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Abstract. This work is about a “real-world” application of automated deduction.
The application is the management of documents (such as mathematical textbooks)
as they occur in a readily available tool. In this “Slicing Information Technology
tool”, documents are decomposed (“sliced”) into small units. A particular applica-
tion task is to assemble a new document from such units in a selective way, based
on the user’s current interest and knowledge.

It is argued that this task can be naturally expressed through logic, and that
automated deduction technology can be exploited for solving it. More precisely, we
rely on first-order clausal logic with some default negation principle, and we propose
a model computation theorem prover as a suitable deduction mechanism.

Beyond solving the task at hand as such, with this work we contribute to the
quest for arguments in favor of automated deduction techniques in the “real world”.
Also, we argue why we think that automated deduction techniques are the best
choice here.

1. Introduction

This paper is about a “real-world” application of automated deduction.
The application is the management of documents (such as mathe-
matical textbooks) that are separated (“sliced”) into small units. A
particular application task is to assemble a new document from such
units in a selective way, based on the user’s interest.

The paper concentrates on describing the task to be solved and
the formalization in a predicate logic language. We also describe the
calculus that we developed for this logic. Although we think that this
calculus is new and has some interesting features not found in compa-
rable approaches, its description is rather brief, since not in the main
focus of this paper.
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2 Baumgartner and Furbach

Figure 1. The entry page of a mathematics text book in SBT.

1.1. Tool and Project Context

Before describing how such a task can be formalized with logic and
be solved with automated deduction techniques, it is helpful to briefly
describe the tool context this work is embedded in.

This context is the Slicing Information Technology (SIT) tool for
the management of personalized documents. With SIT, a document,
say, a mathematics text book, is separated once as a preparatory step
into a number of small units, such as definitions, theorems, proofs,
and so on. The purpose of the sliced book then is to enable authors,
teachers and students to produce personalized teaching or learning
materials based on a selective assembly of units. Once a reader is
entering the portal of the book in the web, she can login with her
account and gets the entry page of the book; this is depicted in Fig-
ure 1 for http://www.slicing-infotech.de/slib/analysis01.html
of (Dahn and Wolter, 2000).

Besides many other features the reader can decide to read e.g. The-
orem 3.3, which is the slice 3/1/14, and its proof is in slice 3/1/15. If
the reader is marking these units – as is depicted in Figure 2 – and is
then clicking the “read” button on the left of the screen, she will get a
PDF document containing just this part of the book.

If she now discovers that this information is not sufficient to un-
derstand the theorem and its proof, she can decide to include all the
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Figure 2. Selection of some units.

material necessary for the understanding of the units presented until
now. Again, after clicking the appropriate button she gets the view in
Figure 3, offering all the material which is computed as prerequisites
for this theorem.

After marking all or some of these units, she can decide to get the
corresponding document as a PDF document. Part of it is depicted in
Figure 4; on the right margin of the document the identifiers of the
slices are given.

In a similar way the reader can choose to include all material which
uses the slices marked until then, e.g. to understand how and where a
certain property is used in the rest of the chapter or the entire book.
Furthermore, she can store information what parts of the book she does
not want to get presented anymore, because she knows it very well. All
such reasoning and computations are only possible, because besides the
LATEX sources of the units there is also a lot of meta-data stored on the
server. This includes besides a glossary and keywords also information
about relations of a unit to other units. Hence, we have not only the
text of the book, we have an entire knowledge base about the material,
which can be used by the reader.

Since SIT is applied in the “real world”, this knowledge base together
with its reasoning mechanism has to be robust, reliable and of course
efficient. SIT is applied until know to several mathematics text books,
which are explored commercially by the Springer Verlag. Furthermore,
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Figure 3. A personalized view by including prerequisites of the selected unit.

Figure 4. A PDF view of the result in Figure 3.
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SIT is the technical basis of the TRIAL-SOLUTION project1. The
TRIAL-SOLUTION project aims to develop a technology for the gen-
eration of personalized teaching materials – notably in the field of
mathematics – from existing documents (cf. www.trial-solution.de
for more details).

Current work on SIT within the TRIAL-SOLUTION context is
concerned with techniques to extend the capabilities by handling knowl-
edge coming from various sources. In our previous example from Fig-
ure 1, e.g. it could be the case that the reader decides that she wants
to get examples related to the material she is studying, however from
another book, which she knows to be much more of the introductory
kind. By this, she could have a much better chance to understand the
material. This approach is motivated by the imagination of a reader
standing in front of a shelf of books in a library and searching the
material she needs for her work: she is using different sources for her
search, like books, table of contents, catalogues or book reviews. In
our case of SIT, these sources include (i) different sliced books, (ii) a
knowledge base of meta data on content (e.g. by keywords), didactic
features and interoperability interfacing, (iii) the user profile, including
e.g. information about units known to her, and (iv) thesauri that help
to categorize and connect knowledge across different books.

All these sources are to be taken into account when generating a
personalized document. So far, no language was available to us to
formulate in a “nice” way (convenient, friendly to change and adapt
to new needs, efficient, . . . ) the computation of the personalized docu-
ments. Our approach based on logic was heavily motivated to come to
a solution here.

1.2. Formalizing the Application Domain

In our approach, the document to be generated is computed by a
model generating theorem prover. In Figure 5 the entire knowledge
representation and reasoning task is depicted. On the left hand side
we see several books, which can be used as sources for the query given
by the user on the right hand side of the picture. Besides the various
books, the system takes into account a number of different knowledge
sources: keywords, an ontology giving relations between the keywords
and terms and dependencies between units with respect of a refers and
requires relation. All this knowledge is given as metadata of the books
and can be used by the deduction system together with additional data
about the user to answer the query.

1 TRIAL-SOLUTION is funded by the EU as part of its Information Society
Technologies Programme (IST) within the EU’s Fifth RTD Framework Programme.
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Figure 5. The reasoning part of SBT

In the sequel we describe the formalization with logic as used in our
system. Thereby we concentrate on the background theory. This is the
part that essentially controls what units go into the final document.
We do so in order to highlight some features of the specification, and
to motivate our approach taken.

The computation of the final document is triggered by marking some
unit U as a “selected unit”. The background theory is essentially a
specification of units to be included into the generated document. Such
a specification is from now on called a query , and the task to generate
the document from the query and the selected unit is referred to as
solving the query .

Here is a sample query:

(i) For each keyword K attached to the selected unit U , include in the
generated document some unit D that is categorized as a definition
of K; in case there is more than such unit, prefer one from book A

to one from book B.

(ii) Include all the units that have at least one keyword in common
with the keywords of U and that are of explanatory type (examples,
figures, etc).

(iii) Include all the units that are required by U .

(iv) Include U .
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It is important to note that such queries are not intended to be written
by the end-user. Instead, the end-user only enters some selected units
U and choses one of the several predefined scenarios (like “I want to
prepare for a written exam”), and each scenario stands for a query.

In our experiments we use sliced versions of two mathematics text
books. Here are two sample units, one from each book:

Ident: 0/1/2/1

Text: Mengentheoretische

Grundbegriffe ...

Book: Wolter/Dahn

Type: Merksatz

Refers: 0/1/0/2, 0/1/0/3, ...

Requires:

Keys: set, set intersection,

set equality, ...

Ident: 1/1/1/1/0

Text: \definition{

\textbf{Definition}:

Eine \textbf{Menge} ...

Book: Gellrich/Gellrich

Type: Definition

Refers:

Requires:

Keys: set

The Ident field contains a unique name of the unit in the form of a
Unix file system subpath, matching the hierarchically organization of
the units according to the books sectioning structure. The Text field
contains the unit’s text. The Book field contains the name of the book’s
authors. The Type field denotes the class the unit belongs to. The Refers
and Requires fields contain dependencies from other units. The Keys
field contains a set of keywords describing the contents of the unit.

Now suppose that the unit with Ident 0/1/2/1 is selected, and
that the query from above is to be solved. Some aspects in a logical
formalization of this task are straightforward, like the representation
of the units and the representation of the selected unit identifier as a
fact (as in selected_unit(0/1/2/1)). There full formalization is not
included here. In order to motivate the whole approach, highlighting
some parts of it might be helpful, though. Each of the following four
parts demonstrates a different aspect of the formalization2.

1.2.0.1. First-Order Specifications. In the field of knowledge repre-
sentation it is common practice to identify a clause with the set of
its ground instances. Reasoning mechanisms often suppose that these
sets are finite, so that essentially propositional logic results. Such a
restriction should not be made in our case. Consider the following
clauses:

2 Written in a Prolog-style notation. In brief, the :- symbol stands for the junctor
←, variables start with an uppercase letter or the symbol ; numbers, words starting
with a lowercase letter, and strings enclosed in ’-quotes are constants. A standard
textbook on Prolog is (Clocksin and Melish, 1981)
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wolter dahn unit(0/ ALL ).

gellrich gellrich unit(1/ ALL ).

equal(X, X).

The first two facts test if a given unit identifier denotes a unit
from the respective book. The _ALL_ symbol stands for an anonymous,
universally quantified variable. Due to the /-function symbol (and prob-
ably others) the Herbrand-Base is infinite. Certainly it is sufficient to
take the set of ground instances of these facts up to a certain depth
imposed by the books. However, having thus exponentially many facts
this option is not really a viable one.

None of the stated facts satsifies range restrictedness (cf.(Manthey
and Bry, 1988)), a syntactical restriction, that many systems impose
for programs to be admissible. A workaround, which can be taken then,
is to enumerate the Herbrand-Base during proof search. This means to
consider all ground terms for the variables, which does not look too
prospective.

Some facts could conceivably be handled in such systems by building
in the semantics of, e.g., equal into the prover. However, there remain
cases where this is hardly possible. A typical example is a clause like
the following, which seems perfectly plausibly in our scenario:

knows units(User,1/1/ ALL ) :-

current user(User),

learned(User,’set’).

Another example of this kind, taken from the actual specification,
is depicted in Figure 7 below.

In sum, we have an “essential” non-ground specification.

1.2.0.2. Non-classical Negation. Consider the following clauses:

computed unit(UnitId) :-

candidate def(UnitId,Key),

not multiple def(Key).

multiple def(Key) :-

candidate def(UnitId1,Key),

candidate def(UnitId2,Key),

not equal(UnitId1,UnitId2).

The computed_unit relation shall contain those units (named by unit
identifiers UnitId) that go into the generated document. According to
the left clause, this applies to any candidate definition unit for some
keyword Key (derived by some other other clauses not described here),
provided there is not more than one such candidate definition of Key.
The second clause states the definition of the multiple_def-relation.
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What is the intended semantics of not? Classical semantics is not ap-
propriate, as it allows, for instance, arbitrary different terms to hold in
the equal-relation. The correct intention, however, of equal is to mean
syntactical equality. Likewise, classical semantics allows for counter-
intuitive interpretations of multiple_def.

The supported model semantics (cf. Section 2.2), or possibly a stronger
semantics (one that allows for more conclusions) seems to be intuitively
correct. In brief, every atom true in a supported model must be justified
by some clause, which means that the atom occurs in the head of some
clause where the body is true in the model.

1.2.0.3. Disjunctions and Integrity Constraints. Consider the follow-
ing two clauses:

computed unit(UnitId1) ;

computed unit(UnitId2) :-

candidate def(UnitId1,Key),

candidate def(UnitId2,Key),

not equal(UnitId1, UnitId2).

false :-

computed unit(UnitId1),

computed unit(UnitId2),

candidate def(UnitId1,Key),

candidate def(UnitId2,Key),

not equal(UnitId1,UnitId2).

The left clause states that if there is more than one candidate definition
unit of some Key, then at least one of them must go into the generated
document (the symbol ; means “or”). The right clause states that not
both of them must go into the generated document.

These clauses demonstrate that Horn clause logic is not sufficient.
Any number of positive literals may appear in clauses.

2. Automated Deduction

When employing automated deduction techniques to solve a query like
the one at the beginning of Section 1.2, some questions come up imme-
diately: (a) what is an appropriate logic (syntax and semantics)? (b)
How does a respective calculus look like? (c) is it efficient enough to
solve real-world problems? (d) Why to do it at all with logic, and not,
say, write a Prolog-program?

The most effort in our current project work is spent to answer
questions (a) and (b). Since not really relevant for this publication,
the calculus is only sketched here. Although question (d) is addressed
here, some more investigations are certainly necessary in this regard.
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10 Baumgartner and Furbach

In brief, our approach is completely declarative, and hence we believe
that there are advantageous over more procedural oriented techniques.

Question (c) has to be answered by practice. At the moment, we have
a prototypical implementation in Prolog, which, however, is coupled
with a term indexing library for faster access to the base relations. In
Section 3 a little more about our current experiences is reported.

2.1. Nonmonotonic and Classical Logics

On a higher, research methodological level the work presented here is
intended as a bridging-the-gap attempt: for many years, research in
logic-based knowledge representation and logic programming has been
emphasizing theoretical issues, and one of the best-studied questions
concerns the semantics of default negation3. The problems turned out
to be extraordinarily difficult, which warrant their study in detail. For-
tunately, much is known today about different semantics for knowledge
representation logics and logic programming. There is a good chance
that a logic suitable for a particular application has been developed
and studied in greatest detail.

Concerning research in first-order classical reasoning , the situation
has been different. Not only theoretical issues, but also the design of
theorem provers has traditionally received considerable attention. Much
is known about efficient implementation techniques, and highly sophis-
ticated implementations are around (e.g. SETHEO (Goller et al., 1994),
SPASS (Weidenbach et al., 1999)). Annual, international competitions
are held to crown the “best” prover.

In essence, in this work we take as starting point a calculus originally
developed for first-order classical reasoning – hyper tableaux (Baum-
gartner et al., 1996) – and modify it to compute models for a certain
class of logic programs.

2.2. Logic Programming Semantics

We are using a sufficiently powerful logic, such that the queries can be
stated in a comfortable way. In this section we describe some issues
from logic programming and knowledge representation, which we built
into the deduction system ((Dix et al., 2001) is an overview article
covering the issues discussed here). In particular, including a default
negation principle and disjunctions in our logic turned out to facilitate
the formalization (cf. Section 1.2 above). As a restriction, we insist on
stratified specifications, which turns out not to be a problem. Stratified

3 Like, for instance, Prolog’s Negation by finite failure operator.
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specifications are also called “logic programs” or simply “programs” in
the sequel4.

We define a special case of the supported model semantics 5 as the
intended meaning of our programs, and solving the query means to
compute such a model for the given program. This point is worth
emphasizing: we are thus not working in a classical theorem-proving
(i.e. refutational) setting; solving the query is, to our intuition, more
naturally expressed as a model-generation task.

Fortunately, model computation for stratified programs is much
easier than for non-stratified programs, both conceptually and in a
complexity-theoretic sense. There is little dispute about the intended
meaning of stratified programs, at least for normal programs (i.e. pro-
grams without disjunctions in the head), and the two major semantics
coincide, which are the stable model semantics (Gelfond and Lifschitz,
1988) and the well-founded model semantics (Van Gelder et al., 1991).
For propositional stratified normal programs, a polynomial time de-
cision procedure for the model existence problem exists, which does
not exist for the stable model semantics for non-stratified normal pro-
grams. Being confronted with large sets of data (stemming from tens
of thousands of units) was the main motivation to strive for a tractable
semantics.

As mentioned above, we do not restrict ourselves to normal pro-
grams. Instead, we found it convenient to allow disjunctions in the
head of clauses in order to express degrees of freedom for the assembly
of the final documents. Also for the disjunctive case (i.e. non-normal
programs), stable model semantics and well-founded model semantics
have been defined (see e.g. (Dix et al., 2001)). Both semantics agree
to assign a minimal model semantics to disjunction. For instance, the
program

A ∨ B ←

admits two minimal models, which are {A} and {B}. An equivalent
characterization of minimal models is to insist that for each atom true
in the intended model, there is a head of a true clause where only this

4 More precisely, the program clauses have the form A1 ∨ · · · ∨ Ak ← B1 ∧ · · · ∧
Bm∧ not Bm+1 ∧ · · · ∧ not Bn, and a program is stratified if the call graph of the
program does not have a cycle through a negative body literal. A simple example for
a non-stratified program is {A ← B, B ← notA}, because A is defined recursively
in terms of its own negation.

5 A model I of a (stratified and ground) clause set M is a supported model of
M iff for every A ∈ I there is a clause A ∨ A1 ∨ · · · ∨ Ak ← B1 ∧ · · · ∧ Bm∧ not
Bm+1 ∧ · · · ∧ not Bn in M such that M |= B1 ∧ · · · ∧Bm ∧ ¬Bm+1 ∧ · · · ∧ ¬Bn.
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atom is true. For our task, however, this preferred exclusive reading
of disjunctions seems not necessarily appropriate. When assembling
documents, redundancies (i.e. non-minimal models) should not be pro-
hibited unless explicitly stated. In order not having to restrict to the
minimal model semantics, we find the possible model semantics to be
appropriate (Sakama, 1990). With it, the above program admits all the
obvious models {A}, {B} and {A,B}. If the inclusive reading is to be
avoided, one would have to add the integrity constraint

← A ∧ B .

Unfortunately, the possible model semantics is costly to implement.
At the current state of our developments, our calculus is sound wrt.
the possible model semantics (i.e. any computed model is a possible
model) but complete only in a weak sense (if a possible model exists
at all, some possible model will be computed). In our current setting,
solving the query means to compute any model of the program, so the
lack of completeness is not really harmful. However, future experiments
will have to show if this approach is really feasible.

2.3. The Calculus

One of the big challenges in both classical logic and nonmonotonic
logics is to design calculi and efficient procedures to compute mod-
els for first-order specifications. Some attempts have been made for
classical first-order logic, thereby specializing on decidable cases of
first-order logic and/or clever attempts to discover loops in deriva-
tions of standard calculi (see e.g. (Fermller and Leitsch, 1996; Peltier,
1999; Baumgartner, 2000; Stolzenburg, 1999)).

In the field of logic programming, a common viewpoint is to identify
a program with the set of all its ground instances and to apply propo-
sitional methods then. Notable exceptions are described (Bornscheuer,
1996; Eiter et al., 1997; Gottlob et al., 1996; Dix and Stolzenburg,
1998). Of course, the “grounding” approach is feasible only in restricted
cases, when reasoning can be guaranteedly restricted to a finite subset
of the possibly infinite set of ground instances. Even the best systems
following this approach, like the S-models system (Niemel and Simons,
1996), quite often arrive at their limits when confronted with real data.

In our application we are confronted with data sets coming from
tens of thousands of units. Due to this mass, grounding of the programs
before the computation starts seems not to be a viable option. There-
fore, our calculus directly computes models, starting from the given
program, and without grounding it beforehand. In order to make this
work for the case of programs with default negation, a novel technique
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for the representation of and reasoning with non-ground representations
of interpretations is developed.

The calculus developed here is obtained by combining features of
two calculi readily developed – hyper tableaux (Baumgartner et al.,
1996) and FDPLL (Baumgartner, 2000) – and some further adaptations
for default negation reasoning. These two calculi were developed for
classical first-order reasoning, and the new calculus can be seen to
bring in “a little monotonicity” to hyper tableaux.

The calculus is called hyper tableau because it combines two charac-
teristics: the idea of clustering certain basic inference rules into a single
one, as it is used in hyper-resolution (Robinson, 1965), and the overall
calculus as it was developed for clause normal form tableau (see (Letz,
1998)). Instead of defining the hyper tableau calculus formally we will
illustrate it with the following example.

Consider the following set of clauses, where clauses are given in
implication form, such that B1 ∨ · · · ∨Bm ← A1 ∧ · · · ∧An stands for
the clause B1 ∨ · · · ∨Bm ∨ ¬A1 ∨ · · · ∨ ¬An.

A ← A (1)

B ∨ C ← A (2)

A ∨D ← C (3)

← A ∧B (4)

In order to construct a hyper tableau for this clause set, we start
with the empty tableau ε, which is given in the left part of Figure 6.
We will discuss this derivation from left to right: If we consider clause
(1), which we can understand as ”in any model A has to hold”, hence
we extend our single (empty) branch of the tableau ε by the new leaf
A. We arrive at a tableau with a branch which contains the (possibly)
partial model A. Obviously clause (2) does not hold in this model,
because (2) is stating ”if in a model A holds, than B or C has to
hold as well”. Let’s repair this, by extending our tableau by these two
possibilities; we extend it by the disjunction B ∨C, which is expressed
in the tableau by a new branching. The left branch {A,B} of this new
tableau, again is a (possibly) partial model, but now we observe that
there is a contradiction to clause (4), which is stating that A and B

cannot be true together in any model; hence we know that this branch
does not correspond to a partial model – we mark it as closed with an
asterisk. The right branch of the tableau, however, although it could
be further extended, is a model of the entire clause set (1)– (4).

We demonstrated the calculus only in the propositional case, but it
can be extended to a complete and correct calculus for full first order
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ε

A A

B C

A

B C
?

A

B C
?

∅ 6|= (1) {A} 6|= (2) {A, B} 6|= (4) {A, C} |= {(1)− (4)}

Figure 6. A sample hyper tableau derivation.

clausal logic, and there are various improvements of its basic variant
as introduced in (Baumgartner et al., 1996).

Hyper tableau calculi are tableau calculi in the tradition of SATCHMO
(Manthey and Bry, 1988). In essence, interpretations as candidates for
models of the given clause set are generated one after another, and the
search stops as soon as a model is found, or each candidate is provably
not a model (refutation). A distinguishing feature of the hyper tableau
calculi (Baumgartner et al., 1996; Baumgartner, 1998) to SATCHMO
and related procedures is the representation of interpretations at the
first-order level. For instance, given the very simple clause set consisting
of the single clause

equal(X,X) ←

the calculus stops after one step with the model described by the set
{equal(X,X)}, which stands for the model that assigns true to each
ground instance of equal(X,X).

The hyper tableau calculi developed so far do not allow for default
negation. In the present work we therefore extend the calculus corre-
spondingly. At the heart is a modified representation of interpretations.
The central idea is to replace atoms – which stand for the set of all their
ground instances – by pairs A − {E1, . . . , En}, where A is an atom as
before, and E is a set of atoms (“Exceptions”) that describes which
ground instances of A are excluded from being true by virtue of A. For
instance, if the clause

different(X,Y ) ← not equal(X,Y )

is added, then the search stops with the set

{equal(X,X) − {},different(X,Y )− {different(X,X)}} .

It represents the model where all instances of equal(X,X) are true, and
all instances of different(X,Y ) are true, except the reflexive ones.
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To see how we use the calculus in the context of SBT, we take
another excerpt from the knowledge base, and use it to demonstrate
the working of the hyper tableau calculus modified for nonmonotonic
reasoning. Figure 7 depicts this excerpt; it is from the “user model”,
and its purpose is to find out by means of the known_unit_inf rela-
tion whether the user knows some unit in question. The clauses in the

%% User knowledge:

known unit(analysis/1/2/ ALL ). (1)

unknown unit(analysis/1/2/1). (2)

%% Book metadata:

refers(analysis/1/2/3, analysis/1/0/4). (3)

%% ‘known unit’ transitive closure:

known unit(Book B/Unit B) :- (4)

known unit(Book A/Unit A),

refers(Book A/Unit A, Book B/Unit B).

%% ‘unknown unit’ transitive closure

unknown unit(Book B/Unit B) :- (5)

unknown unit(Book A/Unit A),

refers(Book A/Unit A, Book B/Unit B).

%% Derived:

known unit inf(Book/Unit) :- (6)

known unit(Book/Unit),

not unknown unit(Book/Unit).

Figure 7. Excerpt from the knowledge base.

knowledge base in Figure 7 are stratified, i.e. they are organized in a
hierarchical way. On the base layer, e.g., clause (2) is expressing the fact
that the current user does not know the unit 1/2/1 from the analysis-
book. Clause (1) is a good example demonstrating the representational
advantage of our system over other systems that require grounding of
the clauses before computation (this is also mentioned inSection 1.2
above): in clause (1), _ALL_ is a universally quantified variable, i.e.,
intentionally, all sub-units of analysis/1/2 are declared to be known.
It is the purpose of clause (6) to resolve the apparent inconsistency
behind the just given explanation of clauses (1) and (2) (cf. below).

Clauses (4) and (5) are expressing knowledge about the meta data
relations “known unit” and “unknown unit”.
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Clause (6) says that Book/Unit is contained in the knows_unit_inf-
relation (the relation we are interested in), if it is “known” (by means of
the known_unit(Book/Unit) declaration) and this circumstance is not
overridden by a an explicit “unknown”-declaration of the same unit (by
means of not unknown_unit(Book/Unit)). By the use of the default
negation technique we realize that “unknown”-declarations should be
stronger than “known”-declarations. We think that this is appropriate
modelling, as “unknown” units are never withhold from the user.

Now, the calculus derives from the clauses in Figure 7 in three steps
the hyper tableau in Figure 8.

known unit(analysis/1/2/ ALL )

refers(analysis/1/2/3, analysis/1/0/4)

unknown unit(analysis/1/2/1)

known unit(analysis/1/0/4)

known unit inf(analysis/1/2/ ALL )
- { known unit inf(analysis/1/2/1) }

Figure 8. Hyper tableau derivation from the clauses in Figure 7.

The topmost three lines stem from the clauses (1), (3) and (2),
respectively. By combining clauses (1), (3) and (4) we conclude that
the unit analysis/1/0/4 should be “known”. This is realized by the
hyper tableau derivation in the fourth line. The concluding line in
the derivation is obtained by clauses (1), (2) and (6). It says that
in the known_unit_inf-relation are all sub-units of analysis/1/2 –
more technically: all ground instances of analysis/1/2/_ALL_ – except
for the unit analysis/1/2/1 (the technique of representing models
this way is described above). Observe that the mentioned, apparent
contradiction between what clauses (1) and (2) say is eliminated as
explained.

2.4. Other Approaches

In the previous sections, specifications in the (disjunctive) logic pro-
gramming style are advocated as an appropriate formalism to model
the task at hand. Undoubtedly, there are other candidate formalisms
that seem well-suited, too. In the following we comment on these.

2.4.0.4. Prolog. Certainly, one could write a Prolog program to solve
a query. When doing so, it seems natural to rely on the findall built-
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in to compute the extension of the computed_unit predicate, i.e. the
solution to a query. Essentially, this means to enumerate and collect all
solutions of the goal computed_unit(U) by means of the Prolog built-in
backtracking mechanism. In order to make this work, some precautions
have to be taken. In particular explicit loop checks would have to be
programmed in order to let findall terminate. Because otherwise, for
instance, alone the presence of a transitivity clause causes findall not
to terminate.

It is obvious that a Prolog program along these lines would be much
more complicated than the program in Section 1.2. On the other hand,
our approach relieves the programmer from the burden of explicitly
programming a loop mechanism, because it is built into the model
computation procedure presented below. Indeed, this is a distinguish-
ing and often mentioned advantage of virtually all bottom-up model
generation procedures over Prolog.

2.4.0.5. XSB-Prolog. One of the view programming languages that
works top-down (as Prolog) and that has built-in loop checking ca-
pabilities (as bottom-up model generation procedures) is XSB-Prolog
(Sagonas et al., 2000). XSB-Prolog supports query answering wrt. the
well-founded semantics for normal logic programs (Van Gelder et al.,
1991). At the heart of XSB-Prolog is the so-called tabling device that
stores solutions (instantiations) of goals as soon as computed. Based
on tabling, it is even possible to compute extensions of predicates (such
as computed_unit) and return them to the user.

The only problem with XSB-Prolog for our application is the re-
striction to normal programs, i.e. disjunctions in the head of program
clauses are not allowed. Certainly, this problem could be circumvented
by explicitly coding disjunctions in the program, but possibly at the
cost of far less intuitive solution.

2.4.0.6. Description Logics. Description logics (DL) are a formalism
for the representation of hierarchically structured knowledge about
individuals and classes of individuals. Nowadays, numerous descen-
dants of the original ALC formalism and calculus (Schmidt-Schau and
Smolka, 1991, e.g.) with greatly enhanced expressive power exist, and
efficient respective systems to reason about DL specifications have been
developed (Horrocks et al., 2000).

From the sample query in Section 1.2 it can be observed that a
good deal of the information represented there would be accessible to
a DL formalization. The concrete units would form the so-called as-
sertional part (A-Box), and general “is-a” or “has-a” knowledge would
form the terminological part (T-Box). The T-Box would contain, for
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instance, the knowledge that a unit with type “example” is-a “explana-
tory unit”, and also that a unit with type “figure” is-a “explanatory
unit”. Also, transitive relations like “requires” should be accessible to
DL formalisms containing transitive roles.

In Section 1.2 it is argued that disjunctive and non-monotonic rea-
soning is suitable to model e.g. preference among units to be selected.
At the current state of our work, however, it is not yet clear to us if
and how this would be accomplished using a DL formalism. Certainly,
much more work has to be spent here. Presumably, one would arrive
at a combined DL and disjunctive logic programming approach. This
is left here as future work.

3. Status of This Work and Perspectives

This work is not yet finished. Open ends concern in the first place some
design decisions and practical experience with real data on a large scale.

Concerning design decisions, for instance, it is not quite clear what
semantics suits our application best. It is clear that a supportedness
principle (Section 2.2) is needed, but there is some room left for further
strengthenings. Further experiments (i.e. the formulation of queries)
will guide us here.

The calculus and its implementation are developed far enough, so
that meaningful experiments are possible. The implementation is car-
ried out in Eclipse Prolog. For faster access to base relations, i.e. the
currently computed model candidate, the discrimination tree indexing
package from the ACID term indexing library (Graf, 1994) is coupled.
Without indexing, even our moderately sized experiments seem not to
be doable. With indexing, the response time for the sample query in
Section 1.2 with a database stemming from about 100 units takes less
than a second. A similar query, applied to a full book with about 4000
units takes ten seconds, which seems almost acceptable.

Another topic that has to be addressed seriously is how to design the
interface between the logic programming system and the user, i.e. the
reader of the document. The user cannot be expected to be acquainted
with logic programming or any other formal language (typically, this is
what students should learn by reading the sliced books). Thus, a sim-
plified, restricted set of commands together with a library of predefined
“subroutines” seems to be an option. These would have to become part
of the “reader” tool, so that the user can assemble queries by his own
in a plug-and-play manner.

The question arises, if the techniques developed within this enter-
prise can be used in some other context. We plan to do so within
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one of the projects carried out in our group, the In2Math project.
This project aims, roughly, to combine documents like sliced books
with interactive systems like computer algebra systems and theorem
provers. The projects targets at seriously using the resulting systems in
undergraduate logic and mathematics courses. We are convinced that
the techniques developed here can be used in the In2Math project.
Beyond the obvious purpose to help students assemble personalized
books, it is maybe possible to teach students participating in a logic
course the logic programming techniques described here.
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