5.2 Let D = d;,...,d, be a derivation generating a tableau 7', and N be
the root node of an open branch in T. Then, let

! ! ! /! ! ! !
D:dh,...,d de""’d PR ,dlk,...,d,rk

T T2
be a derivation such that
e I1<h<m<h<m<...<lp<mnp<m,

e the sequence dy,,...,dp,dy,...,dp,, ... ,dy,...,dr contains all elements of
D but the derivation steps applied to N (and its descendants), and

e for each j € U {l,..., 7}, d; equals d; except that d; might use a different
MGU.

We call the tableau T' generated by D’ the tableau emerging from T by undoing the
derivation steps applied to N and its descendants. (End Definition)

Note 5.3 For derivations using a local computation rule (see Definition 2.10), 7" is the
tableau generated after d; for some 7 < n. This is because such a computation rule,
after having selected a node N to apply a derivation step, does not select another node
occurring in the same successor sequence until each branch containing N is closed.
In view of an implementation this is obviously useful: In the course of a deduction,
one merely has to memorize the sequence S of tableaux generated during the current
derivation. Then, the tableau that emerges by undoing the derivation steps applied
to some node N is simply the element of the § which was modified by a derivation
step applied to N. (End Note)

With this definition we are now able to introduce the so-called T-Context Check.!3
Following [Bol et al., 1991], where loop checks are defined as sets of derivations fulfill-
ing certain criteria'®, we define the T-Context Check as the set of all ME derivations

(Clearly, the use of forward-subsumption (as defined previously), also prunes this derivation.
However, there are examples which show that none of these “variants” of forward-subsumption is
strictly stronger than the other.

'5The T-Context Check constitutes a proper generalization of the Context Check proposed in
[Besnard, 1989] which is, in case Horn clause sets are considered, a generalization of the Identical
Ancestor Check.

More formally, a loop check is a computable set £ of connection tableau derivations such that for
every derivation D € L each variant of D is contained in £, too (i.e. £ is closed under variants).
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which can be pruned because, roughly speaking, a goal is subsumed by one of its
ancestor goals. Clearly, as discussed above, we have to take care of disjunctive posi-
tive ancestors. Further, variable dependencies between the goals under consideration
and other open goals and their disjunctive positive ancestors have to be taken into
account.

Definition 5.4 (T-Context Check) Let D be a ME derivation generating a tableau T
which contains an open branch b with leaf node N;. Let N, be an ancestor of N;
such that neither N; nor N, or any of its descendants which are ancestors of N; is
disjunctive positive. Further, let 7' be the tableau emerging from T by undoing all
derivation steps applied to N, and its descendants, let S’ = {G,..., Gn, N,} be the
frontier of 7”, and let Aq,..., Ay be the disjunctive positive ancestors of nodes in 5.
D belongs to the Tableau Context Check (T-Context Check for short) iff there ex-
ists a substitution 0 such that L(A;, T")0 = L(A;, T) foralls € {1,...,k}, L(Gi, T")0 =
L(G;, T) for all s € {1,...,m}, and L(N,, T")0 = L(N;, T). (End Definition)

Example 5.5 We continue Example 5.1. In terms of Definition 5.4, let T be the
tableau shown in Figure 6 on the right hand side. Further, let N, and N; be the
nodes in T labeled with the literals —p(z) and —p(f(z)), respectively. Then, the
tableau T’ which emerges from T by undoing all derivation steps applied to N, and
its successors is the tableau depicted in Figure 6 on the left. We get £k =0, m = 1,
L(Gla T,) = _'Ir(a)a L(Nm TI) = _'p(y)a L(Glﬂ T) = _'T(a)7 and L(N17 T) = _'p(f(z))

Now we can conclude that the derivation generating 7' belongs to the T-Context
Check because no node in T is disjunctive positive and for § = {y\f(z)} we have
L(G1,T")0 = L(G1, T) and L(N,, T")0 = L(N;, T). (End Example)

We now have to prove that the T-Context Check preserves completeness. Impor-
tantly this holds in combination with blockwise regularity.

Theorem 5.6 The completeness of blockwise regular ME is preserved even if each
derivation belonging to the T-Context Check is pruned.

Proof. Let D be a derivation belonging to the T-Context Check. If D cannot
be completed to a refutation by a sequence D’ = dy,...,d, of inference steps, it is
obviously correct to prune D. Otherwise we have to prove that there is a tableau
which is smaller than T (i.e. that is it can be generated with less derivation steps
than T) and can be extended to a closed tableau by a derivation of length n’ where
n’' < n. Since this closed tableau can be built using an arbitrary computation rule (see
Proposition 2.11) we do not have to take particular computation rules into account.
We can assume, due to the disjunctive positive refinement of ME, that reduction
steps in D’ neither use the literal attached to N; nor the literals attached to N, or
its successors which are ancestors of N;. Let o be the composition of substitutions
needed for D' and let dg,,...,ds,. (1 <k <k <...<k <n) be the inference steps
in D’ which are applied to elements of S — {N,} U{N;}. Furthermore, let d; ,...,d;
be an (unrestricted) sequence of derivation steps where d,’61 equals di, but uses the
substitution fo and for i € {2,...,r}, d,’cl, equals di, but uses the substitution o.
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Since L(A;, T")0 = L(A;, T) for all s € {1,...,k} and L(G;, T")0 = L(G,;, T) for
all 4 € {1,...,m}, it is guaranteed that (i) for each open goal attached to a node N €
S"—{N,}, L(N,T'0) = L(N, T) and that (ii) for each disjunctive positive ancestor
N of an open goal in T'9, L(N,T'§) = L(N, T). Since, furthermore, L(N,, T')0 =
L(N,;, T) holds, it is easy to see that the unrestricted derivation dy , ..., d; closes the
tableau T' (which obviously can be build with less derivation steps than T'). But then

there also exists a sequence of inference steps dy’ , ..., d; which closes 7' (note that
r < n) where for 7 € {1,...,7}, d,’c’z equals d,’ci but uses a more general substitution

(this can be proven via a lemma which is similar to Lemma 8.1 in [Lloyd, 1987]; for
instance see [Briining, 1994]).

It is however easy to recognize that the tableau T; generated by D, dy ,...,d;
might violate blockwise regularity. But this does not impose any problems: Suppose
some open branch b in Ty violates blockwise regularity because some node K; and
its descendant K occurring in the same block of b are labeled with the same literal.
Let p be the composition of substitutions needed to apply the derivation steps in
D,dy,...,d; . Then it is obviously possible to apply an unrestricted subrefutation
to K7 which equals the subrefutation for Ky except that each of the involved deriva-
tion steps uses the substitution p. Let 7% be the resulting tableau. With the same
argumentation as above we can infer that there exist a (restricted) refutation which
generates a tableau T3 such that Ty is an instance of Tj. Q.E.D.

Note 5.7 The T-Context Check is compatible with disjunctive regularity, too (note,
however, that we do not know whether disjunctive regular ME is complete). To prove
this, we assume that (speaking in terms used in the above proof) D, D’ does not violate
disjunctive regularity. Then it is easy to see that D, d; ,...,d; cannot violate dis-
junctive regularity, too, since the latter (unrestricted) derivation generates a tableau
which equals the one generated by D, D’ except that some branches are “shortened”
(recall that di uses the substitution 6o). But then, D" = D,dy,...,d; cannot
violate disjunctive regularity, too, since the tableau generated by D, dy ,...,d; isan
instance of the tableau generated by D”. (End Note)

An interesting aspect of mechanisms for avoiding redundancies is their (in-)de-
pendence of the employed search strategy (see also [Briining, 1994]). In what follows
we shall illustrate that the success of forward subsumption in fact depends on this
relationship whereas the T-Context Check prunes a derivation regardless of the order
in which the involved derivation steps are performed.

Example 5.8

(1) q(z,y) < s(z,9)

(2) p(z,0) < I(z)

(3) U(r) « p(r,b)

(4) — p(v,0),q(u, w)

A ME derivation of this clause set is depicted in Figure 7. First, an initialization
step is performed with top-clause (4). Afterwards, extension steps are applied with
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N N N

—p(z,a) —q(z, w) —p(z,a) —q(z,y) —p(r,a) —q(r,y)
/‘ ’\
p(z,0) =l(z) p(z,0) =l(z) q(z,9) ~s(z,y) plr,a) =i(r) q(r,y) —s(r,y)

Figure 7: Tableaux for Example 5.8

clause (2), clause (1), and clause (3), respectively. This derivation is pruned by
the T-Context Check: Let N; be the node labeled with —p(r,b) and let N, be its
ancestor labeled with —p(r,a). In Terms of Definition 5.4 we get k = 0, m = 1,
L(Gy, T") = =s(z,y), L(G1, T) = =s(r,y), L(N,, T') = =p(z,v), and L(N;, T) =
—p(r, b). Further, T contains no disjunctive positive literals. Selecting 0 = {z\r, v\b}
all conditions of Definition 5.4 are met.

On the other hand, it easy to verify that the derivation does not allow the ap-
plication of forward-subsumption. Interestingly, this becomes possible if the third
extension step is performed before the second one (then we get the multiset of open
goals {—p(r,b),~g(r,y)} which is subsumed by the multiset of open goals after the
initialization step). Hence, the success of forward subsumption in fact depends on the
employed search strategy. (End Example)

For an important class of computation rules, namely the local ones, it is however
possible to show that each derivation belonging to the T-Context Check is also pruned
by the use of forward subsumption.

Theorem 5.9 Let D = dy,...,d, be a derivation generated by using a local computa-
tion rule and let T; denote the tableau generated by di,...,d;, for 1 < i <mn. If D
belongs to the T-Context Check then for some 1 <j <n, T; 4 T),.

The proof of this theorem uses ideas found in [Bol et al., 1991] where a similar
theorem is proved in the context of SLD-resolution.
Proof.  Speaking in terms of Definition 5.4, let 7" be the tableau emerging from T,
by undoing the derivation steps applied to N, and its successors. Since we assume
a local computation rule, r say, T’ is the tableau generated by di,...,d; for some
1 < i < n, hence T = T;. Further, we know that there is a most general substitution
7 such that L(N,, T;)T = L(N;, T,).

In the sequel, let §; denote the substitution used for d; (1 < I < n), let Lg =
{L(Gl, Ti), ey L(Gm, Tz)} and LA = {L(Al, Ti), . ,L(Ak, Tz)}

We first show that for each variable z that occurs in L(N,, T;) and some element
of LaULy, 20;41...0, = z7. To this end, recall that the definition of the T-Context
Check implies that

(L(Ng, Ti)7, Labit1 - 0n, LgOiy1 ... 0n)
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must be an instance of (L(N,, Ti), La, La), say (L(Na, Ti)p, Lap, Lap). Clearly

) ozT for z € var(L(N,, T;))
W= z6;y1...0, for z € var(Lg U Ly).

Hence, for z € var(L(N,, T;)) Nvar(Lg U La), 27 = 260;41 ...6,. (%)

Now, let S be the elements of {Gy,..., Gy} which are selected before N, by r
during D and let R = {G1,...,Gp} — S. Since r is local, we know that complete
subrefutations of the elements of S are found before the branch containing N, is
considered. Hence, there exist some j (i < j < n) such that the tableau T; generated
by di, ..., d; has the frontier RU{N,}. To prove the theorem we show that 7; < T,.
This is achieved by proving that there is a substitution o such that

( ) L(Na, T; )0”1 9]‘0' = L(Na, Tj)O’ = L(Nl, Tn) = L(Na, Ti)T.

(ii) for each element G € R U {A1,...,As}, L(G, Ti)0it1...0;0 = L(G, Tj)o =
L(G,Ty) = L(G, T;)0it1...0,

Taking Definition 4.1 into account it is easy to see that in case o exists, there is for
each open branch in Tjo some open branch in 7, with the same open goal and the
same set of disjunctive positive ancestors. Hence, we have T; < T7,.

Let F = RU{A4,..., Ay }U{N,}. Then, let L(F;) and L(F;) be the sets of literals
attached to the elements of F' in T; and Tj, respectively. Further, let L(S) be the set
of literals attached to the elements of S and their positive disjunctive ancestors in Tj.

We define o as follows.

z if z & var(L(Fy))
to =4 z0j41...0, if z € var(L(F})) — var(L(N,, T;))
zT if z € var(L(Fj)) N var(L(N,, T;))

Now we prove that using this definition of o, (i) and (ii) are valid.

Proof of (i): Let z € var(L(N,, T;)). Then we obviously have z € var(L(F;)). We
show that 27 = z0;,1...0;0.

If z € var(L(F};)) then no substitution was applied to z during the subrefutations
of the elements of S. Hence, z6;,1...0; = z and therefore z0;1...0;0 = z0 = zT.
Otherwise, if z & var(L(Fj)), then z6;41...0; # z, hence z € var(L(S)) must hold.
According to (x) we therefore know that z6;11...6, = z7. Moreover, for every
y € var(z0;11 ...0;), either (a) y € var(L(S)) or (b) y was in introduced during the
subrefutations of the elements of S.

In case (b) we obviously have y ¢ var(L(F;)) and therefore y & var(L(N,, T;)).
Then, the definition of o gives us yo = yf;41...6, because y € var(L(F;)):

y € var(z0;q1 ...0;) C var(L(Ng, T5)8it1 ... 6;) = var(L(N,, T;)) C var(L(Fj)).

In case (a) we either have (al) y € var(L(N,, T;) or (a2) y & var(L(N,, T;). In
the first case (al) we know, due to (x) (and because y € var(L(F}))) that yo = yr =
YOiy1...0, = ybi11...0,. In the second case (a2) we also get yo = ybj41...0,.

Summarizing the cases (a) and (b) we get z6;41...0j0 =26;41...0, = z7.
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Proof of (ii): Let L(R) denote the set of literals attached to the nodes of R U
{A1,..., A} in T; and let y € var(L(R)#it1...60;). We have to prove that yo =
y0j+1...0, holds. To this end, let z be some variable in war(L(R)) such that
y € var(z0;41 -..0;). Now we distinguish two cases.

If z & var(L(S)), then obviously z = 26,41 ...6; = y and therefore y € var(L(R)).
If & var(L(N,, T;) the definition of o implies yo = y8;41 ... 60,. Otherwise we know
(again, due to (x)) that

yo=y7 =ybiy1...0, = y0j11...0,.

If z € var(L(S)), then, again, either y € wvar(L(S)) or y & var(L(S)). In the
latter case we have y & var(L(N,, T;)) and the definition of o implies the desired
result (note that we assumed that y € var(L(R)0;iy1...0;), hence y € var(L(F;))).
In the former case we again distinguish two cases: If y & wvar(L(N,, T;)) we can
again apply the definition of 0. Otherwise, if y € wvar(L(N,, T;)) we know that
y0it1...0; = y (because y appears in var(L(R)0;41...6;)) and due to (%) we have
yo =y7 =ybiy1...0, = yb;11...0, which is the desired result. Q.E.D.

We have seen that the T-Context Check is compatible with blockwise and disjunc-
tive regularity. In what follows we prove that the T-Context Check is even — at least
partially — able to prevent derivations violating blockwise regularity on its own.

That this cannot be achieved in general is illustrated by the next example. Af-
terwards we show however that each derivation which violates a restricted version of
blockwise regularity belongs to the T-Context Check.

Example 5.10 Consider a clause set containing the following clauses.

(1) p(a) < q(a)
(2) p(a) < p(z),q(b)
3) — p(a)

Suppose that after selecting clause (3) for an initialization step, a derivation D pro-
ceeds by applying two extension steps selecting the open goals —p(a) and —p(z) and
the clauses (2) and (1), respectively. The corresponding tableaux are shown in Fig-
ure 8. Clearly, the rightmost tableau T violates blockwise regularity. It is however
easy to verify that T does not belong to the T-Context Check. (End Example)

For a restricted version of blockwise regularity given in the following definition we
can prove the desired result.!”

Definition 5.11 (Weak Blockwise Regularity) A branch is weakly blockwise regular if
its leaf node N belongs to a block Ny,..., Ng, N and the label of N is different to the
label of N;, for all 1 < < k.

A tableau is weakly blockwise regular if all of its open branches are weakly block-
wise regular. (End Definition)

'"This restricted form of regularity equals the identical ancestor pruning rule as it is defined in
[Poole and Goebel, 1985].
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-p(a) -p(a) -p(a)

p(a) -—p(z) —q(b) p(a) -p(a) —q(b)
]
p(a) —q(a)

Figure 8: Tableaux for Example 5.10

Theorem 5.12 Every derivation generating a tableau which is not weakly blockwise
reqular is pruned by the T-Context Check.

Proof. Suppose a derivation D generates a tableaux T which is not weakly blockwise
regular. Then, T contains some open goal L; which is identical to one of its ancestors
L,. Further the nodes labeled with L; and L,, N; and N, say, occur in the same
block. Hence, neither N; nor N, nor any node which is a descendant of N, and a
successor of N is disjunctive positive.

Now, let T' be the tableau emerging from T by removing the derivation steps
applied to N, and its descendants, let S' = {G1,..., Gy, Ny} be the frontier of 77,
and let o’ be the composition of substitutions needed to generate T'. Obviously, o’ is
more general than the substitution o which is the composition of substitutions needed
to build 7. Hence there is a substitution § such that ¢'6 = o.

Then we know that L(N,, T")0 = L(N;, T), L(G;, T')0 = L(G;, T) for all 1 < 4 <
m, and L(A;, T')0 = L(A;, T) for all 1 < i < k, where Ay,..., Ay are the disjunctive
positive nodes occurring on open branches in 7’. But this means that D belongs to
the T-Context Check. Q.E.D.

With Theorem 5.9 we could now conclude that each tableau which was generated
using a local computation rule and violates weak blockwise regularity can be deleted
by the use of forward subsumption. But one can do better. In the following theorem
we show that in case local computation rules are considered, each tableau that violates
full blockwise regularity is deleted by subsumption.

Theorem 5.13 Let T be a tableau generated by a MES derivation S which uses a local
computation rule. If T is not blockwise reqular then there exists a fair derivation such
that T is subsumed by some tableaur in Sxo.

Proof.  Suppose a tableau T generated by a subsumption ME derivation violates
blockwise regularity. Then there exist two nodes, N; and Nj say, in one block of T
such that N; is an ancestor of Ny and L(Ny, T) = L(Ny, T). If N is a leaf node
of T we immediately can conclude the desired result by applying Theorem 5.9 and
Theorem 5.12 since we assume a local computation rule.
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Otherwise, let dy, ..., d, be the sequence of derivation steps applied to No and its
successors in order to generate 7. Since N; and N, belong to the same block, and
L(N1,T) = L(Ny, T) it is obviously possible to apply a sequence of (unrestricted)
derivation steps di,...,d, directly to N; where d] equals d; except that d; uses the
substitution ¢ which is the composition of all substitutions used to generate 7. Let
T' denote the resulting tableau. Since a local computation rule is assumed (derivation
steps can only be applied to N7 and its successors until each branch containing Ny is
closed), it is easy to see that 77 < T must hold.

Then, there also exists a tableau T" which is more general than T’ and which is
generated by applying a derivation df,...,d] to Ny where d equals d] but uses a
MGU (note that the application of such a derivation is possible since we assume local
computation rules to be stable under substitution). Clearly, 7”6 < T holds for some
substitution 6.

Unfortunately, it is not clear that 7" is contained in Sy, because its generation
might be pruned. We can show however that in this case there exists another tableau
in Se which subsumes 7. Let T} be the tableau generated after d for 1 < i < n.
Suppose T/ is subsumed by some other tableau T; € Soo. If 1 = n, T; immediately
also subsumes T and we are done.

If 1 < n we distinguish two cases. Let OB; be some subset of OB(T}') — b where
b is the branch to which df,, is applied. If OB(T;f) > OB; for some substitution ¢
(case 1), then T; also subsumes T and we are done. Otherwise (case 2), it is possible
to apply a derivation step d to T which corresponds to the application of d’ ; to
T;. The resulting tableau T;;; obviously subsumes the tableau T} ,. If T; is not
persistent, it is pruned by some other tableau T,. But this tableau T, also subsumes

1. Hence in all cases we either know that T is subsumed by some persistent
tableau or that T; , is subsumed by some persistent tableau. In the latter case we

can iterate our argumentation for ¢ + 1,7 + 2,... until we found a persistent tableau
which subsumes T (note that T} = T). Q.E.D.

Note, however, that this theorem does not imply that an additional check which
discards non-regular tableaux would be useless. The fairness condition of MES only
guarantees that the subsuming tableau is generated at some point during a derivation.
Hence it might not be possible to subsume T immediately after its generation (and
therefore further tableaux might be built from 7). Instead it could be removed
immediately by an additional check for blockwise regularity.

5.1 Reachability Analysis

The disjunctive positive refinement in fact considerably reduces the amount of literals
which are needed for reduction steps during ME deductions. However, there are
situations where even disjunctive positive ancestor literals can be ignored. Such a
situation is illustrated in the following example.
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SN SN
(a)

—gq(a) —r(a) —gq(a) —r(a)
N N
9(a)  p(y) g(a)  p(2)
N
—p(2) p(f(2))

Figure 9: Tableaux for Example 5.14

Example 5.14

(1) r(a) «

(2) q(a) — p(f°(b))
(3)  p(f(») < p(2)

(4) q(a),p(y) «

(5) — q(z),7(z)

The task is to find a refutation of the above clause set with top-clause (5). Applying
an initialization step and an extension step which uses clause (4) results in the tableau
depicted in Figure 9 on the left hand side. A further extension step applied to the
open goal p(y) gives the tableau T which is shown on the right. Unfortunately we now
cannot apply the same arguments as in Example 5.1 in order to prune the derivation.
This is because p(z) is disjunctive positive. However, it is easy to verify that no open
goal generated during a subrefutation for p(f(z)) can be made complementary to p(z).
Taking the disjunctive positive refinement into account, this means that none of the
ancestors in T is relevant for the application of reduction steps; hence the derivation
can be pruned. (End Example)

In order to identify the ancestor literals which might be used by a reduction step we
use the concept of reachability originally proposed in [Neugebauer, 1992].'® Intuitively
speaking, a literal L is reachable from a literal K if L may occur as subgoal of K.

Definition 5.15 (Reachability, Relevance) Let K be a literal and S a clause set. The
set of literals which are reachable from K (in S) is defined inductively.

e K is reachable.

o If a literal L is reachable and there exists a literal L’ contained in a clause
C € S such that L? and L' are weakly unifiable, then all literals in C — {L'}
are reachable, too.

e No other literals are reachable.

'8Similar concepts have been studied in [Bibel and Buchberger, 1985] and [Sutcliffe, 1992].
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We call a node N in a tableau T relevant, if the label of N can be made comple-
mentary to a literal which is reachable from some open goal in 7. (End Definition)

Clearly, if for some open goal G, there is no literal reachable from G which can be
made complementary to a disjunctive positive ancestor G’ of G, then (an instance of)
G’ definitely cannot be used for a reduction step during a subrefutation for G. Thus,
reachability is a useful means to check which ancestor literals may become relevant to
find a subrefutation for an open goal. In a similar form it has been successfully used
in [Sutcliffe, 1992] to detect goals whose subrefutations can be found by exclusively
applying Horn clause techniques.

Example 5.16 We continue Example 5.14. The literals reachable from the literal
p(f(2)) of clause (3) are the literals g(a) in clause (2), =r(z), and the literal p(f(2))
itself. Hence, we learn that during a subrefutation of p(f(z)) (in the tableau depicted
in Figure 9 on the right hand side) no open goal can be made complementary to (an
instance of) p(z). Therefore, no ancestor in the tableau is needed for the application
of reduction steps and the derivation can be pruned. (End Example)

Summarizing, we can define a variant of the T-Context Check, called T*-Context
Check, whose definition equals Definition 5.4 except that the term “disjunctive posi-
tive” is replaced by “disjunctive positive and relevant”.!®

Corollary 5.17 The completeness of blockwise reqular ME is preserved even if each
derivation belonging to the T*-Context Check is pruned.

Note 5.18 Note, however, that we did not claim that the completeness of blockwise
and disjunctive regular ME is preserved by the T*-Context Check (this is only of
interest if disjunctive regular ME is complete). This is only the case if we restrict
disjunctive regularity as follows: After an application of the T*-Context Check, the
irrelevant disjunctive positive literals contained in the considered branch must not be
used to check disjunctive regularity. (End Note)

Note 5.19 Given a clause set S, most of the work needed to examine whether some
literal L is reachable from another literal K can be shifted into a preprocessing step.
One has to build up a table containing one row and one column for each literal in the
clause set. An entry of this table is set to 1 if the literal corresponding to the column
is reachable from the literal corresponding to the row, otherwise to 0.

At runtime, given an instance Ko of a literal K in S, there are two possibilities
to check whether another literal L is reachable from Ko. The first (and less precise)
possibility is to ignore the substitution ¢ and to look up the table entry for K and L.
If one does not want to neglect o, one has to check (by inspecting the table) whether L
is reachable from a literal K’, where K’ occurs in a clause C' which contains a further
literal L' which is weakly unifiable with K %o. (End Note)

19The T*-Context Check is a proper generalization of a loop check proposed in [Briining, 1993].
The loop check presented there augments the Context Check of [Besnard, 1989] by a reachability
analysis but does not make use of the positive refinement of ME.
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6 Experimental Results

Model Elimination with Subsumption. The ME calculus with forward and back-
ward subsumption (MES) of Section 4 is implemented in our “The_Mission” prover
(Theorem proving by Model Elimination with Subsumption). The_Mission features
general theory handling as described in [Baumgartner, 1995 |, lemmas, factorization
and a built-in weak regularity check. As discussed previously, the subsumption mecha-
nisms covers blockwise regularity. Nevertheless we have also a built-in weak regularity
check in order to relate the pruning power of subsumption to the more easily imple-
mentable (and widely used) special case of weak regularity. In order to explore the
power of subsumption proper, we employed neither lemmas nor factorization in the
examples below.

The_Mission was designed as an experimental device for examining the use of
subsumption in connection with model elimination. Hence the main requirement
was flexibility, not performance. Therefore it is written as a Meta-Interpreter in
Prolog. Due to the need for a sound unification we used ECRC’s Eclipse-Prolog. In
order to speed up retrieval of candidates for subsumption checks, we employed term
indexing [Graf, 1994]. Nevertheless, our impression is that the implementation could
be speeded up significantly by using an implementation language which supports
destructive data manipulation better than Prolog. Hence the runtimes given below
should not be read as the ultimate results for ME with subsumption.

One interesting feature of the Meta-interpreter approach is that it allows to guide
the search better than usual PTTP-approaches. More specifically, we employ a weight-
ing function which selects among all tableaux in store the lightest one, and applies
all possible inferences to some selected branch in that tableau. A fairly good (and
fair!) strategy is to select a minimal tableau wrt. the sum of “depth” (i.e. the length
of a longest branch) and “width” (i.e. length of the front). This function was used
throughout all our experiments.

In the construction of the tableaux sets we trace for each tableau the history of
its generation. That is, if a new tableau is stored, we keep the information from
which tableau it was generated and by what kind of inference. Thus, for each tableau
we have a list of its predecessors which lead to its generation. This list is useful
not only for printing a trace at the end, but also supports a heuristic for forward
subsumption: it turned out (empirically) that without loosing too many successful
subsumption checks it suffices to restrict the check whether a tableau T is subsumed
by some already stored tableau to the predecessors of T'. This is plausible, because
tableaux not being in this predecessor relation are often developed to tableaux which
are not similar enough for a successful subsumption check. A notable exception is the
example in Table 1 labeled with “~”.

Table 1 summarizes the results. The examples run are almost the same as for the
T-Context Check prover above. The examples run were all taken from the TPTP
library [Sutcliffe et al., 1994].

Column 1 contains the problem name. If marked with a star (
a clause different from the clause labeled as “theorem” in the TPTP-library, because
otherwise a proof wouldn’t exist. Column 2 and 3 contain the results for plain dis-
junctive positive ME without and refinements (but reduction steps are allowed to

“7) we have chosen
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DPME

Plain Block. Reg. withSubsumption SETHEO
Problem Inf. ‘ Time | Inf. ‘ Time | Inf. ‘ Subs. ‘ Tvme | Inf. ‘ Time
NUMO020-1* | 58 <1 |42 1 42 8+0 | <1 |52 <1
NUMO21-1* | L 2163 | 5.6 1870|308 + 15 | 10 574 <1

NUMO002-1 | 1639 | 4.5 748 | 2.5 711 2+0 |45 817 <1
RNGO010-1* | 124 | <1 |94 <1l |94 13+0 | <1 |3097 <1
GRPO031-2 | 671 |1.9 047 | 1.5 695 | 256+6 |5.8 6290 <1

PLA001-1 | L L 1092 1934+ 0 | 11.7 | 39474 |1
PLA003-1 | 970 |2.8 362 | 1.2 66 3040 | <1 |391 <1
MSC001-1 | L L 860 21448 |18 108481 | 10
MSC001-1 3254 | 668 447 | 29

MSC002-1 | 1565 | 4.9 1565 | 4.9 135 3+0 | <1 [495 <1
MSCO006-1 | 845 |2.3 937 | 1.5 1263 | 90+ 24 | 11 4526 <1

*: other clause than the given ‘theorem’ clause used as top clause.

~: forward subsumption among ALL tableaux generated so far.

L: abort due to memory overflow.

Inf.: Number of inferences (extension + reduction steps) to find proof.
Time: Runtime on a Sparc 10-20 in seconds.

Subs.: M + N means M (N) forward (backward) subsumptions.

Table 1: Table of runtime results for various versions of the disjunctive positive re-
finement of ME (DPME) in combination with subsumption deletion.

non-disjunctive nodes as well). In column 4 and 5 weak blockwise regularity was
used. Column 6, 7 and 8 list the results for forward and backward subsumption ME
with the heuristics and tableaux selection function as described above. Note again
that The_Mission enumerates tableaux, not derivations. Hence we found it interesting
to relate our approach to SETHEOQ [Letz et al., 1992], a high inference rate, compiling
ME prover which enumerates derivations (column 9 and 10). We used version 3.2. in
standard flag setting. This setting includes clause set preprocessing (reordering) and
employs regularity, subsumption and tautology constraints. We switched off “folding
up” (a generalized form of factorization) since it did not improve the results signifi-
cantly. Furthermore, the results wrt. inference steps are better related to our prover,
where we also switched off factorization.

Let us comment on the runtimes in Table 1. When comparing DPME with DPME
with weak regularity it is confirmed once more that the (weak) regularity check con-
siderable cuts the number of inferences to find a proof. Since it is cheap to implement,
runtimes improve roughly to the same degree. On the other hand, the forward and
backward subsumption proper are not that cheap to implement. It is thus not sur-
prising that runtimes can easily get longer. There seems to be a turnover-point (cf.
MSCO002-1) where the benefits of saved tableau expansions due to subsumption out-
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weigh the additional costs. However, we are optimistic to improve on the runtime
results by a more clever implementation.

Let us now turn to the inference counts. The result for DPME with subsumption
show that in almost all cases the number of inferences to find a proof decreases
considerable. Hence, the regularity check does mot cover the subsumption deletion
to a large degree. In the best case (MSC002-1, “Blind hand problem”), subsumption
deletion helped to cancel the inference number to less than a tenth. In other cases,
we had to abort due to memory overflow when not using subsumption. However,
there are examples where subsumption deletion is counterproductive (MSC006-1, and
others not mentioned in Table 1). In order to explain this phenomenon we have to
point out that for the subsumption test only disjunctive positive ancestor literals are
considered, whereas reduction steps are allowed to any literal along a branch?® (cf.
Note 3.3). Hence, it might happen what a tableau containing important ancestor
context is prevented from further expansion due to subsumption.

Finally, the last two columns contain the data for SETHEO. Since SETHEO
enumerates derivation by iterative deepening (wrt. tableau depth), and all but the
very last tried derivation is without success, a huge number of inferences (extension
plus reduction steps) results. In the extreme case (MSC001-17) about 150 as many
inferences were necessary.

To conclude, we think that subsumption is a promising direction to improve model
elimination based theorem proving.

T-Context Check. The T-Context Check has been integrated into a prototypical
implementation of DPME. This proof system additionally allows for checking (full)
blockwise regularity in order to relate the pruning power of the T-Context Check to the
one of blockwise regularity. Since the main purpose of our investigations was to explore
the usefulness of the T-Context Check rather than to built a high-performance system,
we used PROLOG as programming language. A further simplification resulted from
the fact that we restricted our proof system to local computation rules. This allowed
us (as mentioned in note 5.3) to implement the T-Context Check in a straightforward
way.

Table 2 summarizes the results. All of them were computed on a SUN SPARC-
station 20. The first column contains the names of the used problems. They include
almost all of which were used for the experiments with The_Mission; the additional
ones were also taken from the TPTP library [Sutcliffe et al., 1994]. The second
column indicates the applied search strategy. We found it interesting to employ two
different (widely used) search strategies: “d” stands for the usage of an iterative
deepening search strategy iterating over the depth of the generated tableaux whereas
“l” means that the search strategy iterates over the length of the derivation. The
third column contains the maximal tableaux-depth/derivation-length explored by our
prover. An additional “*” indicates that a proof was found at the given limit. The
results generated without using the T-Context Check are given in the fourth and fifth
column. The sixth and seventh column show the corresponding numbers produced
by applying the T-Context Check additionally. Finally, the last column of the table

20Optional reduction steps help to find a refutation more quickly in almost all examples.
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lists the number of derivations which where pruned by the T-Context Check. During
our experiments, we always used only the given ‘theorem’ clauses (that is the clauses
which are marked as ‘theorem’ in the TPTP library) as top clauses, but no other
negative clauses.?!

To comment our results, there are some examples which obviously benefit from
the use of the T-Context Check. For instance, this is the case for PLA001-1 or
MSC002-1 were proofs can be found with considerably less inference steps and time
(for comparison see also the number of inference steps used by SETHEO in table 1).
In other cases, where a proof could not be found (within the given inference/depth
limits) the number of inference steps is reduced to a large extent, e.g. see NUM020-1
or LCLO038-1. These results demonstrate that blockwise regularity is in many cases
not able to cover the T-Context Check. Clearly, there are also examples where the
T-Context Check is not very useful; however, the run-time results show that the
additional computational overhead was neglectable in all cases.

Summarizing, these experiments demonstrate, that a weak variant of subsumption
deletion (namely the T-Context Check) can be useful for reducing both inference
steps and proof time. A comparison of table 1 and table 2 however shows that the
pruning power of subsumption deletion as used in The_Mission is in fact stronger
than the one of the T-Context Check (e.g. see PLA001-1 or MSC002-1). Therefore
it might not only be interesting to improve the implementation of The_Mission to
reduce the computational requirements for (full) subsumption deletion. Additionally
it might be worthwhile to think about something “between” the T-Context Check
and subsumption deletion, that is an extension of the T-Context Check which retains
its simplicity (in view of an efficient implementation) and covers more of the cases
were subsumption deletion can be applied successfully.

7 Discussion

In this paper we successfully adapted the notion of subsumption known from resolution
based approaches to Model Elimination. It soon became clear that an approach
comparing entire Model Elimination tableaux by subsumption would be useless. On
the other hand, completeness is lost if only the open goals of tableaux without their
ancestors, i.e. the frontiers are taken into account.

In order to overcome these problems we first introduced a variant of Model Elimi-
nation which minimizes ancestor literals. In [Plaisted, 1990], D. Plaisted showed that
it suffices to keep only positive literals as ancestors. This obviously allows to define a
larger subsumption relation because only the positive ancestors contained in tableaux
have to be obeyed for the subsumption tests. We further improved on this by restrict-
ing the ancestor context even more, namely to those positive literals which stem from
disjunctive clauses. Importantly, this allows to ignore all positive ancestors which
stem from definite clauses. The resulting calculus, the so-called disjunctive positive
refinement of model elimination was proved to be sound and complete.

2INote that this implies that the results concerning NUM020-1, NUM021-1, and RNG010-1 in
table 1 and table 2 cannot be compared. In case another negative clause is used as top-clause, the
proofs for these theorems can be found fast (0.1, 6.1, and 0.5 seconds, respectively) with the proof
system containing the T-Context Check.
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Block. Reg. only | plus T-Context Check
Problem | M. | Limit | Inf. | Time | Inf. | Time | Pruned
NUMO020-1 [1 |9 176489 | 205.1 | 96219 [ 111.1 | 4418
d |4 9382 6.0 [2447 1.6 |45
NUMO021-1 [1 |8 47096 | 77.9 | 31780 |51.6 | 1409
d |4 10787 |87 2883 |23 |29
NUMO002-1 |1 | 7% 16897 [ 19.0 | 16897 [19.6 |0
d | 3* 649 0.6 | 649 0.6 |0
RNGO010-1 |1 |6 23958 | 42.7 | 22978 |41.2 | 220
d |4 35853 | 63.6 | 35853 |64.4 |0
GRP031-2 |1 | 7* 1871 16 1871 [1.8 |0
d | 3* 2716 1.9 2716 |20 |0
GRP040-3 [1 |5 10866 | 25.1 [9917 [23.2 |27
d |3 248168 | 159.9 | 246759 | 158.7 | 101
PLAO0I-1 |1 | 12% | >500000 | >600 | 39803 | 89.9 | 9409
d | 7* 6031 72 [1709 |23 | 130
PLA003-1 [1 | 7% 343 0.8 |[127 0.3 |18
d | 7* 658 1.0 197 0.3 |18
COL005-1 [1 |8 79406 | 75.1 | 61491 |59.8 |13
d |4 248168 | 156.1 | 246759 | 158.1 | 101
LCL105-1 [1 |14 72257 | 143.1 | 69435 | 140.1 | 639
d |5 76845 165.9 | 66700 | 145.0 | 810
LCLO38-1 |1 |20 131020 | 254.7 | 115180 | 245.8 | 2106
d |7 >250000 | >600 | 86551 | 107.7 | 3598
MSC001-1 |1 |10 12873 [ 38.9 | 7406 |22.6 |42
d | 6* 4911 57 2469 3.0 |21
MSC002-1 |1 [ 11* | 5771 127 [1625 [3.8 |20
d | 6* 777 0.9 |244 0.3 |6
SET012-2 [1 |7 22764 [ 77.6 | 22716 |77.7 |62
d |5 28200 | 21.5 | 28200 |21.6 |0
CAT001-1 |1 |7 103720 | 278.0 | 103514 | 283.7 | 25
d |4 715823 | 745.5 | 715823 | 754.0 | 0
CAT015-3 |1 |5 23556 | 54.5 | 17644 | 39.5 | 366
d |4 >500000 | >600 | 345555 | 205.7 | 605

Table 2: Table of results for an implementation of DPME in combination with the
T-Context Check.
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With this refinement of Model Elimination at hand, we defined a calculus which
integrates forward and backward subsumption. This required a new organization
of the proof process: Instead of constructing ome tableau by nondeterministically
guessing the inference steps and backtracking on failure, all tableaux that can be
built are stored explicitly. By this we changed Model Elimination from an enumeration
procedure into a saturation procedure which allows to delete all generated tableaux
that are subsumed by some other generated tableau. It was proven that using a fair
selection strategy, this new calculus, called subsumption Model Elimination, is sound
and complete.

As an alternative to subsumption Model Elimination we proposed a variant of
forward subsumption which, instead of comparing entire frontiers (together with their
disjunctive positive ancestors), aims at pruning a derivation if a subrefutation for only
one open goal would constitute a subrefutation for one of its ancestors. We proved
that the use of the resulting pruning technique, the T-Context Check, does not affect
completeness of disjunctive positive Model Elimination. Further, we showed that the
T-Context Check is an instance of forward subsumption (as used in subsumption
Model Elimination) in case local computation rules are employed. We also related a
very important refinement, namely regularity, to the Context Check and the use of
subsumption. We were able to prove that weak blockwise regularity is an instance
of the T-Context Check and that each tableau which violates blockwise regularity
is deleted by the use of subsumption. Finally, we proposed a refinement of the T-
Context Check which allows to ignore even some of the positive disjunctive ancestors
in a tableau by applying a reachability analysis.

The relations between the investigated refinements of Model Elimination are de-
picted in Figure 10. There are three top elements, namely the forward and backward
subsumption, the blockwise regularity and T*-Context check, and the disjunctive and
blockwise regular refinement. According to the semantics of the “—” notation, these
are the most restrictive, and hence most attractive, variants. The completeness of
the disjunctive and blockwise regular refinement is still open. The remaining two
variants are incomparable wrt. pruning power, but they both are complete. These are
the main results of this paper. These calculi are radically different, because the one
enumerates tableaux and the other enumerates derivations. Hence we will not prefer
the one to the other and we conclude that both of them are interesting.

To illustrate the potential of the proposed refinements we presented comprehensive
experimental results which confirm that in many cases search spaces are considerably
reduced. In particular, our experiment show that subsumption deletion in many
cases allows to concentrate on only few tableaux which can be built with only few
inference steps. Further, the run-times given in table 2 show, that weaker variants
of subsumption deletion can be implemented very easily without resulting in high
computational overheads.

Subsumption deletion, however, not only aims at reducing search spaces to find
proofs more easily. Additionally, it is sometimes quite useful to detect that a theorem
cannot be proven. In fact, it has been shown in [Bol et al., 1991] that (a restricted
variant of) the T-Context Check prunes every infinite Model Elimination derivation of
various natural classes of clause sets without function symbols. These classes include
Horn-clause sets that do not introduce new variables during a derivation (the so-called

43
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T-Context Blockwise
Check Regularity (Th. 3.5)
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Weak Blockwise
Regularity

Disjunctive Positive
Model Elimination

Figure 10: Relating the “pruning power” of the various refinements. A relationship
“A — B” means: whenever a derivation is pruned by the refinement A then it is
also pruned by the refinement B. Either this relation holds trivially, and in this
case the link remains undecorated, or else the respective result from the text is cited.
For trivial links a respective completeness result is stated at the more restrictive
refinements, which entail completeness of the refinements below them.

nvi clause sets), and Horn-clause sets that allow at most one recursive call per clause
(the so-called recursion-restricted Horn-clause sets which, for example, include all
Horn-clause sets of which all rules have a body with at most one literal)?2. These
results are relevant for the non-Horn case, too, since it happens quite frequently that
a subproblem occurring during the deduction of a non-Horn clause set can be proved
using extension steps only because of its structure and the use of the disjunctive
positive refinement (and therefore this subproblem “behaves” like a Horn clause set).

Due to theorem 5.9 such results can be immediately applied to subsumption Model
Elimination in case local computation rules are used. Further, it might be possible to

22T achieve the completeness result one has to assume a selection function which selects the
recursive literal at last.
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prove much stronger results for subsumption Model Elimination since (as depicted in
Figure 10) the pruning power of forward and backward subsumption is stronger than
the one of the T-Context Check. This can be nicely illustrated by the second clause
set (“equality”) given in Example 4.5. As we have shown there, the satisfiability of
this clause set can be decided by subsumption Model Elimination. This is not the case
for ordinary Model Elimination augmented by the T-Context Check. The T-Context
Check only allows to (roughly) halve the number of applied inference steps but is not
able to prune every infinite derivation.

8 Future Work

Equality. As always, much remains to be done. In Example 4.5 we identified, as
an instance of subsumption deletion, situations where extension steps with the cum-
bersome equality axioms are unnecessary. A respective restriction of paramodulation
which forbids paramodulation into and below variables was suggested. This has to be
investigated more rigorously.

Extended Subsumption. It is possible to extend the backward subsumption rule.
Suppose in a fair derivation T subsumes T’. Backward subsumption can be extended
to delete not only T', but also all tableaux which are generated from T, except for T'.
In order to be complete, forward subsumption has to be restricted to predecessing
tableaux. This calculus has to be defined formally.

Instantiations A problem which we have not tackled in this paper is the ability to
take into account instantiations of open goals which are caused by further derivation
steps. Even if some tableau T does not subsume another tableau 77, this might be the
case if substitutions are considered which are applied to T’ by additional extension
or reduction steps. In fact, it has been illustrated in [Briining, 1994] that taking such
additional instantiations into account can result in a considerable strengthening of
the pruning power.

Example 8.1 Consider a clause set containing the following clauses.

b)

r

) — r(
(2) q(c) < p(a),q(2)
(3) »p(y) <« qlc)
(4) — p(z),q(z)

Suppose that, after selecting clause (4) for an initialization step, a derivation D pro-
ceeds by applying three extension steps selecting the open goals —p(z), —¢(c) and
—¢(z) and the clauses (3), (2), and (1), respectively. The generated sequence of
multisets of open goals is



Since none of these multisets subsumes another one, subsumption is not applicable
(furthermore, the tableau generated by this derivation is not simply subsumed by an-
other tableau which can be constructed by applying different extension steps). How-
ever, the variable y occurring in multiset (c) is instantiated to a by the last extension
step. This instantiated multiset is subsumed by multiset (a). Thus, subrefutations
for the goals in (¢) which use this last extension step can be directly applied to the
elements of (a). Hence, D is redundant. (End Example)

Interestingly, it can be shown that a refined version of the T-Context Check, which
allows for considering additional substitutions, is able to prune every derivation that
violates full blockwise regularity. Recall that this is not the case for the T-Context
Check as defined in the section 5.

Answer Computing In [Baumgartner et al., 1995] the restart model elimination cal-
culus is used for computing answers. It is demonstrated there that computing an
answer for a given problem can be much harder than finding only a refutation (i.e.
proving that an answer ezists). It would be interesting to investigate the calculi
presented here wrt. answer computing.
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