
Automated Reasoning Support for
First-Order Ontologies

Peter Baumgartner
National ICT Australia (NICTA)

Fabian M. Suchanek
Max-Planck Institute for Computer Science, Germany

April 28, 2006

Abstract

Formal ontologies play an increasingly important role in demanding knowledge
representation applications like the Semantic Web. Regarding automated reason-
ing support, the mainstream of research focusses on ontology languages that are
also Description Logics, such as OWL-DL. However, many existing ontologies go
beyond Description Logics and use full first-order logic. We propose a novel trans-
formation technique that allows to apply existing model computation systems in
such situations. We describe the transformation and some variants, its properties
and intended applications to ontological reasoning.

1 Introduction

1.1 Motivation

Recent years have seen an increasing interest in formal knowledge bases (KBs). De-
manding application areas – notably the Semantic Web – will have to remain a vision
without powerful automated reasoning support.

The mainstream of research on automated reasoning focuses on ontology languages
that are also Description Logics (DLs), such as OWL-DL. Yet, there are good reasons
to also consider larger fragments of first-order logic as ontology languages. One rea-
son is the ability to add “rules” to the ontology, as in languages like SWRL [HB+04].
An example for a rule is the statement [GHVD03]: individuals who live and work at
the same location are home workers. This can be expressed as a Horn rule (clause)
homeWorker(x)← work(x,y)∧ live(x,z)∧ loc(y,w)∧ loc(z,w), but is not expressible in
current DL systems.

1

2 1 Introduction

Another reason for considering even full first-order logic is the existence of numer-
ous KBs that go beyond Description Logics. One example is the largest formal pub-
lic ontology available today, the Suggested Upper Merged Ontology SUMO [NP01].
SUMO is written in KIF, the Knowledge Interchange Format [KIF], which is basically
first-order logic with equality and some higher-order features. Together with its domain-
specific extensions, SUMO contains more than 20’000 terms and 60’000 axioms. Un-
fortunately, only limited automated reasoning is available today for first-order KBs. For
instance, to our knowledge, the only theorem prover applied to SUMO so far is Vam-
pire [RV01].

This situation seems somewhat surprising, given the demonstrated usefulness of de-
scription logic systems for KBs written in ALC -like languages [BCM+02]. Why has
this success story not been repeated for KBs in first-order logic? The answer from a
technical point of view might be that DL systems are so successful because they usually
decide the satisfiability problem of their input language. This is an important feature, as
it allows, for instance, to prove that a speculated subsumption relation between concepts
does not hold. Furthermore, it allows the “debugging” of KBs.

Although such decision procedures cannot exist for first-order KBs, reasoning sup-
port by automated theorem provers may be attempted nevertheless. Indeed, within the
Semantic Web framework a number of off-the-shelf first-order theorem provers have
been tested on various KBs, unsatisfiable ones and satisfiable ones1. The provers gen-
erally performed well in solving the unsatisfiable test cases. However, they often could
not solve the satisfiable ones, i.e., they did not terminate.

1.2 Contribution

To address the problem of non-termination of the prover, we propose a novel trans-
formation technique on first-order logic KBs that allows to compute models more of-
ten. Our transformation is rather general regarding the underlying system to be used.
We target at model computation systems as developed within the logic programming
community or at bottom-up clausal theorem provers as long as they support a (weak)
default negation principle. The rationale is to capitalize on these well-investigated tech-
niques and lift them to a more general language, viz., first-order logic, and strengthen
the model-building capabilities of such systems. Among the systems that are suitable
are dlv [CEF+97], smodels [NS96] and KRHyper [Wer03]. In our experiments we have
chosen KRHyper, simply because we know it best.

Our transformation is applicable to any first-order logic KB, but it is geared towards
application to first-order logic ontologies. It differs from the textbook transformation to
clause logic in several ways:

1. It transforms away equality, so that model generation systems can be used, even

1http://www.w3.org/2003/08/owl-systems/test-results-out

1.3 Related Work 3

though they usually do not include built-in equality handling.

2. Optionally, it respects a certain form of the Unique Name Assumption (UNA).
This is useful in the context of ontologies, when different constants are best con-
sidered to denote different objects.

3. It allows to avoid unnecessary Skolem terms, if an existentially quantified role is
already filled. This keeps the resulting models slim and meaningful.

4. It allows for a non-standard reading of existentially quantified formulas, namely
as integrity constraints. That is, the model building process can be instructed to
fail if an existentially quantified formula is not already fulfilled by the KB.

5. Finally, it allows for a “loop check”, by which infinite models can be avoided in
some cases by detecting finite ones.

1.3 Related Work

From a methodological point of view, we were helped to achieve our results by consid-
ering insights and combining results and techniques from automated theorem proving,
description logic and logic programming. For instance, we employ default negation, as
available in logic programming systems, as a tool to realize the mentioned “loop check”,
which is modeled after the “blocking” technique commonly found in Description Logic
systems.

Because of the use of default negation, we cannot use a theorem prover for clas-
sical (first-order) logic. Since the ontology may contain “disjunctive” formulas like
∀x (man(x)∨woman(x)← person(x)), Horn-logic is not expressive enough and we
need a system that accepts disjunctive programs. Thus, we cannot use, e.g., the widely
available Prolog-like logic programming systems based on SLDNF-resolution (see e.g.
[Llo87]), which support default negation but do no not support disjunctive programs.

An approach closely related to ours in methodology is the translation approach in
[GHVD03]. It allows to translate certain DL fragments to a certain class of logic pro-
grams. However, this approach is restricted to definite programs, i.e. it cannot treat
disjunctions as in the example above. This limitation could easily be overcome by trans-
lating to positive disjunctive logic programs (DLPs) instead. Yet, the method has a more
severe limitation, which essentially forbids existential quantification to introduce new in-
dividuals. For example, consider the expression “every person has a father”, expressed
as a DL axiom

personv ∃father .>

or as a first-order logic formula

∀x∃y (father(x,y)← person(x)) .

4 2 Preliminaries

Such formulas cannot be treated by the method in [GHVD03] and thus are not part of
their input language. The technical difficulty with formulas of this kind is that they
introduce Skolem terms (e.g. f(x), intended to denote the “father” of an object x), which
in general lead to non-termination of model computation systems. From that point of
view, the purpose of our approach is to address this very problem: to achieve termination
even in presence of existential quantifiers.

Our approach is somewhat related to model construction by hyper resolution
e.g. [FL93, GHS02, GHS03]. One difference is our use of default negation, which is
not available in hyper resolution systems. The perhaps closest related work is the trans-
lation scheme in [BB04]. However, that work is concerned with one specific ontology,
FrameNet, and it is shown how to translate it to a logic program. The approach in this
paper is thus much more general.

The rest of this paper is structured as follows. Section 2 contains preliminaries.
Section 3 is the main part, it contains the transformations. In Section 4 we turn to the
treatment of equality. In Section 5 we report on first experiments carried out on the
SUMO ontology. Finally, in Section 6 we draw some conclusions.

2 Preliminaries

We use standard terminology from first-order logic and automated reasoning (see e.g.
[Llo87]). Our formulas, and specifically clauses, are built over a signature Σ, usually left
implicit in the following. We assume that Σ contains a distinguished nullary predicate
symbol false and a 2-ary predicate symbol ≈, equality, used infix. We deviate from the
standard definitions by distinguishing between constants and nullary function symbols.
This allows us to take the Unique Name Assumption (UNA) into account: constants
are subject to the UNA, i.e. no model shall assign true to c1 ≈ c2 for any two different
constants c1 and c2. Nullary function symbols, by contrast, are not affected by the UNA,
so that our definitions are compatible with the standard semantics.

A (program) rule is an expression of the form H1 ∨ ·· · ∨Hm ← B1, . . . ,Bk,not
Bk+1, . . . ,not Bn, where m≥ 1, n≥ k≥ 0 and Hi, for i = 1, . . .m, and B j, for j = 1, . . . ,n
are (possibly non-ground) atoms (over Σ). Each Hi is called a head literal, and each
B j is called a body literal. The negative body literals are those that include the de-
fault negation operator not, the other body literals are the positive ones. We write
H ∨H ← B,B,not B′,Bnot to mean a program rule containing the head literal H, the
positive body literal B and the negative body literal not B′. In a positive rule it holds
k = n. We treat the terms “positive rule” and “clause” as synonyms.

A disjunctive logic program (DLP), also just program, is a finite set of rules. A
positive DLP consists of positive rules only; it is thus the same as a clause set. In
a normal program each rule has exactly one head literal. We consider only domain
restricted programs, where every variable occurring in a rule must also occur in some

5

positive body atom B1, . . . ,Bk. This is a common assumption and is present in systems
like KRHyper [Wer03] and smodels [NS96].

Throughout this paper we restrict attention to Herbrand interpretations. We repre-
sent a Herbrand interpretation – from now on just “interpretation” – as the set of its true
(ground) atoms, which must not contain the atom false. A DLP P stands for the set of all
ground instances of every program rule in P , which is denoted by P gr. In our (stratified)
setting, a possible model [Sak90] is defined as follows: We say that M satisfies a ground
rule H ← B,Bnot iff B ⊆M and M ∩{B |not B ∈ Bnot}= /0 implies H ∈M . Further,
M is a perfect model of a ground normal program P iff it satisfies every rule in P and
is a minimal set with that property. Now, for a given DLP P , a split program of P gr is a
ground normal logic program that can be obtained from P gr by deleting from each rule
all but one head literal. An interpretation M is a possible model of P iff it is a perfect
model of some split program of P gr.

As an example, consider the following (propositional) program:

whiskey∨water← thirsty,not hungry (1)

water← whiskey (2)

thirsty← (3)

Program rules can be read operationally in a top-down or in a bottom-up fashion. The
top-down paradigm (of normal programs) became popular with Prolog and its underly-
ing SLDNF Resolution (see [Llo87]). The bottom-up paradigm became popular with the
observation that it often better realizes the idea of purely declarative programming. The
purely declarative nature renders these approaches suitable in particular for knowledge
representation applications, which is our interest here.

A bottom-up evaluation of the above sample program assigns true to thirsty, be-
cause the (empty) body of rule (3) is (trivially) satisfied, and so its head thirsty must
be satisfied. But then, as hungry is false (by default), the body of rule (1) is satisfied,
and so must be its head. For that, there is a choice of satisfying whiskey or water (or
both). Notice, in the first case rule (2) becomes applicable and water must become true,
too. In sum, we have the two models, {thirsty,whiskey,water} and {thirsty,water}.
Indeed, the literature discusses various alternatives to assign semantics to DLPs. For
instance, the stable model semantics would reject the first model, because it is not a
minimal one. The possible model semantics admits both. None of them admits the clas-
sical model that assigns true to hungry and thirsty but nothing else (the intuition is that
there is no rule to justify the truth of hungry). Either semantics is usable in our case.
Furthermore, the programs constructed below will be stratified,2 which guarantees that
they will have a stable/possible model if and only if the original ontology has a classical
first-order model (which is its intended semantics.) Without going into details, we only

2Stratification means that the call-graph of a program does not contain circles containing negative body
atoms.

6 3 Translating First-Order Formulae to DLPs

note that the KRHyper system [Wer03], which we used for our experiments, computes
possible models of domain-restricted stratified DLPs, and thus is suitable in the sense
just mentioned. We further note that the above notions concerning semantics of logic
programs lift to first-order logic by letting a rule stand for the set of all its ground in-
stances, i.e. by the set of variable-free rules obtainable by replacing each variable in the
rule by some variable-free term, in all possible ways. A good overview on DLPs can be
found in [Nie99] (although on normal programs only). A more comprehensive textbook
is [Bar03].

3 Translating First-Order Formulae to DLPs

We assume as given some ontology, e.g. an OWL ontology. The ontology may contain
facts as well as non-taxonomic axioms and it could contain “rules” (cf. the introduction).
We assume it to be written as a sentence in first-order logic. This section describes
how to transform the first-order sentence to a DLP. The first steps of the transformation
are concerned with flattening the possibly deeply structured sentence towards the flat
form of DLP rules. An important, non-standard aspect hereby is to isolate and name
subformulas containing existentially quantified variables. Once we described how to
isolate these subformulas, Section 3.1 proposes four different ways of translating them
to a DLP.

We first fix some notation. If x is a sequence of variables x1, . . . ,xk, for some k ≥ 0,
then ∀x denotes the sequence ∀x1 · · ·∀xk. The expression ∃x is defined analogously, and
Qx stands for any sequence Q1x1 · · ·Qkxk, where Qi ∈ {∀,∃}, for all i = 1, . . . ,k, k ≥ 0.
When ψ is a formula, the notation ψ(x) means that ψ contains no more free variables
than those in the sequence of variables x. We assume, without loss of generality, that the
first-order logic sentence φ is given in prenex negation normal form. Thus, it is of the
form φ = Qz ψ(z), where Qz is the quantifier prefix and ψ(z) is a quantifier-free formula,
built with logical operators ∧, ∨ and ¬, where ¬ occurs only in front of atoms.

We define our transformation τ(φ) as follows. The quantifier prefix Qz may contain
an existential quantifier, or not. If it does not, set τ(φ) = {φ}. Otherwise φ can be written
as

φ = Qz ψ(z) = ∀x∃yQ′z′ (∆(x)∨ψ
′(xyz′)) , (1)

where Q′ is either empty or starts with a universal quantifier. The intention is to separate
Ψ into two parts, the part ∆ containing universally quantified variables only, and the
remainder Ψ′ containing at least one existentially quantified variable. We may assume
that ψ′(xyz′) is not a disjunction such that one of its immediate subformulas contains at
most the variables x, because then this subformula could be part of ∆. Notice that by
replacing ψ(z) in φ by false∨ψ(z), the form (1) is indeed a general form (∆(x) could be
the atom false).

7

Suppose φ is of the form (1) and consider the following sentences derived from φ:

φ1 = ∀x∃y(∆(x)∨def ψ′(x,y))

φ2 = ∀x∀yQ′z′(¬def ψ′(x,y)∨ψ
′(xyz′))

φ3 = ∀x∀yQ′z′(NNF(satψ′(x,y)∨¬ψ
′(xyz′))) ,

where def ψ′ and satψ′ are fresh predicate symbols of appropriate arity. The intention is
to introduce in φ2 a name def ψ′ for the subformula Ψ′, which allows to replace Ψ′ in φ by
def ψ′ . Regarding the formula φ3, Q′z′ denotes the quantifier prefix obtained from Q′z′
by replacing every universal quantifier by an existential one and vice versa, and NNF
converts its argument to negation normal form. The formula φ3 will play a role only later,
in Section 3.1.2. Roughly, the purpose of the new name satψ′ is to identify situations
when Ψ′ holds true. One can prove that these transformations preserve satisfiability.
More precisely, φ is satisfiable if and only if φ1∧φ2∧φ3 is satisfiable.

For illustration, consider the formula

∀x(p(x)→∃yq(x,y)∨ r(x)) . (1)

We rewrite it as

φ = ∀x∃y(¬p(x)∨ r(x)∨q(x,y))

so that it is of the form (1) with ∆(x) = ¬p(x)∨ r(x) and ψ′(x,y) = q(x,y). We derive
the following sentences:

φ1 = ∀x∃y(¬p(x)∨ r(x)∨defψ(x,y))
φ2 = ∀x∀y(¬defψ(x,y)∨q(x,y))
φ3 = ∀x∀y(satψ(x,y)∨¬q(x,y))

It is not too difficult to see that already φ1 and φ2 together are equisatisfiable with φ. Re-
garding φ3, suppose that, say, q(a,b) holds true in some interpretation. By φ3, satΨ(a,b)
must be true as well, which can be exploited to conclude that the formula ∃y q(a,y) holds
true. (As said, φ3 can be ignored for now, but it will be crucial for the improvement in
Section 3.1.2 below.)

Recall that ∆ is a part of φ that contains universally quantified variables only. Now,
∆ can be written as3

∆ = ¬B1(x)∨·· ·∨¬Bm(x)∨∆
′(x),

for some formula ∆′, negative literals ¬Bi, for all i = 1, . . . ,m, m≥ 0, where m is chosen
as large as possible. Notice we allow m = 0. Hence ∆ can indeed be written this way.

3Similarly to above, we allow ∆′(x) to be false.

8 3 Translating First-Order Formulae to DLPs

We write ∆ this way with the intention to turn it into a flat formula, basically an
implication between atoms. While its literals ¬B1(x), . . . ,¬Bm(x) pose no problems, its
subformula ∆′(x) need not be a disjunction of atoms. To overcome this problem, we
introduce a fresh name for ∆′(x). More precisely, from ∆ derive the formulas

∆1 = ¬B1(x)∨·· ·∨¬Bm(x)∨def ∆′(x)
∆2 = ∀x(¬def ∆′(x)∨∆

′(x)) ,

where again def ∆′ is a fresh predicate symbol of appropriate arity. In the example, this
yields:

∆1 = ¬p(x)∨def∆(x)
∆2 = ∀x (¬def∆(x)∨ r(x))

The next step is to replace ∆ in φ1 by ∆1, which yields

φ
∆1
1 = ∀x∃y(¬B1(x)∨·· ·∨¬Bm(x)∨def ∆′(x)∨def ψ′(x,y)) .

In our example,

φ
∆1
1 = ∀x∃y (¬p(x)∨def∆(x)∨defψ(x,y)) .

Above we already defined τ(φ) = {φ} for the case that Qz does not contain an ex-
istential quantifier. We are now ready to define τ(φ) if Qz does contain an existential
quantifier:

τ(φ) = {φ∆1
1 ,∆2}∪ τ(φ2)∪ τ(φ3) .

In our example, this boils down to

τ(φ) = {∀x∃y (¬p(x)∨def∆(x)∨defψ(x,y)),
∀x (¬def∆(x)∨ r(x)),
∀x∀y (¬defψ(x,y)∨q(x,y)),
∀x∀y (satψ(x,y)∨¬q(x,y))} .

It might be instructive to compare this result, in particular the first formula, to the for-
mula (1) we started with.

To see the termination of the transformation τ, observe that both φ2 and φ3 are strictly
smaller than φ in the (well-founded) ordering on formulas with quantifier prefixes of
same length induced by the lexicographic ordering on quantifier sequences, where ∃ is
greater than ∀.

Introducing names (like def ψ′(x,y) above) for subformulas and adding definitions
for them, like our transformation does, is a standard technique used in clause normal
form transformations. It is well-know that such transformations preserve satisfiability4.

4Because existential quantifiers are not eliminated, τ even preserves models, in both ways (in the sense
of conservative extensions for the newly introduced symbols).

3.1 Treating Existentially Quantified Subformulas 9

Notice that all sentences in τ(φ) containing an existential quantifier are of the (sim-
ple) syntactic form as obtained in φ

∆1
1 . These are “almost” rules, except for the circum-

stance that the variables y are existentially quantified (in a rule all variables are implicitly
universally quantified). All other sentences in τ(φ) are of the form ∀x ∆(x) and can be
converted to clausal form (i.e. a positive DLP) easily by means of well-known tech-
niques.

3.1 Treating Existentially Quantified Subformulas

At this point, we assume that all universally quantified formulas in τ(φ) have been trans-
formed to clausal form. The remaining formulas contain existential quantifiers, which
are all of the form as denoted by φ

∆1
1 above. Let Φ be a formula of this kind. We propose

four different options to translate Φ to a DLP, each designed for a specific purpose: The
Skolemization Option translates Φ by the use of Skolem terms, resulting in a traditional
Skolemized DLP. The Recycling Option allows to introduce Skolem terms only if they
are necessary, resulting in slimmer and more meaningful models. The Model Checking
Option treats the existential quantification as an integrity constraint. With this option,
the model building process is instructed to fail if there is no role filler in the model for
the existential role. Last, the Loop Check Option allows to re-use existing Skolem terms
in such a way that preference is given to a finite model.

3.1.1 Skolemization Option.

With this option, a Skolem term is chosen as a default value to satisfy – in Descrip-
tion Logic terminology – an existentially quantified role. Technically, the formula Φ is
translated to the following (domain-restricted) DLP:

def ∆′(x)∨def ψ′(x,skΦ(x))← B1(x), . . . ,Bm(x) (2)

Here, skΦ(x) is a list of Skolem terms made from the variables x. Intuitively speaking,
the premise of Φ implies that either the universally quantified part of Φ or the existen-
tially quantified part of Φ must be satisfied. The existentially quantified part is given a
Skolem filler for the existential variable. Thereby, our transformation includes the usual
Skolemization as its simplest option.

10 3 Translating First-Order Formulae to DLPs

3.1.2 Recycling Option.

This option allows to avoid the introduction of a Skolem term if there is already a role
filler present in the model. This can be achieved by translating Φ as follows:

def ∆′(x)∨ check satψ′(x)∨def ψ′(x,skΦ(x))← B1(x), . . . ,Bm(x) (3)

false← def ∆′(x),check satψ′(x) (4)

false← check satψ′(x),def ψ′(x,y) (5)

false← check satψ′(x),not sat1ψ′(x) (6)

sat1ψ′(x)← satψ′(x,y) (7)

false← def ψ′(x,y),satψ′(x,z),not equal|y|(y,z) (8)

equal|y|(x1, . . . ,xn,y1, . . . ,yn)← x1 ≈ y1, . . . ,xn ≈ yn (9)

Rule (3) contains one more head literal than (2), which is check satψ′(x). This literal
signals that there exists already a role-filler in the model for the existentially quantified
role. The other rules realize certain exclusivity tests among the alternatives.
For illustration, consider again the formula

φ = ∀x(p(x)→∃yq(x,y)∨ r(x)) .

The translation τ with the recycling option applied to φ yields for the rule scheme (3) the
DLP

defr(x)∨ check satq(x)∨defq(x,sk(x))← p(x) .

Suppose additionally the fact p(a) as given. Then, the model must satisfy the formula
∃yq(a,y)∨ r(a). This can be achieved in three different ways:

1. The atom r(a) is added to the model, i.e. the part of φ that is outside the scope of
the ∃-quantifier is assigned true. This is achieved by the first alternative in rule
(3), which, together with the rule r(x)← defr(x) in τ(φ), derives r(a).

2. The model already contains an atom q(a, t), for some term t. This is tested by the
alternative check satq(x). If the model does not already contain some such atom
q(a, t), false is derived and the third alternative is chosen.

3. The atom q(a,sk(a)) with the Skolem term sk(a) is added to the model. This is
achieved by the third alternative in rule (3), which, together with the rule q(x,y)←
defq(x,y) in τ(φ), derives q(a,sk(a)). In this case, rule (8) makes sure that no
other filler will or has been inserted that is equal to sk(a). The test for (non-
)equality is necessary, because later, sk(a) could be equated to some other term.
For instance, if q(a,b) is also present and sk(a) ≈ b is not present, this model
candidate will be rejected and the alternative check satq(a) will be chosen.

The formula ∃yq(a,y) will thus be satisfied in one way or the other, with a preference to
a filler different from the Skolem term.

3.1 Treating Existentially Quantified Subformulas 11

3.1.3 Model Checking Option.

Sometimes, it is useful to regard existential formulae as integrity constraints for a KB –
for instance, to check if the objects mentioned in a given database suffice to extend it to
a model for a given KB. Instead of creating fillers by means of Skolem terms, the model
construction process must check that fillers are already present. This can be achieved by
translating Φ according to the “recycling option”, where (3) is replaced by the following
scheme:

def ∆′(x)∨ check satψ′(x)← B1(x), . . . ,Bm(x) (10)

This transformation ensures that no Skolem terms can be inserted by the model compu-
tation. The only way to satisfy the existentially quantified part then is by proving that it
is already satisfied.

3.1.4 Loop Check Option.

The introduction of Skolem terms leads easily to nontermination of model-generation
systems. Instead of creating new Skolem terms, we propose to “re-use” existing Skolem
terms, if they qualify as role fillers – similarly to the blocking techniques found in de-
scription logic systems (although more general). This can be achieved by translating
Φ according to the “recycling option”, where the rule (3) is replaced by the following
rules:

def ∆′(x)∨ check satψ′(x)∨ choose default fillerΦ(x)∨
def ψ′(x,skΦ(x))← B1(x), . . . ,Bm(x)

(11)

other fillerΦ(x,skΦ(y))∨def ψ′(x,skΦ(y))←
choose default fillerΦ(x),satψ′(x1,skΦ(y))

(12)

false← def ψ′(x,y),other fillerΦ(x,z) (13)

false← def ψ′(x,y),def ψ′(x,z),not equal|y|(y,z) (14)

false← choose default fillerΦ(x),not some default fillerΦ(x) (15)

some default fillerΦ(x)← def ψ′(x,y) (16)

Compared to rule (3), rule (11) contains again an additional head literal, which is
choose default fillerΦ(x). Together with rule (12) this has the effect of nondeterminis-
tically selecting a default filler among all Skolem terms previously introduced to satisfy
the existential quantification of (another instance of) the formula. The nondeterministic
selection process is realized by the other fillerΦ-alternative in the head, which allows
to choose a default filler – or not. The remaining rules achieve that exactly one default
filler will be generated.

12 3 Translating First-Order Formulae to DLPs

For illustration, consider the following example from the Tambis Ontology [SPB+04]:

∀x (chapter(x)→∃y (in book(x,y)∧book(y))) (17)

∀x (book(x)→∃y (has chapter(x,y)∧ chapter(y))) (18)

∀x ¬(book(x)∧ chapter(x)) (19)

Notice the terminological cycle. To get the model computation started, suppose an ad-
ditional fact chapter(a). Leaving away many uninteresting facts, the model generation
process will first satisfy (17) by deriving

book(f1(a)) (20)

in book(a, f1(a)) . (21)

Next, it will satisfy (18) by deriving

chapter(f2(f1(a))) (22)

has chapter(f1(a), f2(f1(a)))) . (23)

Now, (17) requires the existence of a book for the newly created chapter f2(f1(a)).
Instead of creating a new Skolem term, rule (12) will find that f1(a) can be used as a
default filler. Thus, the model generation process terminates by deriving

in book(f2(f1(a)), f1(a)) . (24)

In summary, the natural infinite model will be avoided by the loop check option. Thus,
the loop check option can allow for a finite model in cases where a naive translation to
clauses may only have an infinite model.

3.2 The Loop Check Option in Practice

Up to now, the loop check option has been introduced in a purely declarative way. More
considerations are necessary to make it effective in practice. First of all, the loop check
is not designed to prove the unsatisfiability of a set of formulae. Unsatisfiability can
be proven more easily without the loop check option, because the search space is much
smaller without the additional rules. Instead, the loop check aims at the more difficult
problem of proving the satisfiability of a set of formulae.

If the loop check-transformation of a set of formulae has a finite model, then the
original set of formulae also has a finite model. Unfortunately, model generation systems
may have difficulties in finding this finite model, even if it exists.

The issue is to realize a fair search for a model. This is not trivial, as, in general, the
Herband universe of the programs obtained by the translation is infinite. For instance,
the search strategy of KRHyper is fair in the sense that it guarantees refutational com-
pleteness (in particular when the Herbrand universe is infinite). In contrast, even for

13

very simple satisfiable programs obtained with the loop check option of Section 3.1.4,
KRHyper will not terminate – the search strategy is just not fair for (finite) model build-
ing. The iterative deepening scheme KRHyper uses may lead into an infinite branch in
the search tree and may thereby miss an alternative branch leading to a model. Other
systems, like smodels, require full grounding-out of their input clause set, which is ob-
viously, in general, not possible in presence of function symbols.

A solution to these problems is to generate (finite) interpretations as candidates,
check them explicitly for being a model of the program and stop this search as soon
as a model has been found. A systematic way to do so is to run the systems with a
bound on the resources allowed, checking if a model has been found and increasing
these resources in a fair way on failure (iterative deepening). For KRHyper, for instance,
this can be achieved by running it with a limit on the term depth on the generated terms.
Regarding smodels, one could work with growing approximations of the infinite set of
all ground instances.

For the check for modelship the following rules are added to the loop check transla-
tion of a formula Φ:

unsatisfiedΦ(x)← B1(x), . . . ,Bm(x),not sat1Ψ′(x) (25)

unsatisfied some← unsatisfiedΦ(x) (26)

Last, one adds the rule

satisfiable←not unsatisfied some . (27)

Now, the idea is to conclude if a model contains the atom satisfiable then the set of
formula is indeed satisfiable (in a finite model) and no further deepening is necessary.
However, this conclusion is not true if the given formula, and hence the obtained trans-
lated program, contains function symbols other than Skolem functions and constants.
The test not sat1Ψ′(x) in the body of the first clause is too weak then.

In practice, the situation is perhaps not as bad as it might seem. Many interesting
ontologies can be formulated without function symbols at all (as is witnessed already
by the existence of numerous interesting DL ontologies, which do not contain function
symbols).

We conjecture that our transformation will find a finite model whenever one exists,
provided function symbols as mentioned are not present. For future work we intend to
improve the transformation to cope better with function symbols.

4 Equality

Ontologies typically make use of equality. For example, equality is used in function
definitions or in integrity constraints to state that certain objects are different. Another

14 4 Equality

common use of equality is to state that two objects must be equal under certain circum-
stances. For example, the “age” of twins must be “equal”.

At this point of the paper, we may assume that the ontology has been converted to a
DLP. As a running example, consider the following DLP, which contains one equation:5

p(c,h())← (28)

x≈ f(g(d))← p(x,h()) (29)

The model of this DLP will contain the fact p(c,h()). Rule (29) will derive c≈ f(g(d)).
However, equational consequences like f(g(d))≈ c (by symmetry of≈) are not derived.
Hence, the ≈-predicate requires special treatment. The most advanced techniques to
efficiently treat equality have been developed in the field of automated theorem proving
for refutational theorem provers (see [BG98]). Unfortunately, none of these techniques
has been implemented in the model computation systems we target at.

One generic option to treat equality is by means of adding the equality axioms.
However, the search space induced by the resulting clause set is prohibitively high and
achieving termination is practically impossible. The most problematic axioms in this
regard are substitution axioms, like f(x)≈ f(y)← x≈ y . As soon as the model contains
one equation, say a≈ b, and one unary function symbol f , the substitution axioms gen-
erate infinitely many facts of the form f (f (f (a)))≈ f (f (f (b))). An alternative option
is to “compile away” equality. The probably most well-known method in this direction
is the “modification method” in [Bra75], which was later improved in [BGV98]. We
follow this direction and propose an equality transformation for DLPs.

We say that a rule is flat if (1) the only proper subterms of terms in equations are
either variables or constants, and (2) all arguments to predicate symbols are either vari-
ables or constants. Every rule can be turned into a flat one by recursively replacing an
offending subterm t by a fresh variable x and adding the equation t ≈ x to the rule body
(see again [BGV98]). For example, a flat version of the above DLP is

p(c,v1)← v1 ≈ h()
x≈ f(v1)← p(x,v2),v2 ≈ h(),v1 ≈ g(d) .

The purpose of flattening is to achieve the effect of the substitution axioms. To axiom-
atize the Unique Name Assumption (wrt. constants), one adds the rules false← c ≈ d,
for each pair c,d of different constants. Next, ≈ has to be confined to an equivalence

5Remember that we distinguish constants (like c, subject to the UNA) and nullary functions (like h(),
not subject to the UNA).

15

relation by means of the rules6

x≈ x←
x≈ y← y≈ x

x≈ z← x≈ y,y≈ z .

These axioms together with the flattened rules of a positive DLP P constitute the equality
transformation of P , denoted by P eq.

The following theorem is the main result of this section.

Theorem 4.1 (Soundness and Completeness)
Let P be a positive disjunctive logic program. If P eq does not have a possible model
then there is no UNA-E-model of P (soundness). If M is a possible model for P eq then
M contains a UNA-E-model of P (completeness).

Thus, any sound and complete method to generate possible models of DLPs provides
a reliable method to compute UNA-E-models. The (easy) soundness result is nothing
essentially new. The more difficult completeness proof is contained in the appendix.

The completeness result says: if the system computes a possible model M of P eq,
then no more atoms than those in M have to be made true in order to obtain an UNA-E-
model for P . Notice that this result entails refutational completeness by its contrapos-
itive direction. However, our completeness result is somewhat stronger than the refuta-
tional completeness results in [BGV97, Bra75] as it makes a claim in terms of possible
models.

For the simple example above, any reasonable bottom-up model computation
system will terminate on its equality transformation and report as the result {c ≈
f(g(d)), f(g(d))≈ c,p(c,h()),x≈ x}, which describes the expected model of the orig-
inal program. Note that any such system would not have terminated on the original
program when equipped with the equality axioms.

5 Preliminary Experiments

We applied our transformation to the core of the Suggested Upper Merged Ontology
SUMO [NP01]. SUMO contains meta-predicates, i.e. predicates that define the proper-
ties of other predicates. We translated these predicates appropriately to first-order logic.
For example, we translated the (higher-order) sentence disjoint classes(Man,Woman)
to the rule

false← instance(x,Man), instance(x,Woman) . (30)

6Strictly speaking, the reflexivity rule x ≈ x← is not domain-restricted. But this case is harmless and
usually poses no problems.

16 6 Conclusions

SUMO occasionally uses other higher order formulae, which we had to filter out. The
resulting first-order KB contains about 1800 formulae.

Running KRHyper on the DLP transformation revealed numerous inconsisten-
cies in SUMO. These included misspelled and hence unbound variables as well
as semantic inconsistencies in connection with the Mid-level-ontology extensions.
For example, one can derive that planetEarth is a geographicArea. Since each
geographicArea is a geographicSubregion of planetEarth, it follows that planetEarth is
a geographicSubregion of itself. This contradicts the irreflexivity of geographicSubregion.
We reported the errors to the developers of SUMO and removed them. Then, KRHyper
can calculate a model for our DLP translation within a few seconds. The model consists
of roughly 2000 facts.

To test the equality transformation, we added the following facts to SUMO: France
lies west of Germany and Germany’s biggest trading partner lies east of Germany.

orientation(germany, france,west)
orientation(germany,biggestTradingPartner(germany),east) .

By help of the axioms in SUMO, KRHyper deduces (among others) the following facts:

orientation(france,germany,east)
orientation(biggestTradingPartner(germany),germany,west)
between(germany, france,biggestTradingPartner(germany))

Now, we add the fact biggestTradingPartner(germany)≈ france. As a result, KRHyper
derives a contradiction, as expected, because France cannot lie both east and west of
Germany. To test our default value transformation, we added the following facts to
SUMO:

instance(p, judicialProcess)
agent(p,a)

In SUMO, each judicial process is a political process. Furthermore, each political pro-
cess requires an agent. Hence the model generation produces the fact agent(p, f(p)).
However, if the recycling option is chosen, a qualifies as a default filler for the agent
role. Consequently, the above fact is not derived with the recycling option.

SUMO contains numerous axioms that lead to infinite models. Unfortunately, in
many cases they cannot be deteced (finitely) by the current version of our loop check
option. In these cases, the prover does not terminate.

6 Conclusions

We presented a transformation from first-order logic formulae to disjunctive logic pro-
grams. The programs resulting from the transformation can be fed into many existing

REFERENCES 17

logic programming model generation systems.
As special features, our transformation allows the efficient treatment of equality,

and it includes a certain form of the unique name assumption. Using Description Logic
terminology, it allows a flexible handling of existentially quantified roles, including the
avoidance of unnecessary Skolem terms, or the re-use of existing Skolem terms. By
re-using existing Skolem terms, our transformation allows to generate finite models in
certain cases, so that termination of the theorem prover can be achieved more often. (Of
course, the general problem is undecidable, which puts natural limits on what can be
achieved.)

Our main results are of a theoretical nature, namely soundness and completeness
results. We carried out preliminary experiments with the SUMO ontology. Unfortu-
nately our transformation did not prove strong enough to compute a finite model for the
whole SUMO. The equality treatment and the flexible handling of existential roles, how-
ever, proved already applicable and useful, e.g. to subsets of SUMO. For future work,
we intend to strengthen the transformation, so that finite models can be detected more
often.

6.0.1 Acknowledgements.

We wish to thank the reviewers for their helpful suggestions.

References

[Bar03] Chitta Baral. Knowledge representation, reasoning and declarative problem
solving. Cambridge University Press, 2003.

[BB04] Peter Baumgartner and Aljoscha Burchardt. Logic Programming Infrastruc-
ture for Inferences on FrameNet. In José Alferes and João Leite, editors,
Logics in Artificial Intelligence, Ninth European Conference, JELIA’04,
volume 3229 of Lecture Notes in Artificial Intelligence, pages 591–603.
Springer Verlag, Berlin, Heidelberg, New-York, 2004.

[BCM+02] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-
Schneider, editors. Description Logic Handbook. Cambridge University
Press, 2002.

[BG98] Leo Bachmair and Harald Ganzinger. Chapter 11: Equational Reasoning
in Saturation-Based Theorem Proving. In Wolfgang Bibel and Peter H.
Schmitt, editors, Automated Deduction. A Basis for Applications, volume I:
Foundations. Calculi and Refinements, pages 353–398. Kluwer Academic
Publishers, 1998.

18 References

[BGV97] Leo Bachmair, Harald Ganzinger, and Andrej Voronkov. Elimination of
equality via transformation with ordering constraints. Research Report
MPI-I-97-2-012, Max-Planck-Institut für Informatik, Im Stadtwald, D-
66123 Saarbrücken, Germany, December 1997.

[BGV98] Leo Bachmair, Harald Ganzinger, and Andrei Voronkov. Elimination of
equality via transformation with ordering constraints. In Claude Kirchner
and Hélène Kirchner, editors, Automated Deduction — CADE 15, LNAI
1421, Lindau, Germany, July 1998. Springer-Verlag.

[Bra75] D. Brand. Proving theorems with the modification method. SIAM Journal
on Computing, 4:412–430, 1975.

[CEF+97] Simona Citrigno, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Christoph
Koch, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. The dlv system: Model generator and advanced frontends (system
description). In Workshop Logische Programmierung, pages 0–, 1997.

[FL93] C. Fermüller and A. Leitsch. Model building by resolution. In Computer
Science Logic: CSL’92, volume 702 of LNCS, pages 134–148. Springer,
1993.

[GHS02] L. Georgieva, U. Hustadt, and R. A. Schmidt. A new clausal class decidable
by hyperresolution. In Automated Deduction: CADE-18, volume 2392 of
LNAI. Springer, 2002.

[GHS03] L. Georgieva, U. Hustadt, and R. A. Schmidt. Hyperresolution for guarded
formulae. J. Symbolic Computat., 36(1–2):163–192, 2003.

[GHVD03] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription logic programs: Combining logic programs with description logic.
In Proc. of the Twelfth International World Wide Web Conference (WWW
2003), pages 48–57. ACM, 2003.

[HB+04] Ian Horrocks, , Harold Boley, , and Mike Dean. Swrl: A se-
mantic web rule language combining owl and ruleml. available at:
http://www.w3.org/Submission/SWRL/, May 2004.

[KIF] Kif - knowledge interchange format. http://www.csee.umbc.edu/kse/
kif/.

[Llo87] J. Lloyd. Foundations of Logic Programming. Symbolic Computation.
Springer, second, extended edition, 1987.

http://www.csee.umbc.edu/kse/kif/
http://www.csee.umbc.edu/kse/kif/

REFERENCES 19

[Nie99] Ilkka Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelligence,
25(3-4):241–273, 1999.

[NP01] I. Niles and A. Pease. Towards a standard upper ontology. In Chris Welty
and Barry Smith, editors, In Proceedings of the 2nd International Confer-
ence on Formal Ontology in Information Systems (FOIS-2001), 2001.

[NS96] Ilkka Niemelä and Patrik Simons. Efficient implementation of the well-
founded and stable model semantics. In Proceedings of the Joint Interna-
tional Conference and Symposium on Logic Programming, Bonn, Germany,
1996. The MITPress.

[RV01] Alexandre Riazonov and Andrei Voronkov. Vampire 1.1 (system descrip-
tion). In Proc. International Joint Conference on Automated Reasoning,
volume 2083 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

[Sak90] C. Sakama. Possible Model Semantics for Disjunctive Databases. In
W. Kim, J.-M. Nicholas, and S. Nishio, editors, Proceedings First Interna-
tional Conference on Deductive and Object-Oriented Databases (DOOD-
89), pages 337–351. Elsevier Science Publishers B.V. (North–Holland) Am-
sterdam, 1990.

[SPB+04] R. D. Stevens, N. W. Paton, S. K. Bechhofer, G. K. Ng, M. Peim, P. G.
Baker, C. A. Goble, and A. M. Brass. Tambis: Transparent access to mul-
tiple bioinformatics services. Genetics, Genomics, Proteomics, and Bioin-
formatics, January 2004. ISBN 0470849746.

[Wer03] Christoph Wernhard. System Description: KRHyper. Fachberichte Infor-
matik 14–2003, Universität Koblenz-Landau, Universität Koblenz-Landau,
Institut für Informatik, Rheinau 1, D-56075 Koblenz, 2003.

20 A Proof of Theorem 4.1

A Proof of Theorem 4.1
Theorem 4.1 (Completeness)
Let P be a positive disjunctive logic program. If P eq does not have a possible model
then there is no UNA-E-model of P (soundness). If M is a possible model for P eq then
M contains a UNA-E-model of P (completeness).

The formal tool used below is the model construction technique introduced for superpo-
sition calculi (see [BG98] for some details left away here).

Before turning to the proof, proper, let us introduce some notation. Let P1 a ground,
normal positive DLP, i.e. one without disjunction in the head of its rules. Its program
rules thus are of the form H←B , where H is an atom. (A rule H←B is not necessarily
a definite program rule in the standard sense, as H could be false.). We write M |=p P1
for the fact that M is a minimal model of P1. Notice that minimal and perfect models
coincide for any such program P1.

Recall that for a given interpretation M , the finest congruence induced by its equa-
tions is denoted by M ≈. For a given atom A we write M |=≈ A iff A ∈M ≈, and we
write M |=≈,UNA A if additionally M satisfies UNA.

As we are dealing with ground programs, we may leave away the term “ground”
when talking about terms, atoms and program rules most times. When non-ground
expressions are involved, we will notice that explicitly.

Below we consider non-ground rules C and ground substitutions γ for C. Without
loss of generality we may always assume that the domain of γ7 is just the variables
occuring in C. When R is a term rewrite system (TRS), we say that γ is reducible for
C if there is a variable x such that xγ→R t. That is, some term in the range of γ can
be rewritten by some rule in R to the smaller term t. Otherwise, γ is irreducible for C.
As the proof works with a specific TRS R defined below, there is no need to have R as
parameter to the definition.

Proof. (Completeness) Suppose that M is a possible model of P eq. This means M is a
minimal model of some split program (P eq)gr

1 of (P eq)gr. We will show there is a certain
subset R ⊆M that is a UNA-E-model of P . More precisely, R will be a terminating
rewrite system without critical pairs, i.e. a convergent rewrite system.

The proof that R is a UNA-E-model of P has three parts. First we will show that
R |=≈ P eq. The subsequent (easy) step is to conclude R |=≈ P . In the final step we will
show that R satisfies UNA, which will complete the proof.

R |=≈ P eq|=≈ P eq|=≈ P eq. For the construction of R we need a reduction ordering that is total on
ground terms.8 Let � be any such reduction ordering that additionally satisfies the

7I.e. {x | xγ 6= x}.
8A reduction ordering is a strict partial ordering that is well-founded and is closed under context, i.e.

s� s′ implies t[s]� t[s′] for all terms t.

21

following two conditions:

1. For any constant c and term t, if c � t then t is a constant, too. That is, no non-
constant term can be smaller that a non-constant term.

2. There is a designated constant true, not occuring in the given program and that is
minimal in �. That is, there is no term t with true� t.

The purpose of the constant true is to enable uniform notation, where atoms are read as
equations. More precisely, an atom A different from false and that is not an equation is
read as the equation A ≈ true. This way atoms become terms. The change of signature
involved causes no problems in the proof. Notice that it follows from the definition of
“flat” that the atom A is flat iff the equation A≈ true is flat then.

Equations are compared reading an equation s ≈ t as a multiset {s, t} and using
the extension of � to multisets, which is also denoted by �. To compare (possibly
disjunctive, ground) positive program rules, it is sufficient to define (H ← B)� (H ′←
B ′) iff (H ∪B)� (H ′∪B ′), where � again denotes its own extension to multisets.

An equation s ≈ t such that s � t is also written as a rule9 s→ t. It is well known
that for any convergent rewrite system R, and any two terms s and t it holds s≈ t ∈ R≈

if and only if there is a term u such that s→?
R u and t→?

R u.
We are now ready to define the rewrite system R. First, for every equation s≈ t ∈M

we define by induction on the term ordering � sets of rewrite rules εs≈t and Rs≈t as
follows. Assume that εs≈t has already been defined for all s′≈ t ′ ∈M with s≈ t � s′≈ t ′.
Let Rs≈t =

S
s≈t�s′≈t ′ εs′≈t ′ and define

εs≈t = {s→ t} if


s� t,
s is irreducible by Rs≈t , and
t is irreducible by Rs≈t .

Otherwise εs≈t = /0. Finally let R =
S

s≈t εs≈t .
By construction R has no critical pairs. Because� is a well-founded ordering R thus

is a convergent rewrite system.
Now we show by well-founded induction that that R is an E-model of (P eq)gr, or,

equivalently, R |=≈ (P eq)gr. Any rule in (P eq)gr can be written as (H eq ← Beq)γ, for
some rule Ceq = (H eq← Beq) ∈ P eq and some ground substitution γ. Conversely, any
such rule CeqP eq and any ground substitution γ is a rule in (P eq)gr. Thus chose any such
rule Ceq and γ arbitrary.

We distinguish two complementary cases.

(1) γ is reducible.

9In the sense as used in the term rewrite literature, not a program rule of a logic program.

22 A Proof of Theorem 4.1

Then there is a variable x in the domain of γ such that xγ→R t for some term t. Let γ′ be
the substitution such that

yγ
′ =

{
t if y = x
yγ otherwise

Because x occurs in Ceq it follows Ceqγ�Ceqγ′. By the induction hypothesis R |=≈Ceqγ′,
and by congruence R |=≈ Ceqγ.

(2) γ is irreducible.
If R 6|=≈ Beqγ then R |=≈ Ceqγ follows trivially. Hence suppose R |=≈ Beqγ. Because
γ is irreducible for Ceq, γ irreducible for every body literal in Beq. From Lemma A.2
M |= Beqγ follows easily. By definition, (P eq)gr

1 includes the program rule (Heq←Beq)γ
for some atom Heq, where Heq is among the head literals of H eq← Beq. Recall that M
is given as a minimal model of (P eq)gr

1 . From M |= Beqγ it thus follows M |= Heqγ,
which is the same as to say Heqγ ∈M . Again by Lemma A.2, this time in the other
direction, it follows R |=≈ Heqγ. This result implies trivially R |=≈ (H eq← Beq)γ.

This concludes the case analysis. Notice that in both cases we have shown R |=≈
Ceqγ, which entails R |=≈ (P eq)gr.

R |=≈ P|=≈ P|=≈ P . Let C = (H ← B) ∈ P and γ a ground substitution for C. It suffices to show
R |=≈ Cγ.

Let Ceq = (H eq← Beq) ∈ P eq be the rule obtained from C by the equality transfor-
mation. The rules C and Ceq can be written as

C = H [s]← B[t]
Ceq = H [xs]← B[xt],flatten(s≈ xs),flatten(t≈ xt) ,

where s (t) are the terms occuring in H (in B) that prevent the literals in H (in B)
from being flat. The variables xs are those that replace the terms s in the head literals by
flattening. By flatten(s≈ xs) the list of equations is meant that results from flattening the
equations s1 ≈ xs

1, . . . ,sn ≈ xs
n, where s = s1, . . . ,sn and xs = xs

1, . . . ,x
s
n, for some n ≥ 0.

The expression flatten(t≈ xt) is defined in the same way, as expected.
The equations flatten(s≈ xs),flatten(t ≈ xt) can be written as u1 ≈ x1, . . . ,um ≈ xm,

for some m ≥ 0, where u1, . . . ,um are (flat) terms and x1, . . . ,xm are variables (pairwise
different and fresh wrt. the variables in C). These equations can be seen as a unification
problem in solved form. Now consider the substitution

γ
′ = {x1 7→ u1, . . . ,xn 7→ un} .

By inspection of the flattening process one convinces oneself that s = xsγ′ and t = xtγ′.10

10The somewhat tedious formal proof would not provide any additional insights.

23

Thus we obtain

Ceq
γ
′ = H [xs

γ
′]← B[xt

γ
′],u1γ

′ ≈ x1γ
′, . . . ,umγ

′ ≈ xmγ
′

= H [s]← B[t],u1γ
′ ≈ x1γ

′, . . . ,umγ
′ ≈ xmγ

′

Now apply the given substitution γ to Ceqγ′ and obtain

Ceq
γ
′
γ = (H [s]← B[t],u1γ

′ ≈ x1γ
′, . . . ,umγ

′ ≈ xmγ
′)γ

= H γ← Bγ,u1γ
′
γ≈ x1γ

′
γ, . . . ,umγ

′
γ≈ xmγ

′
γ

With the result of the preceeding part conclude R |=≈ Ceqγ′γ. Because uiγ
′ = xiγ

′,
for all i = 1, . . . ,m, it follows trivially uiγ

′γ = xiγ
′γ and R |=≈ uiγ

′γ ≈ xiγ
′γ. But then

R |=≈ H γ← Bγ follows, which was to show.

R satisfies UNA. Suppose, to the contrary, that R does not satisfy UNA, i.e. R |=≈ c≈
d for some different constants c and d. The equation c≈ d is flat. By Lemma A.2 then
c≈ d ∈M . With (P eq)gr

1 containing the rule false← c,d it follows false ∈M . But then
M is no interpretation, a contradiction to the fact that M was given as a possible model
(of P eq). �

Lemma A.2
Let s ≈ t be a flat equation and γ a ground substitution irreducible for s ≈ t. Then,
R |=≈ sγ≈ tγ iff sγ≈ tγ ∈M .

Proof. For the if-direction suppose sγ≈ tγ ∈M .
If sγ = tγ then R |=≈ sγ≈ tγ follows trivially.
If both sγ and tγ are irreducible11 then εsγ≈tγ = {sγ→ tγ} and so sγ→ tγ ∈ R. From

sγ→ tγ ∈ R the result R |=≈ sγ≈ tγ follows easily.
Hence suppose, without loss of generality that sγ is reducible. Recall frist that M is

a possible model for a program that was obtained by the equality transformation. Any
such program contains, by construction, the program rules false← c,d for any pair of
different constants c and d. Hence, M cannot contain any equation c ≈ d. Nor can it
contain d ≈ c because the equality transformation adds a program rule for symmetry.
Notice that consequently R does not contain c≈ d or d ≈ c either (because of R⊆M).
Together with the restriction (1) on orderings defined above it follows that R does not
contain any rule of the form c→ t, where c is a constant and t is any term. In other
words, constants are irreducible by R.

By this consideration, sγ cannot be a constant. The term sγ thus is of the form f (v)γ
where f is some (possibly nullary) function symbol and v is some list of terms. More

11As usual, we say that a term s is reducible (by R) iff there is a term t such that s→R t, otherwise s is
irreducible (by R).

24 A Proof of Theorem 4.1

specifically, because s≈ t is given as a flat equation, each term v in v must be a constant
or a variable. Now, if v is a constant then v = vγ is irreducible, as just concluded. And if
v is a variable then vγ is irreducible, too, because γ is given as irreducible for s≈ t.

Recall we are considering the case that sγ = f (v)γ is reducible. Because vγ is irre-
ducible, for each v in v, f (v)γ must be reducible at the top position. That is, R must
contain a rule of the form sγ→ u, for some term u.

From sγ→ u ∈ R it follows εsγ≈u = {sγ→ u}. By definition of ε, Rsγ≈u cannot
contain a rule that rewrites u. Further, the ordering � on equations is defined in such
a way that any rule that could rewrite u must precede the rule sγ→ u. Together, thus,
u is irreducible. In other words, deriving the normal form of sγ takes exactly one step.
Notice this fact is independent from whether sγ ≈ tγ ∈M or not. It holds for any flat
term s and irreducible substitution γ. This result will be used also in the proof of the
only-if direction below.

Next consider tγ. If tγ is reducible then by the same arguments as for sγ it must be of
the form g(w)γ where g is some function symbol and w is a list of constants or variables.
Further, there is a rule tγ→ u′ ∈ R for some irreducible term u′.

Recall that any program obtained from the equality transformation contains the ax-
ioms of reflexivity, symmetry and transitivity. Further recall that M is a model of some
such program.

Because of R ⊆M , from sγ→ u ∈ R and tγ→ u′ ∈ R it follows sγ ≈ u ∈M and
tγ≈ u′ ∈M . The symmetric versions are also contained in M by the symmetry axioms.

Because sγ ≈ tγ ∈M , sγ ≈ u ∈M and tγ ≈ u′ ∈M and the fact that M must be a
model in particular for the symmetry and transitivity axioms it follows u≈ u′ ∈M .

Next we will show that u = u′. Suppose, to the contrary that u and u′ are different
terms. But then, either u� u′ or u′ � u holds. Without loss of generality suppose u� u′.
Recall that both u and u′ are irreducible. But then εu≈u′ = {u→ u′} and so u→ u′ ∈ R,
contradicting the irreducibility of u. Hence it follows u = u′. Consequently we have
tγ→ u ∈ R. Together with sγ→ u ∈ R it follows trivially sγ→R u and tγ→R u. Because
R is convergent it follows R |=≈ sγ≈ tγ as desired.

The last open case, that tγ is irreducible, is treated similarly: from sγ≈ tγ ∈M and
sγ≈ u ∈M it follows by the symmetry and transitivity axioms that tγ≈ u ∈M . By the
same arguments as above it must hold tγ = u (because both terms are irreducible, and if
they were different, a rule tγ→ u or u→ tγ would have been added to R, contradicting
irreducibility of tγ and of u. Thus, with sγ→ u ∈ R and tγ = u it follows R |=≈ sγ≈ tγ.

This completes the proof for the if-direction.
For the only-if direction suppose R |=≈ sγ ≈ tγ. Because R is a convergent rewrite

system there is a term w such that sγ→?
R w and tγ→?

R w.
If both sγ and tγ are irreducible then sγ = tγ so sγ≈ tγ is an instance of the reflexivity

axiom, and so sγ≈ tγ ∈M follows.
Hence suppose that sγ or tγ is reducible. Without loss of generality suppose sγ is

reducible. By exactly the same arguments as made in the proof of the if-direction, sγ can

25

only be rewritable at the top position. Thus, there is a rule of the form sγ→ u ∈ R. In
the if-part of the proof we concluded that deriving the normal form of sγ takes exactly
one step. This implies u = w.

If tγ is reducible, by the same arguments as for sγ, there is a rule of the form sγ→
u′ ∈ R with u′ = w. Because R ⊆M we get sγ ≈ w ∈M and tγ ≈ w ∈M . By the
symmetry and transitivity axioms, M must also satisfy sγ≈ tγ and tγ≈ sγ. Equivalently,
sγ≈ tγ ∈M and tγ≈ sγ ∈M .

If tγ is irreducible, we have tγ = w. From sγ→ w ∈ R, R⊆M and tγ = w it follows
(with the symmetry axiom) sγ≈ tγ ∈M and tγ≈ sγ ∈M . �

	Introduction
	Motivation
	Contribution
	Related Work

	Preliminaries
	Translating First-Order Formulae to DLPs
	Treating Existentially Quantified Subformulas
	Skolemization Option.
	Recycling Option.
	Model Checking Option.
	Loop Check Option.

	The Loop Check Option in Practice

	Equality
	Preliminary Experiments
	Conclusions
	Acknowledgements.

	Proof of Theorem 4.1

