
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

A Combined Superposition and Model Evolution Calculus

Peter Baumgartner · Uwe Waldmann

September 3, 2010

Abstract We present a new calculus for first-order theorem proving with equality, ME+Sup,
which generalizes both the Superposition calculus and the Model Evolution calculus (with
equality) by integrating their inference rules and redundancy criteria in a non-trivial way.
The main motivation is to combine the advantageous features of these two rather comple-
mentary calculi in a single framework. In particular, Model Evolution, as a lifted version of
the propositional DPLL procedure, contributes a non-ground splitting rule that effectively
permits to split a clause into non variable disjoint subclauses. In the paper we present the cal-
culus in detail. Our main result is its completeness under semantically justified redundancy
criteria and simplification rules. We also show how under certain assumptions the model
representation computed by a (finite and fair) derivation can be queried in an effective way.

1 Introduction

We present a new calculus for first-order theorem proving with equality, ME+Sup, which
generalizes both the Superposition calculus and the Model Evolution calculus (with equal-
ity), MEE. It integrates the inference rules of Superposition and of Model Evolution in a
non-trivial way while preserving the individual semantically-based redundancy criteria of
the two calculi. The inference rules are controlled by a flexible labelling function on atoms.
This permits non-trivial combinations where inference rule applicability is disjoint, but pure
forms of both calculi can be (trivially) configured, too.

On a methodological level, this paper attempts to bridge the gap between instance-
based methods (per MEE) and Resolution methods (per Superposition). Both methods are
rather successful, for instance in terms of performance of implemented systems at the an-
nual CASC theorem proving competition. However, they currently stand rather separated.
They provide decision procedures for different sub-classes of first-order logic, and their in-
ference rules are incompatible, too. For instance, subsumption deletion can be used with
instance-based methods in only a limited way.

Peter Baumgartner
NICTA and ANU, Canberra, Australia

Uwe Waldmann
MPI für Informatik, Saarbrücken, Germany

The main motivation for this work is to combine the advantages of both calculi in a
single framework. Technically, ME+Sup can be seen as an extension of the essential Model
Evolution inference rules by Superposition inference rules. Alternatively, ME+Sup can be
seen to extend Superposition with a new splitting rule that permits, as a special case, to split
a clause into non variable disjoint subclauses. It seems not too difficult to extend current
Superposition theorem provers with the new splitting rule, in particular those that already
provide infrastructure for a weaker form of splitting (such as SPASS [WSH+07]). Finally,
another motivation for this work is to simplify the presentation of MEE by aligning it with
the better-known Superposition framework.

The following clause set is prototypical for the intended applications of ME+Sup (func-
tion symbols are typeset in sans-serif and variables in italics).

(1) x≤ z∨¬(x≤ y)∨¬(y≤ z) (3) select(store(a, i,e), i)≈ e
(2) x≤ y∨ y≤ x (4) select(store(a, i,e), j)≈ select(a, j)∨ i≈ j

(5) select(a0, i)≤ select(a0, j)∨ i≈ j∨¬(i≤ j)

The clauses (1) and (2) are properties of total orders, clauses (3) and (4) axiomatize arrays,
and clause (5) says that the array a0 is sorted. The latter could be written, perhaps more
intuitively, as select(a0, i) ≤ select(a0, j)∨¬(i < j) together with the axiom (x ≈ y)∨ x <
y∨¬(x ≤ y). We didn’t do that just to keep the example small. The clause set (1)-(5) is
satisfiable, but neither MEE nor Superposition equipped with standard redundancy criteria
(with or without selection of negative literals) does terminate on these clauses: for MEE,
the size of the derived literals is not finitely bounded, and for Superposition the length of
the derived clauses is not finitely bounded. On the other hand, ME+Sup does terminate on
(1)-(5). The following informal calculus preview will demonstrate this (and why).

1.1 Calculus Preview

The main technical novelty of the ME+Sup calculus is the combination and interplay be-
tween its MEE and Superposition components. We are going to explain the main ideas how
this works. The details are quite involved and are left to the main part of the paper.

ME+Sup is parametrized by a term ordering as customarily used both in Superposition
calculi and MEE to formulate restrictions on inference rule applicability and to justify sim-
plification techniques. ME+Sup is further parametrized in a non-standard way by a labelling
function that partitions the set of ground atoms into two sets, the split atoms and the super-
position atoms. Intuitively, the MEE-part of ME+Sup takes care of (explicitly) representing
an interpretation for the split atoms, and the Superposition part of ME+Sup takes care of
(implicitly) representing an interpretation for the superposition atoms. A key point is that
the former, explicit representation allows one to formulate certain “semantic” restrictions on
the inference rules based on (simple) querying this representation. The example above will
be instrumental to demonstrate this.

The clauses (1) and (2) alone are problematic as Superposition does not terminate on
them. MEE, like all instance-based methods, is a decision procedure for function-free clause
sets and thus terminates on (1) and (2) alone. This suggests to treat clauses (1) and (2) mainly
by the MEE component of ME+Sup. Accordingly, we declare all ≤-atoms as split atoms
and all ≈-atoms as superposition atoms. Intuitively, function-free non-equalities are prime
candidates for split literals, whereas equalities, in particular between deep terms, are usually
better handled using the superposition part of the calculus. To get an instructive example we
assume a term ordering � that makes all ≤-atoms strictly greater than all ≈-atoms.

2

Let us now have a look at the ME+Sup data structures and inference rules. The calculus
maintains two main data structures, contexts and sets of constrained clauses. A context Λ

is a set of possibly non-ground split literals that specifies a Herbrand interpretation on the
split literals by utilizing the instantiation preorder on terms: a positive ground literal L is
true in (the interpretation specified by) Λ if and only if (a) L is an instance of some literal
K ∈ Λ , written as K & L, and (b) there is no K′ ∈ Λ such that K � K′ & L. For example,
if Λ = {x ≤ y, ¬(z ≤ b), a ≤ b} then a ≤ a, a ≤ b and b ≤ a are all true in Λ , whereas
b ≤ b is false. For the latter notice that although x ≤ y ∈ Λ is a candidate to make b ≤ b

true, there is a more specific complementary literal ¬(z ≤ b) ∈ Λ that prevents that, i.e.,
x≤ y � z≤ b & b≤ b. Finally, for technical reasons we assume that every context implicitly
contains a pseudo-literal ¬x, where x is a variable, which (explicitly) assigns false to every
split atom “by default”.

We stress that this description is only approximative. It is sufficient for the example, but
in general the atoms assigned true by a context are only a subset of the ones according to the
construction above. But notice that the construction still gives a simple, sufficient condition
for ground atoms being false, which is exploited to formulate inference rule restrictions.

A (constrained) clause is an expression of the form C ·Γ , where C is an ordinary clause
and Γ is a constraint, that is, a multiset of literals. Together with a context Λ , any ground
instance C′ ·Γ ′ of C ·Γ evaluates to the ordinary (ground clause) C′ if all literals in Γ ′ are
split literals and are true in Λ . Otherwise C′ ·Γ ′ can be ignored. Operationally, the constraint
part Γ of a constrained clause C ·Γ contains the accumulated assumptions from a context
that were used in deriving the clause.

The calculus maintains at any time a current context Λ , initially empty, and a current
clause set Φ , initially the input clauses attached with empty constraints. The main inference
rules grow Λ or Φ , but there are also simplification rules to modify Φ destructively. For the
latter see Section 9. We describe the inference rules that grow Φ next.

ME+Sup includes the usual Superposition calculus inference rules between clauses
adapted to constrained clauses. In these rules the constraints are just passively accumulated.
For the purpose of this preview it suffices to work with the following uniform, less restrictive
formulation of the inference rules Sup-Pos and Sup-Neg in Section 5 (L is a literal):

Sup
l ≈ r∨C′ ·Γ ′ L[u]p∨C ·Γ
(L[r]p∨C∨C′ · (Γ ,Γ ′))σ

where (i) σ is an mgu of l and u, (ii) u is not a variable, (iii) (l ≈ r)σ is a superposition atom,
(iv) rσ 6� lσ , (v) (l ≈ r)σ is strictly maximal wrt. � in (l ≈ r∨C′)σ , (vi) Lσ is maximal
wrt. � in (L∨C)σ , and (vii) if L[u]p is a positive superposition literal of the form s[u]p ≈ t
then tσ 6� sσ .

In the example, the only applicable Sup-inferences are among clauses (3) and (4). The
terms l and s mentioned in the inference rule can only be the left side of the equation in (3)
and the left side of the left equation in (4). However, each such Sup-inference results in a
tautology, a clause containing a trivial equation of the form t ≈ t, and need not be carried out.
In the terminology used below, such inferences are “universally redundant”. Had we used
MEE alone, condition (vii) would not apply and paramodulation into the right-hand sides of
the mentioned equations in (3) and (4) would be possible, leading to non-termination.

There are additional inference rules for factorisation and for removal of trivial negative
equations from clauses, which we do not spell out in this preview.

3

The next two inference rules combine a literal A (¬A, respectively) that is taken from
the current context and a constrained clause in a unit-resolution way.

U-Sup
A ¬B∨C ·Γ
(C · (Γ ,B))σ

U-Res
¬A B∨C ·Γ
(C · (Γ ,¬B))σ

where (i) σ is an mgu of A and B, (ii) Aσ is a split atom, and (iii) ¬Bσ is maximal wrt. � in
(¬B∨C)σ (Bσ is maximal wrt. � in (B∨C)σ , respectively).

The U-Sup and U-Res inference rules can be seen to identify in their right premise a
clause instance with a (maximal) literal that is potentially or actually falsified in the current
context Λ . That clause literal is then put aside into the constraint part for later processing by
MEE rules. Notice that A cannot be treated as a (universally quantified) unit clause, one that
forces all instances of A to be true. A future extension of the current context might contain
an instance of ¬A, so that ground instances of A then become false again. Simply removing
¬B from the right premise would therefore be unsound. This is why Bσ is stored as an
assumption in the constraint in the resulting constrained clause. The same argumentation
applies to U-Res.

All the above inference rules are governed by the additional restriction that the con-
straints of all the involved clauses must be satisfiable in the current context Λ . That is, if
C ·Γ is such a clause, then at least one ground instance Γ ′ of Γ must be true in Λ . This is
justified, intuitively, because a constrained clause C ·Γ with an unsatisfiable constraint does
never evaluate to a ground instance C′ of C.

It should be mentioned that the description of contexts and the U-Sup and U-Res rules
above is simplified. Below we will define contexts over rewrite literals, that is, ordered
equations of the form l→ r. An ordinary literal like x≥ y will then be written as (x≥ y)→ tt,
where tt is a dedicated constant, standing for “true”. The simplification is justified because
in the example all split-literals are originally non-equations. In general, equations can be
split-literals, too, and then a more general form of the U-Sup inference rule is needed. In
fact, U-Sup comes in two versions below, corresponding to unit-superposition into positive
and negative clauses too.

We can now start a derivation from clauses (1)-(5) and the initial context Λ that (implic-
itly) contains only ¬x:

(6) ¬(x≤ y)∨¬(y≤ z) · ¬(x≤ z) (U-Res of ¬x ∈Λ and (1))
(7) y≤ x · ¬(x≤ y) (U-Res of ¬x ∈Λ and (2))
(8) � · (¬(x≤ y),¬(y≤ x)) (U-Res of ¬x ∈Λ and (7))
(9) i≈ j∨¬(i≤ j) · ¬(select(a0, i)≤ select(a0, j)) (U-Res of ¬x ∈Λ and (5))

All applicable Sup-inferences are redundant at this point, and no other inference rules are
applicable at all. For instance, U-Pos is not applicable to (9) and its literal ¬(i≤ j), as there
is no complementary literal in Λ to pair with. Intuitively, all≤-literals are false in the current
context Λ = {}, and so clause (9) is satisfied and needs not be worked on. Also, (9) cannot
be used as the left premise in Sup-inferences because its clause literal i≈ j is strictly smaller
than its other clause literal ¬(i≤ j).

The presence of the constrained empty clause (8) does not make a refutation, however,
because the possibility of a model that falsifies the constraint of (8) has not been excluded.
The following two inference rules deal with such constrained empty clauses, by analyzing if
their constraint can be satisfied by modifying the context. Technically, they are formulated

4

on sequents of the form Λ ` Φ , where Λ is the current context and Φ is the current clause
set (read Λ ` Φ roughly as “assume the interpretation Λ and show that it satisfies Φ”).

Split
Λ ` Φ

Λ , K ` Φ Λ , K ` Φ
Close

Λ ` Φ

Λ ` Φ ,� · /0

The applicability conditions are as follows: Split is applicable if there is a constrained clause
� ·Γ ∈Φ such that K ∈Γ is a split literal and Λ contains neither a variant of K nor a variant
of K.1 Close is applicable if there is a constrained clause� ·Γ ∈Φ such that for every K ∈Γ

the context Λ contains a variant of K.
The example derivation has arrived at the sequent Λ ` Φ = {} ` (1), . . . , (9). The only

applicable inference rule now is Split, on clause (8). It results in the left sequent with context
Λl = {x≤ y} and the right sequent with context Λr = {¬(x≤ y)}.

The Split rule branches out in two contexts. Let us choose Λr as the new current context.
Then, Close is applicable with clause (8), which indicates that Λr ` Φ is not considered
further. As expected, if all branches in a derivation are closed this way, a refutation has been
found.2

With the right branch being closed, we need to consider the left branch, i.e., the current
context is Λl now. The literal x≤ y ∈Λl suggests to consider U-Sup inferences with x≤ y as
the left premise now. For example, the U-Sup inference with right premise (9) and its literal
¬(i≤ j) would give i≈ j · (¬(select(a0, i)≤ select(a0, j)), i≤ j). However, the constraint
of this clause is unsatisfiable, as all instances of its negative literal are false in Λl. This is
detected by applicability conditions that make this inference impossible (the last condition
mentioned with Deduce in Section 6..

Because no (more) inferences are possible the derivation stops with the sequent Λl `
{(1), . . . ,(9)}. It represents a certain model of the initial clause set. Section 7 explains the
model construction in detail.

The main purpose of this calculus preview was to demonstrate how the advantageous
features of the constituent calculi MEE and Superposition can be combined in a beneficial
way. For MEE, we exploited the finite-model building capabilities for function-free clause
sets, which are difficult for Superposition. For Superposition, we exploited the stronger
model-building capabilities when deep terms are involved, which is enabled by inference
rules that are more restricted than their MEE counterpart. Altogether, this allowed us to
argue that inference rules are not applicable, leading to termination on this example.

1.2 Related Work

ME+Sup subsumes the Superposition calculus [BG98] and its redundancy concept and also
the essentials of propositional DPLL, that is, split and unit propagation for ground literals.
Model Evolution [BT03] and Model Evolution with Equality [BT05] are not completely
covered, though, since universal literals and some optional inference rules are missing. The

1 A split literal is a possibly negated atom that has at least one instance that is a split atom (recall that the
distinction between split atoms and superposition atoms is made at the ground level).

2 Regarding soundness: instead of applying Close one may imagine to temporarily replace all variables in
all literals in the context by some (same) constant and matching the clause used by Close to complementary
literals in the resulting context. With this construction it is not hard to argue for the soundness of the calculus,
essentially because the branching introduces complementary literals.

5

model construction that we use has some similarity with the one used for Constraint Super-
position [NR95], where one also starts with constructing a model for reduced instances and
later extends this to the full clause set provided that this is constraint-free.

Model Evolution belongs to the family of instance based methods [Bau07,JW07,Kor09].
Some of them include Resolution type inference rules. For instance, Ordered Semantic
Hyper-Linking [PZ00] uses A-Ordered Resolution for simplification purposes. A refine-
ment of the Inst-Gen calculus [GK03,GK04] allows to reduce (by partial instantiation) cer-
tain classes of input clause sets to the monadic clause class, and Resolution can be coupled
as a decision procedure for this class. Both papers [GK03] and [PZ00] leave more general
combination schemes with Resolution as future work.

Indeed, the latest Inst-Gen prover integrates a Resolution as a sub-system. The purpose
is to derive “small” clauses by Resolution which can then be used for (proper) subsumption
deletion [Kor08]. Notice that this combination approach is incomparable to ours.

Another approach that compares better to ours, in the sense that it also targets separating
Resolution and Instantiation-based inferences, has been described in [LM09]. The calculus
described there, SIG-Res, allows one to divide an input clause set F into two parts P⊆F and
R ⊆ F . It works by saturating P under Inst-Gen inference rules, and applying (A-Ordered)
Resolution inference rules to clauses from P ∪ R, where at least one of the parent clauses is
from R. The SIG-Res calculus differs conceptually from ME+Sup. While ME+Sup uses a
labelling function on clause literals, SIG-Res thus uses a labelling function on clauses. More
research is needed to assess the implications of this difference. For now it is perhaps fair to
say that ME+Sup is somewhat more advanced, as it features built-in equality inference rules
and redundancy criteria, which are both missing in SIG-Res.

2 Formal Preliminaries

We consider signatures Σ comprised of a binary predicate symbol ≈ (equality), and a finite
set of function symbols of given arity (constants are 0-ary function symbols). We also need
a denumerable set of variables X disjoint from Σ . Terms (over Σ and X) are defined as usual.
If t is a term we denote by Var(t) the set of t’s variables. A term t is ground iff Var(t) = /0.
A substitution is a mapping of variables to terms that is the identity almost everywhere.
We write {x1 7→ t1, . . . ,xn 7→ tn} for the substitution that maps the variable xi to the term
ti, for i = 1, . . . ,n. The empty substitution is denoted by /0. A substitution σ is applied to a
term t, written as tσ , by simultaneously applying σ to the variables in t. A renaming is a
substitution that is a bijection of X onto itself. A substitution γ is a ground substitution for t
iff tγ is ground.

We write s& t, iff there is a substitution σ such that sσ = t.3 We say that s is a variant of
t, and write s∼ t, iff s& t and t & s, or, equivalently, iff there is a renaming ρ such that sρ = t.
We write s� t if s& t but s 6∼ t. The notation s[t]p means that the term t occurs in the term s
at position p, as usual. The index p is left away when not important or clear from the context.
Because equality is the only predicate symbol, an atom is always an equation s ≈ t, which
is identified with the multiset {s, t}. Consequently, equations are treated symmetrically, as
s ≈ t and t ≈ s denote the same multiset. A literal is an atom (a positive literal) or the
negation of an atom (a negative literal). Negative literals are generally written s 6≈ t instead
of ¬(s ≈ t). In the examples below we often write non-equational literals like P(t1, . . . , tn)
or ¬P(t1, . . . , tn), which are meant to stand for the equational literals P(t1, . . . , tn) ≈ tt or

3 Note that many authors would write s. t in this case.

6

P(t1, . . . , tn) 6≈ tt, where tt is a fresh constant that is smaller than all other terms. We write L
to denote the complement of a literal L, i.e. A =¬A and ¬A = A, for any atom A. A clause is
a multiset of literals {L1, . . . ,Ln}, generally written as a disjunction L1 ∨ ·· ·∨Ln. We write
L∨C to denote the clause {L} ∪ C. The empty clause is written as �. All the notions on
substitutions above are extended from terms to atoms, literals and clauses in the obvious
way.

Orderings. We suppose as given a reduction ordering � that is total on ground Σ -terms.4

Following usual techniques [BG98,NR95, e.g.], it is extended to an ordering on literals by
taking a positive literal s ≈ t as the multiset {s, t}, a negative literal s 6≈ t as the multiset
{s,s, t, t} and using the extension of � to multisets of terms to compare literals. Similarly,
clauses are compared by the multiset extension of the ordering on literals. All these (strict,
partial) orderings will be denoted by the same symbol, �. The non-strict orderings � are
defined as s � t iff s � t or s = t. We say that a literal L is maximal (strictly maximal) in a
clause L∨C iff there is no K ∈C with K � L (K � L).

Rewrite Systems. A (rewrite) rule is an expression of the form l→ r where l and r are terms.
A rewrite system is a set of rewrite rules. We say that a rewrite system R is ordered by �
iff l � r, for every rule l→ r ∈ R. In this paper we consider only (ground) rewrite systems
that are ordered by �. A term t is reducible by l→ r iff t = t[l]p for some position p, and
t is reducible wrt. R if it is reducible by some rule in R. The notion irreducible means “not
reducible”. A rewrite system R is left-reduced (fully reduced) iff for every rule l→ r ∈ R, l
is (l and r are) irreducible wrt. R\{l→ r}. In other words, in a fully reduced rewrite system
no rule is reducible by another rule, neither its left hand side nor its right hand side.

Interpretations. A (Herbrand) interpretation I is a set of ground atoms—exactly those that
are true in the interpretation. Validity of ground literals, clauses, and clause sets in a Her-
brand interpretation is defined as usual. We write I |= F to denote the fact that I satisfies F ,
where F is a ground literal, ground clause, or set of ground clauses. As usual, this notation
extends to (possibly non-ground) clauses by taking the set of all ground instances of the
clause, and to clause sets by taking the set of all ground instances of all its clauses.

Because equality is the only predicate symbol, we can identify every interpretation with
a binary relation on ground terms. If this relation is a congruence relation, we call it an
E-interpretation. If I is an interpretation, we denote by I? the smallest interpretation that
includes I and is an E-interpretation.

We say that I E-satisfies F iff I? |= F . We say that F E-entails F ′, written F |= F ′, iff
every E-interpretation that satisfies F also satisfies F ′.

The above notions are applied to ground rewrite systems instead of interpretations by
taking the rules as equations. We write R? |= F and mean {l ≈ r | l → r ∈ R}? |= F . It is
well-known that any left-reduced (and hence any fully reduced) ordered rewrite system R is
convergent,5 see e.g. [BN98]) and that any ground equation s ≈ t is E-satisfied by R, i.e.,
R? |= s≈ t if and only if s and t have the same (unique) normal form wrt. R.

4 A reduction ordering is a strict partial ordering that is well-founded and is closed under context i.e.,
s � s′ implies t[s] � t[s′] for all terms t, and liftable, i.e., s � t implies sδ � tδ for every term s and t and
substitution δ .

5 A rewrite system is convergent iff it is confluent and terminating.

7

Labelling Function. Broadly speaking, ME+Sup combines inference rules from the Super-
position calculus and inference rules resembling those of Model Evolution, but for each
atom only a subset of the full set of inference rules is usable. This is controlled by assuming
a labelling function that partitions the set of positive ground atoms into two sets, the split
atoms and the superposition atoms.6 We say a (possibly non-ground) atom is a split atom
(superposition atom) iff at least one ground instance is a split atom (superposition atom).

Thus, while a ground atom is either one or the other, the distinction is blurred for non-
ground atoms. From a practical point of view, to avoid overlap between the ME and the
superposition inference rules, it is desirable to keep the (non-ground) split atoms and super-
position atoms as separate as possible.

The separation into split atoms and superposition atoms is quite flexible. No assumptions
regarding disjointness of their underlying signatures or ordering assumptions between their
elements are required. For instance, one may declare all ground atoms up to a certain term
depth as split atoms. Even the set of non-ground split atoms is finite then, modulo renaming.
As will become clear, the contexts evolved by the Model Evolution part of ME+Sup are finite
then, which might be interesting, e.g., to finitely represent (parts of) a counter-example for
non-theorems.

3 Contexts

Contexts have been introduced in [BT03] as the main data structure in the Model Evolution
calculus to represent interpretations; they have been adapted to the equality case in [BT05],
but here we work with the original definition, which is simpler and more practical. More
formally, when l and r are terms, a rewrite literal is a rule l → r or its negation ¬(l → r),
the latter generally written as l 6→ r. By treating → as a predicate symbol, all operations
defined on equational literals apply to rewrite literals as well. In particular, l→ r = l 6→ r
and l 6→ r = l→ r. If clear from the context, we use non-equational literals P(t1, . . . , tn) or
¬P(t1, . . . , tn) as shorthands for the rewrite literals P(t1, . . . , tn)→ tt or P(t1, . . . , tn) 6→ tt. We
also use the term “literal” to refer to equational literals as introduced earlier or to rewrite
literals.

A context is a set of rewrite literals that also contains a pseudo-literal ¬x, for some
variable x. In examples we omit writing¬x and instead implicitly assume it is present. Where
L is a rewrite literal and Λ a context, we write L ∈∼ Λ if L is a variant of a literal in Λ . A
rewrite literal L is contradictory with a context Λ iff L ∈∼ Λ . A context Λ is contradictory
iff it contains a rewrite literal that is contradictory with Λ . For instance, if Λ = {f(x)→
a, f(x) 6→ x} then f(y) 6→ a and f(y)→ y are contradictory with Λ , while f(a)→ a, a 6→ f(x)
and f(x)→ y are not. From now on we assume that all contexts are non-contradictory. This
is justified by the fact that the ME+Sup calculus defined below can derive non-contradictory
contexts only.

A context can be seen as a means to specify a set of literals. In the ME calculus without
equality [BT03], it was straightforward to obtain a Herbrand interpretation from a context
Λ by saying, roughly, that a literal K ∈Λ specifies a truth value for a ground instance unless
Λ contains a literal that is more specific than K and that specifies the opposite truth value.
This notion, called productivity, is needed here as well:

6 Notice that with the symmetric treatment of equations, l ≈ r is a split atom if and only if r ≈ l is, and
similarly for superposition atoms.

8

Definition 1 (Productivity [BT03]) Let L be a rewrite literal and Λ a context. A rewrite
literal K produces L in Λ iff K & L and there is no K′ ∈Λ such that K � K′ & L.

The context Λ produces L iff it contains a literal K that produces L in Λ , and Λ produces
a multiset Γ of rewrite literals iff Λ produces each L ∈ Γ . ut

For instance, the context Λ above produces f(b)→ a, f(a)→ a and f(a) 6→ a, but Λ produces
neither f(a)→ b nor a→ f(x).

In case of conflicts, when a context produces both a ground literal and its complement,
the positive literal is preferred. The following definition achieves this:

ΠΛ := {l→ r |Λ produces l→ r and l→ r is ground} .

For instance, if Λ = {f(x)→ x} and Σ consists of a constant a and the unary function symbol
f then ΠΛ = {f(a)→ a, f(f(a))→ f(a), . . .}.

In other words, ΠΛ specifies a Herbrand interpretation on rewrite literals. We already
used ΠΛ in this way to discuss the example in Section 1.1. In general, however, a more
refined construction is needed to obtain the final rewrite system, a subset of ΠΛ , that Λ

stands for. The details are left to Section 7.

4 Constrained Clauses

Let C = L1∨·· ·∨Ln be a clause, let Γ = {K1, . . . ,Km} be a multiset of rewrite literals such
that no Ki is of the form x→ t, where x is a variable and t is a term. The expression C ·Γ
is called a constrained clause (with constraint Γ), and we generally write C · (K1, . . . ,Km)
instead of C · {K1, . . . ,Km}. The notation C · (Γ ,K) means C ·Γ ∪ {K}.

Informally, the constraint part Γ of a constrained clause C ·Γ contains the accumulated
assumptions from a context that were used in deriving the clause. The literals in the clause
part C are going to be used for superposition inferences or are moved into the constraint
part, dependent on their type (superposition literal/split literal).

Applying a substitution σ to C ·Γ , written as (C ·Γ)σ , means to apply σ to C and all
literals in Γ . A constrained clause C ·Γ is ground iff both C and Γ are ground. If γ is a
ground substitution for C ·Γ , then the pair (C ·Γ ;γ) is called a ground closure (of C ·Γ). For
a set of constrained clauses Φ , Φgr is the set of all ground closures of all constrained clauses
in Φ .

For the soundness proof of ME+Sup we need the clausal form of a constrained clause
C ·Γ = L1∨ ·· ·∨Lm · (l1→ r1, . . . , lk→ rk, lk+1 6→ rk+1, . . . , ln 6→ rn), which is the ordinary
clause L1∨·· ·∨Lm∨ l1 6≈ r1∨·· ·∨ lk 6≈ rk∨ lk+1 ≈ rk+1∨·· ·∨ ln ≈ rn and which we denote
by (C ·Γ)c. From a completeness perspective, however, a different reading of constrained
clauses is appropriate. The clause part C of a (ground) constrained clause C ·Γ is evaluated
in an E-interpretation I, whereas the literals in Γ are evaluated wrt. a context Λ in terms of
productivity. The following definition makes this precise.

We say that a ground constraint Γ consists of split rewrite literals iff for every l→ r ∈Γ

and for every l 6→ r ∈ Γ , it holds that l ≈ r is a split atom and l � r.

Definition 2 (Satisfaction of Constraints) Let Λ be a context, Γ a constraint and γ a
ground substitution for Γ . We say that Λ satisfies (Γ ,γ) and write Λ |= (Γ ,γ) iff

(i) Γ γ consists of split rewrite literals,
(ii) Λ produces Γ and Λ produces Γ γ by the same literals, that is, for each L ∈ Γ , there is a

literal K ∈Λ that produces both L in Λ and Lγ in Λ . ut

9

In the introduction we mentioned that ground constrained clauses whose constraint is not
satisfied by a context can be ignored. Definition 2 makes that informal notion of satisfaction
precise, in a stronger form. Intuitively, contexts need to define interpretations on split atoms
only, via (a subset of) their produced ground (and ordered) split rewrite rules, which mo-
tivates condition (i). Condition (ii) says that each rewrite literal and its considered ground
instance must be produced by the same context literal. For example, this is not the case
when Λ = {P(a)} and Γ = {P(x)}, where, e.g., Γ stems from the constrained empty clause
� ·P(x). The literal P(a) ∈ Λ makes P(a) true in the induced interpretation, and so the
instance � ·P(a) is a candidate to indicate a contradiction. However, with condition (ii) it
holds Λ 6|= (Γ ,{x 7→ a}), because Λ does not produce P(x) (at all), and so the constrained
clause � ·P(x) can be ignored. Intuitively, the context literal P(a) is not responsible to fal-
sify � ·P(x). On the other side, because input clauses must come with empty constraints,
� ·P(x) can be obtained only from the clause ¬P(x) · /0 (by U-Res). But then, U-Sup is appli-
cable to P(a) and ¬P(x) · /0, giving� ·P(a). Now we have Λ |= (P(a), /0), and hence� ·P(a)
cannot be ignored. Indeed, Close is applicable now.

Definition 3 (Satisfaction of Constrained Clauses) Let Λ be a context, I an E-interpretation
(C ·Γ ;γ) a ground closure. We say that the pair (Λ , I) satisfies (C ·Γ ;γ) and write (Λ , I) |=
(C ·Γ ;γ) iff Λ 6|= (Γ ,γ) or I |=Cγ . ut

Definition 3 also applied to pairs (Λ ,R), where R is a rewrite system, by implicitly taking
(Λ ,R?). Indeed, in the main applications of Definition 3 such a rewrite system R will be
determined by the model construction in Section 7 below.

We need some generalisations of Definition 3. We say that the pair (Λ , I) satisfies a set
F of ground closures, written as (Λ , I) |= F iff (Λ , I) satisfies all elements in F . If F and
G are set of ground closures, we say that F entails G wrt. Λ , and write F |=Λ G, iff for
every E-interpretation I it holds (Λ , I) 6|= F or (Λ , I) |= G. These generalisations also apply
to (sets of) possibly non-ground constrained clauses by taking the (union of the) sets of all
their ground closures.

Example 4 Let Λ = {f(x)→ x, f(c) 6→ c}, R = {f(a)→ a, f(b)→ b} and C ·Γ = f(f(a))≈
x · f(x)→ x. Let γa = {x 7→ a}, γb = {x 7→ b} and γc = {x 7→ c}. Suppose that all (ground)
atoms are split atoms. Notice that Γ γa, Γ γb and Γ γc consist of split rewrite literals. Then,
Λ |= (Γ ,γa), as Λ produces {f(x)→ x} and {f(a)→ a} by the same literals. So we need to
check R? |= f(f(a))≈ a, which is the case, to conclude (Λ ,R) |= (C ·Γ ;γa). As Λ |= (Γ ,γb)
but R? 6|= f(f(a))≈ b we have (Λ ,R) 6|= (C ·Γ ;γb). Finally, Λ does not produce {f(c)→ c},
and so Λ 6|= (Γ ,γc). It follows (Λ ,R) |= (C ·Γ ;γc). ut

Constraints are compared in a similar way as clauses by taking a positive rewrite literal
l→ r as the multiset {l,r}, a negative literal as the multiset l 6→ r as the multiset {l, l,r,r},
and using the two-fold multiset extension of the ordering � on terms.7. Constrained clauses
then are compared lexicographically, using first the clause ordering introduced earlier to
compare the clause components, and then using the ordering on constraints. Again we use
the symbol � to denote this (strict) ordering on constrained clauses. It follows with well-
known results that � is a liftable, well-founded and strict ordering on ground constrained
clauses. Observe that this definition has the desirable property that proper subsumption
among ground constrained clauses is always order-decreasing (the subsuming constrained
clause is smaller).

7 Alternative definitions are possible. For instance, there is no need to make negative rewrite literal greater
than its positive complement.

10

In order to obtain a total and well-founded ordering on ground closures, we combine the
ordering on constrained clauses lexicographically with an arbitrary ordering �′ on ground
closures that is total (up to variable renaming),8 that is, we define (C ·Γ ;γ)� (C′ ·Γ ′;γ ′) iff
(C ·Γ)γ � (C′ ·Γ ′)γ ′ or (C ·Γ)γ = (C′ ·Γ ′)γ ′ and (C ·Γ ;γ)�′ (C′ ·Γ ′;γ ′).

5 Inference Rules on Constrained Clauses

In the following, we introduce a number of inference rules on rewrite literals and constrained
clauses that will be used for defining the derivation rules of ME+Sup. Within the calculus,
which operates on sequents consisting of a context and constrained clause set, the rewrite
literal will come from the current context and the clause from the current constrained clause
set.

Ref
s 6≈ t ∨C ·Γ
(C ·Γ)σ

where (i) σ is an mgu of s and t, and (ii) (s 6≈ t)σ is maximal in (s 6≈ t ∨C)σ .
The next three rules combine a rewrite literal and a constrained clause.

U-Sup-Neg
l→ r s[u]p 6≈ t ∨C ·Γ
(s[r]p 6≈ t ∨C · (Γ , l→ r))σ

where (i) σ is an mgu of l and u, (ii) u is not a variable, (iii) (l ≈ r)σ is a split atom, (iv)
rσ 6� lσ , (v) tσ 6� sσ , and (vi) (s 6≈ t)σ is maximal in (s 6≈ t ∨C)σ .

U-Sup-Pos
l→ r s[u]p ≈ t ∨C ·Γ
(s[r]p ≈ t ∨C · (Γ , l→ r))σ

where (i) σ is an mgu of l and u, (ii) u is not a variable, (iii) (l ≈ r)σ is a split atom, (iv)
rσ 6� lσ , and if (s≈ t)σ is a split atom then (v-a) (s≈ t)σ is maximal in (s≈ t ∨C)σ else
(v-b) tσ 6� sσ and (s ≈ t)σ is strictly maximal in (s ≈ t ∨C)σ , and (vi) if lσ = sσ then
rσ 6� tσ .

U-Sup-Pos and U-Sup-Neg are the only rules that create new rewrite literals (l → r)σ
in the constraint part (Sup-Neg and Sup-Pos below only merge existing constraints). Notice
that because u is not a variable, in both cases lσ is not a variable, even if l is. It follows
easily that all expressions C ·Γ derivable by the calculus are constrained clauses.

U-Res
¬A s≈ t ∨C ·Γ
(C · (Γ ,s 6→ t))σ

where ¬A is a pseudo literal ¬x or a negative rewrite literal l 6→ r, and (i) σ is an mgu of
A and s→ t, (ii) (s ≈ t)σ is a split atom, (iii) tσ 6� sσ , and (iv) (s ≈ t)σ is maximal in
(s≈ t ∨C)σ .

The following three rules are intended to be applied to clauses from a current clause
set. To formulate them we need one more definition: let l ≈ r be an equation and x1 ≈
t1∨ ·· ·∨ xn ≈ tn a (possibly empty) clause of positive literals, where xi is a variable and ti a

8 Since for every ground closure (C ·Γ ;γ) there are only finitely many closures (C′ ·Γ ′;γ ′) such that
(C ·Γ)γ = (C′ ·Γ ′)γ ′, the lexicographic combination is well-founded even if �′ is not well-founded.

11

term, for all i = 1, . . . ,n. We say that a substitution π merges x1 ≈ t1∨·· ·∨xn ≈ tn with l ≈ r
iff π is an mgu of {l,x1, . . . ,xn} and rπ 6� lπ , and tiπ 6� lπ .

Sup-Neg
l ≈ r∨C′ ·Γ ′ s[u]p 6≈ t ∨C ·Γ
(s[r]p 6≈ t ∨C∨C′ · (Γ ,Γ ′))σπ

where (i) σ is an mgu of l and u, (ii) u is not a variable, (iii) π merges x1 ≈ t1 ∨ ·· · ∨ xn ≈
tn ⊆C′σ with (l ≈ r)σ , (iv) {x1, . . . ,xn} ⊆ Var(Γ ′σ), (v) (l ≈ r)σπ is a superposition atom,
(vi) rσπ 6� lσπ , (vii) (l ≈ r)σπ is strictly maximal in (l ≈ r∨C′)σπ , (viii) tσπ 6� sσπ , and
(ix) (s 6≈ t)σπ is maximal in (s 6≈ t ∨C)σπ .

The disequation (s 6≈ t)σπ paramodulated into can be a split atom or a superposition
atom. The need for merge substitutions is demonstrated in Example 9 below.

Sup-Pos
l ≈ r∨C′ ·Γ ′ s[u]p ≈ t ∨C ·Γ
(s[r]p ≈ t ∨C∨C′ · (Γ ,Γ ′))σπ

where (i) σ is an mgu of l and u, (ii) u is not a variable, (iii) π merges x1 ≈ t1 ∨ ·· · ∨ xn ≈
tn ⊆C′σ with (l ≈ r)σ , (iv) {x1, . . . ,xn} ⊆ Var(Γ ′σ), (v) (l ≈ r)σπ is a superposition atom,
(vi) rσπ 6� lσπ , (vii) (l ≈ r)σπ is strictly maximal in (l ≈ r∨C′)σπ , and if (s≈ t)σπ is a
split atom then (viii-a) (s≈ t)σπ is maximal in (s≈ t ∨C)σπ else (viii-b) tσπ 6� sσπ and
(s≈ t)σπ is strictly maximal in (s≈ t ∨C)σπ .

Notice that (s ≈ t)σπ could be both a split atom and a superposition atom. In this case
the weaker condition (viii-a) is used to take care of a ground instance of a Sup-Pos inference
applied to a split atom, which requires the weaker condition.

In both Sup-Neg and Sup-Pos inference rules we assume the additional condition C σπ 6�
Dσπ , where by C and D we mean their left and right premise, respectively.

Finally, we need an equality factoring rule as in the superposition calculus:

Eq-Fact
l ≈ r∨ s≈ t ∨C ·Γ

(l ≈ t ∨ r 6≈ t ∨C ·Γ)σ

where (i) σ is an mgu of l and s, (ii) (l ≈ r)σ is a superposition atom, (iii) (l ≈ r)σ is
maximal in (l ≈ r∨ s≈ t ∨C)σ , (iv) rσ 6� lσ , and (v) tσ 6� sσ .

In each of the inference rules above we assume the additional condition that Γ σ (Γ σπ

and Γ ′σπ in case of Sup-Neg or Sup-Pos) consists of split rewrite literals.
An inference system ι is a set of inference rules. By an ι inference we mean an instance

of an inference rule from ι such that all conditions are satisfied. An inference is ground if
all its premises and the conclusion are ground.

The base inference system ιBase consists of Ref, Eq-Fact, U-Sup-Neg, U-Sup-Pos, U-
Res, Sup-Neg and Sup-Pos. If from a given ιBase inference a ground ιBase inference results
by applying a substitution γ to all premises and the conclusion, we call the resulting ground
inference a ground instance via γ (of the ιBase inference). This is not always the case, as,
e.g., ordering constraints can become unsatisfiable after application of γ . An important con-
sequence of the ordering restrictions stated with the inference rules is that the conclusion of
a ground ιBase inference is always strictly smaller than the right or only premise.

12

6 Inference Rules on Sequents

Sequents are the main objects manipulated by the ME+Sup calculus. A sequent is a pair
Λ ` Φ where Λ is a context and Φ is a set of constrained clauses. The following inference
rules extend the inference rules ιBase above to sequents.

Deduce
Λ ` Φ

Λ ` Φ ,C ·Γ

if one of the following cases applies:

– C ·Γ is the conclusion of a Ref or Eq-Fact inference with a premise from Φ .
– C ·Γ is the conclusion of a U-Sup-Neg, U-Sup-Pos or U-Res inference with a right

premise from Φ and a left premise from Λ .
– C ·Γ is the conclusion of a Sup-Neg or Sup-Pos inference with both premises from Φ .

and if additionally Λ produces Γ .9

In each case the second or only premise of the underlying ιBase inference is called the
selected clause (of a Deduce inference). In inferences involving two premises, a fresh variant
of the, say, right premise is taken, so that the two premises are variable disjoint.

Split
Λ ` Φ

Λ , K ` Φ Λ , K ` Φ

if there is a constrained clause � ·Γ ∈Φ such that (i) K ∈ Γ , (ii) s≈ t is a split atom, where
K = s→ t or K = s 6→ t, and (iii) neither K nor K is contradictory with Λ . A Split inference
is productive if Λ produces Γ ; the clause � ·Γ is called the selected clause (of the Split

inference).
The intuition behind Split is to make a constrained empty clause� ·Γ true, which is false

when Λ produces Γ (in the sense of Definition 3). This is achieved by adding K to the current
context. For example, if Λ = {P(a,y),¬P(x,b)} and � ·Γ =� ·P(a,b) then a (productive)
Split inference will give {P(a,y),¬P(x,b),¬P(a,b)}, which no longer produces P(a,b).
Intuitively, the calculus tries to “repair” the current context towards a model for � ·Γ .

Notice that a Split inference can never add a rewrite literal to a context that already
contains a variant of it or its complement, as this would contradict condition (iii).10 Because
of the latter property the calculus will never derive contradictory contexts.

Close
Λ ` Φ

Λ ` Φ ,� · /0

if there is a constrained clause� ·Γ ∈Φ such that L ∈∼ Λ for every L ∈Γ . The clause� ·Γ
is called the selected clause (of a Close inference) and the variants of the L’s in Λ are the
closing literals. A sequent Λ ` Φ is closed if Φ contains � · /0. The purpose of Close is to
abandon a sequent that cannot be “repaired”.

The ιME+Sup inference system consists of the rules Deduce, Split and Close.

9 or equivalently: if Λ produces every constraint of the instantiated constrained clauses that are premises of
the underlying ιBase inference, and Λ produces the instantiated left premises in case of U-Sup-Neg, U-Sup-
Pos or Neg-Res, where these instances are obtained by applying the substitution used in that ιBase inference.

10 The Deduce rule could be strengthened to exclude adding variants to the clause sets in the conclusion.
We ignore this (trivial) aspect.

13

In the introduction we mentioned that the ME+Sup calculus can be configured to obtain
a pure Superposition or a pure Model Evolution calculus (with equality). For the former,
every ground atom is to be labelled as a superposition atom. Then, the only inference rules
in effect are Ref, Sup-Neg, Sup-Pos and Eq-Fact, all of which are standard inference rules
of the Superposition calculus. Furthermore, under the reasonable assumption that the input
clauses are constraint-free, all derivable contexts will be {¬x}, and also the constraints in
all derivable clauses will be empty. In consequence, not even Close is applicable (unless
the clause set in the premise already contains � · /0). In contrast, if all atoms are labelled
as split atoms, then the only inference rules in effect are Ref,U-Sup-Neg, U-Sup-Pos, U-
Res, Split and Close. The resulting calculus is similar to the MEE calculus [BT05] but not
quite the same. On the one hand, MEE features universal variables, a practically important
improvement, which ME+Sup does not (yet) have. (Context literals containing “universal
variables” are similar to unit clauses, i.e., they stand for all their instances, unconditionally).
On the other hand, MEE needs to compute additional unifiers, for instance in the counterpart
to the Close rule, which are not necessary in ME+Sup.

7 Model Construction

To obtain the completeness result for ME+Sup we associate to a sequent Λ ` Φ a convergent
left-reduced rewrite system RΛ `Φ . The general technique is taken from the completeness
proof of the Superposition calculus [BG98,NR95] and adapted to our needs. One difference
is that ME+Sup requires the construction of a fully reduced rewrite system for its split atoms,
whereas for the superposition atoms a left-reduced rewrite system is sufficient. Another
difference is that certain aspects of lifting must be reflected already for the model generation.
For the latter, we need a preliminary definition.

Definition 5 (Relevant Closure wrt. (Λ ,R)) Let Λ be a context, R a rewrite system, and
γ a ground substitution for a constrained clause C ·Γ . We say that (C ·Γ ;γ) is a relevant
(ground) closure wrt. (Λ ,R) iff

(i) Λ |= (Γ ,γ), and
(ii) (Var(C) ∩ Var(Γ))γ is irreducible wrt. R. ut

Notice that for a clause with an empty constraint all its ground closures are relevant.

Example 6 If Λ = {P(x),a→ b,¬P(b)}, R = {a→ b} and C ·Γ = x≈ b∨x≈ d ·P(x) then
the substitution γ = {x 7→ a} gives a ground closure (C ·Γ ;γ) that satisfies condition (i) but
not (ii). With the substitution γ = {x 7→ c} both (i) and (ii) are satisfied, and with γ = {x 7→ b}
the condition (i) is not satisfied but (ii) is. If Λ = {P(a)} then (� ·P(x);γ) is never a relevant
closure, for any γ , because Λ does not produce P(x), and hence Λ 6|= (� ·P(x);γ). ut

For a given sequent Λ ` Φ , where Φ does not contain � · /0, we define by induction
on the closure ordering � sets of rewrite rules εC and RC , for every C ∈ Φgr ∪ ΠΛ . Here,
for the purpose of comparing elements from Φgr ∪ ΠΛ , a rewrite literal l → r ∈ ΠΛ is
taken as the (ground) closure ((l ≈ r ·⊥); /0), where ⊥ is a fresh symbol that is considered
smaller than the empty multiset. This way, � is a total ordering on Φgr ∪ ΠΛ . For instance
((l ≈ r · /0); /0)� l→ r as ((l ≈ r · /0); /0)� ((l ≈ r ·⊥); /0), as /0�⊥.

Assume that εD has already been defined for all D ∈ Φgr ∪ ΠΛ with C � D and let
RC =

⋃
C�D εD . The set εC is defined differently depending on the type of C . If C is

rewrite literal l→ r ∈ΠΛ then let εl→r = {l→ r} if

14

1. l ≈ r is a split atom,
2. l � r, and
3. l and r are irreducible wrt. Rl→r.

Otherwise εl→r = /0. If C is a ground closure (C ·Γ ;γ) ∈Φgr then let ε(C·Γ ;γ) = {s→ t} if

1. Cγ = s≈ t ∨D,
2. s≈ t is strictly maximal in Cγ ,
3. s≈ t is a superposition atom,
4. s� t,
5. (C ·Γ ;γ) is a relevant closure wrt. (Λ ,R(C·Γ ;γ)),
6. R?

(C·Γ ;γ) 6|=Cγ ,
7. (R(C·Γ ;γ) ∪ {s→ t})? 6|= D, and
8. s is irreducible wrt. R(C·Γ ;γ).

Otherwise ε(C·Γ ;γ) = /0.
Finally, R =

⋃
C εC . If εl→r = {l→ r} then we say that l→ r generates l→ r in R. If

ε(C·Γ ;γ) = {l → r} then we say that (C ·Γ ;γ) generates l → r in R. Often we write RΛ `Φ

instead of R to make clear that R is constructed from Φgr ∪ ΠΛ .
It is easy to see that R is a left-reduced rewrite system and the rules contributed by ΠΛ

are even fully reduced wrt. R. Since � is a well-founded ordering, R is a convergent rewrite
system. With well-known results it follows that satisfaction of ground literals s≈ t (or s 6≈ t)
in R? can be decided by checking if the normal forms of s and t wrt. R are the same.

Notice that the evaluation of condition 5 for ε(C·Γ ;γ) refers to the context Λ , which is
fixed prior to the model construction, and the rewrite system R(C·Γ ;γ) constructed so far.
The definition can be seen to work in a hierarchical way, by, roughly, first building the set
of those ground closures from Φgr whose constraints consists of rewrite literals and all are
produced in Λ , and then generating R from that set, which involves checking irreducibility
of substitutions wrt. R(C·Γ ;γ).

With respect to split atoms, the (completeness proof of the) calculus needs to consider
those that are true because they are generated, and those that are false and irreducible. The
following lemma provides a handle in such cases in terms of the “syntactic” concept of
productivity.

Lemma 7 Let D ∈Φgr ∪ ΠΛ and l ≈ r a ground split atom such that l � r. Then

(i) if l→ r ∈ R then Λ produces l→ r, and
(ii) if D � l→ r, and l and r are irreducible wrt. RD then Λ produces l 6→ r.

Proof Concerning (i), if l→ r ∈ R then this is because l→ r ∈ΠΛ generates l→ r, and then
Λ produces l→ r by definition of ΠΛ .

Concerning (ii), suppose that l and r are irreducible wrt. RD . If l→ r were contained in
ΠΛ , then either l→ r would be generated in RD , but then l would be reducible by l→ r∈RD ,
or l→ r would not be generated in RD , but this is only possible if l or r is reducible by Rl→r,
and since Rl→r ⊆ RD , it would again be reducible by RD . Hence l→ r /∈ΠΛ . Thanks to the
presence of the pseudo-literal ¬x in every context, it is not difficult to see that every context
produces K or K, for every literal K. Thus, with Λ not producing l → r conclude that Λ

produces l 6→ r. ut

Example 8 Let Λ = {a→ x,b→ c,a 6→ c}, Φ = /0 and assume that all equations are split
atoms. With a � b � c the induced rewrite system R is {b→ c}. To see why, observe that
the rule a→ c is not included in R, as Λ does not produce a→ c, and that a→ b, although

15

produced in Λ , is reducible by the smaller rule b→ c. Had we chosen to omit in the definition
of εl→r the condition “r is irreducible wrt. Rl→r” 11 the construction would have given R =
{a→ b,b→ c}. This leads to the undesirable situation that a constrained clause, say, a 6≈ c · /0
is falsified by R?. But the calculus cannot modify Λ to revert this situation, and to detect the
inconsistency (ordered) paramodulation into variables would be needed. ut

Example 9 Let a� b� c, Λ = {P(x),¬P(b),¬P(c)} and C ·Γ = y≈ b∨x≈ c ·P(x) be the
only clause in Φ . Then the ground closure (C ·Γ ;γ) = (y≈ b∨x≈ c ·P(x);{x 7→ a,y 7→ a})
generates a→ b in R. This is, because it is a relevant closure wrt. (Λ ,R(C·Γ ;γ)) = (Λ , /0).

Now, a ground instance, say, via γ , of an inference with C ·Γ as the left premise and a
right premise, say, C′ ·Γ ′ will possibly not preserve relevancy of (C′ ·Γ ′;γ) (wrt. (C′ ·Γ ′;γ)).
This may happen because the conclusion can be bigger than the left premise (even if the right
premise is bigger than the left premise, which is safe to assume), and so xγ could be reducible
wrt. R(C′·Γ ′;γ) by the rule generated by the left premise. For instance, if the right premise is
f(a) 6≈ f(b) · /0 then a Sup-Neg inference yields f(b) 6≈ f(b)∨ x ≈ c ·P(x). But this is not a
relevant closure wrt. (Λ ,R(C′·Γ ′;γ)), because xγ = a is reducible wrt. R(C′·Γ ′;γ) = {a→ b}.
This is a problem from the completeness perspective, because the calculus needs to reduce
relevant closures of clauses that are false (in a certain interpretation) to smaller relevant
closures. The suggested Sup-Neg step would thus not work in this case. The problem is
avoided by a different Sup-Neg inference, one with a non-empty merge substitution:

Sup-Neg
y≈ b∨ x≈ c ·P(x) f(a) 6≈ f(b) · /0

f(b) 6≈ f(b)∨a≈ c ·P(a)

where σ = {y 7→ a} and π = {x 7→ a}. Then, (f(b) 6≈ f(b)∨ a ≈ c ·P(a); /0) is a relevant
closure wrt. (Λ ,R(f(b)6≈f(b)∨a≈c·P(a); /0)). Situations like the one above are the only critical
ones, and relevancy can always be preserved by a merge substitution. The following lemma
provides a (slightly strengthened) formal account. ut

Lemma 10 (ιBase Inferences Preserve Relevant Closures) Let Λ ` Φ be a sequent and
assume an ιBase inference with right (or only) premise C ·Γ , conclusion C′ ·Γ ′, and a ground
instance via γ of the ιBase inference such that

(i) (C ·Γ ;γ) is a relevant closure wrt. (Λ ,R(C·Γ ;γ)),
(ii-a) in case of Sup-Neg or Sup-Pos, the ground closure (l ≈ r∨C′′ ·Γ ′′;γ) generates the

rule (l→ r)γ in RΛ `Φ , where l ≈ r∨C′′ ·Γ ′′ is the left premise of the non-ground
inference,

(ii-b) in case of U-Sup-Neg or U-Sup-Pos, the left premise (l → r)γ generates the rule
(l→ r)γ in RΛ `Φ , and

(ii-c) in case of U-Res, the left premise is ¬Aγ = (s 6→ t)γ and sγ and tγ are irreducible
wrt. R(C·Γ ;γ).

Then, (C′ ·Γ ′;γ) is a relevant closure wrt. (Λ ,R(C·Γ ;γ)), for some possibly different merge
substitution in case of a Sup-Neg or Sup-Pos inference.

A proof is in the appendix.
We conclude this section with important monotonicity results of the model construction.

11 This condition is absent in the model construction for superposition atoms. Its presence explains why
paramodulation into smaller sides of positive split literals in clauses is necessary.

16

Lemma 11 If (s ≈ t ∨D ·Γ ;γ) generates (s→ t)γ in R then R? |= (s ≈ t)γ and R? 6|= Dγ ,
and R?

D |= (s≈ t)γ and R?
D 6|= Dγ for every D ∈Φgr ∪ ΠΛ such that D � (s≈ t ∨D ·Γ ;γ).

Proof It can be shown that the rewrite system R is left-reduced and ordered, furthermore
the left hand side of every rewrite rule in R\ (R(s≈t∨D·Γ ;γ) ∪ {(s→ t)γ}) is larger than every
term occurring in a positive literal of Dγ , hence these rules cannot be used to rewrite terms
in positive literals of Dγ . Therefore, if a literal of Dγ is false in (R(s≈t∨D·Γ ;γ) ∪ {(s→ t)γ})?,
then it is false in R?. The same arguments apply for the second part of the lemma statement.
For that, it suffices to observe that RD ⊇ R(s≈t∨D·Γ ;γ) as D � (s≈ t ∨D ·Γ ;γ). ut

Lemma 12 If R?
(C·Γ ;γ) |=Cγ then R? |=Cγ and R?

D |=Cγ for every D ∈Φgr ∪ ΠΛ such that
D � (C ·Γ ;γ).

Proof The left hand side of every rewrite rule in R\R(C·Γ ;γ) is larger than every term occur-
ring in a negative literal of Cγ , hence these rules cannot be used to rewrite terms in negative
literals of Cγ . Therefore, if a literal of Cγ is true in R?

(C·Γ ;γ), then it is true in R?. The same
arguments apply for the second part of the lemma statement. For that, it suffices to observe
that RD ⊇ R(C·Γ ;γ) as D � (C ·Γ ;γ). ut

Corollary 13 If (Λ ,R(C·Γ ;γ)) |= (C ·Γ ;γ) then (Λ ,R) |= (C ·Γ ;γ) and (Λ ,RD) |= (C ·Γ ;γ)
for every D ∈Φgr ∪ ΠΛ such that D � (C ·Γ ;γ).

Proof Suppose (Λ ,R(C·Γ ;γ)) |= (C ·Γ ;γ). If Λ 6|= (Γ ,γ) the claim is trivial. Hence suppose
Λ |= (Γ ,γ). By definition, R?

(C·Γ ;γ) |= C. With Lemma 12 conclude R? |= Cγ and, trivially,
(Λ ,R) |= (C ·Γ ;γ). Similarly for the second part. ut

8 Redundancy, Saturation and Static Completeness

To define concepts of redundancy we need a specific notion of relevant closures that takes
the model construction into account. We extend Definition 5 and say that (C ·Γ ;γ) is a
relevant closure wrt. Λ iff (C ·Γ ;γ) is a relevant closure wrt. (Λ ,R(C·Γ ;γ)). Relevancy of a
closure (C ·Γ ;γ) wrt. Λ thus does not depend on rules from R\R(C·Γ ;γ).

Definition 14 (Relevant Closures wrt. Λ) Let Φ be a set of constrained clauses. Define

Φ
Λ = {(C ·Γ ;γ) |C ·Γ ∈Φ and (C ·Γ ;γ) is a relevant closure wrt. Λ} .

Let Λ ` Φ be a sequent and D a ground closure. Define

Φ
Λ
D = {(C ·Γ ;γ) ∈Φ

Λ |D � (C ·Γ ;γ)}

as the set of relevant closures wrt. Λ of all constrained clauses from Φ that are all smaller
wrt. � than D . ut

Definition 15 (Redundant Ground Closure) Let Λ ` Φ be a sequent, and (C ·Γ ;γ) and D
ground closures. We say that (C ·Γ ;γ) is redundant wrt. Λ ` Φ and D iff ΦΛ

D |=Λ (C ·Γ ;γ),
and we say that (C ·Γ ;γ) is redundant wrt. Λ ` Φ iff (C ·Γ ;γ) is redundant wrt. Λ ` Φ

and D = (C ·Γ ;γ). ut

17

In words, (C ·Γ ;γ) is redundant wrt. Λ ` Φ and D iff (C ·Γ ;γ) is entailed wrt. Λ by relevant
closures wrt. Λ of clauses in Φ that are smaller than D .

The following lemma provides a condition under which redundant ground closures are
not generating. Because the completeness proof needs to consider situations only that satisfy
the condition, redundant ground closures can never be generating then.

Lemma 16 Let Λ ` Φ be a sequent and (C ·Γ ;γ) a ground closure of a clause C ·Γ ∈Φ .
If (C ·Γ ;γ) is redundant wrt. Λ ` Φ , and (Λ ,R(C·Γ ;γ)) |= ΦΛ

(C·Γ ;γ) then (C ·Γ ;γ) does not
generate a rewrite rule in RΛ `Φ .

Proof Suppose that (C ·Γ ;γ) is redundant wrt. Λ ` Φ and that (Λ ,R(C·Γ ;γ)) |= ΦΛ

(C·Γ ;γ).

By the definition of redundancy then ΦΛ

(C·Γ ;γ) |=Λ (C ·Γ ;γ). With (Λ ,R(C·Γ ;γ)) |= ΦΛ

(C·Γ ;γ) it
follows (Λ ,R(C·Γ ;γ)) |= (C ·Γ ;γ).

If (C ·Γ ;γ) is not a relevant closure wrt. Λ , then by property 5 of the definition of model
construction (C ·Γ ;γ) cannot generate a rewrite rule. Otherwise, by relevancy, Λ produces Γ

and Λ produces Γ γ , and Γ γ consists of split rewrite literals. In other words, Λ |= (Γ ,γ), and
with (Λ ,R(C·Γ ;γ)) |= (C ·Γ ;γ) it follows R?

(C·Γ ;γ) |=Cγ . But then, (C ·Γ ;γ) cannot generate
a rewrite rule according to condition 6 in the definition of model construction. ut

The notion of redundancy defined above is essential to prove completeness but difficult
to exploit in practice (it rests on reducibility wrt. rewrite systems that are determined by the
limit of a derivation only). The following, related definition avoids that.

For a context Λ let grd(Λ) denote the set of all ground literals in Λ .

Definition 17 (Universal Redundancy) Let Λ ` Φ be a sequent, and (C ·Γ ;γ) and D
ground closures. We say that (C ·Γ ;γ) is universally redundant wrt. Λ ` Φ and D , iff
there exists an L ∈ Γ such that Lγ ∈ grd(Λ), or there exist ground closures (Ci ·Γi;γi) of
constrained clauses Ci ·Γi ∈Φ such that, for every i,

(i) if L ∈ Γi, then L ∈ grd(Λ) or there exists a K ∈ Γ such that L∼ K and Lγi = Kγ ,
(ii) D � (Ci ·Γi;γi),

(iii) C1γ1 . . .Cnγn |=Cγ , and
(iv) if x ∈ Var(Ci) ∩ Var(Γi), then there exists a y ∈ Var(C) ∩ Var(Γ) such that xγi = yγ . ut

Intuitively, universal redundancy of a closure ensures that, whenever the closure is rel-
evant wrt. Λ or a possible extension of Λ , then it must be entailed by sufficiently small
closures that are also relevant.

We say that (C ·Γ ;γ) is universally redundant wrt. Λ ` Φ , iff (C ·Γ ;γ) is universally
redundant wrt. Λ ` Φ and D = (C ·Γ ;γ), and we say that C ·Γ is universally redundant wrt.
Λ ` Φ iff (C ·Γ ;γ) is universally redundant wrt. Λ ` Φ , for every ground closure (C ·Γ ;γ)
of C ·Γ .

For instance, when A is a ground literal, any (possibly non-ground) clause of the form
C · (A,Γ) is universally redundant wrt. every Λ ` Φ such that A ∈ Λ . Dually, C · (A,Γ) is
universally redundant wrt. every Λ ` Φ such that A ∈ Λ and C ·Γ ∈ Φ . Correspondingly,
the simplification rule defined below can be used to delete C · (A,Γ) if A ∈Λ , and if A ∈Λ

then C ·(A,Γ) can be simplified to C ·Γ . This generalizes corresponding simplification rules
by unit clauses in the propositional DPLL-procedure.

Observe that Definition 17 refers to a context Λ only be testing if ground rewrite literals
are contained in it, a property that is preserved as Λ grows. We obtain the following result.

18

Lemma 18 If C ·Γ is universally redundant wrt. Λ ` Φ , Λ ′ ⊇Λ , and Φ ′ is obtained from
Φ by deleting constrained clauses that are universally redundant wrt. Λ ` Φ and/or by
adding arbitrary constrained clauses, then C ·Γ is universally redundant wrt. Λ ′ ` Φ ′.

Proof It is obvious from Def. 17 that a clause that is universally redundant wrt. Λ ` Φ

remains universally redundant if arbitrary constrained clauses are added to Φ or if literals
are added to Λ .

To prove that a clause that is universally redundant wrt. Λ ` Φ remains universally
redundant if universally redundant clauses are deleted from Φ , it suffices to show that the
clauses Ci ·Γi ∈ Φ in Definition 17 can always be chosen in such a way that they are not
themselves universally redundant: Suppose that a ground closure (C ·Γ ;γ) is universally
redundant wrt. Λ ` Φ and D . If there exists an L ∈ Γ such that Lγ ∈ grd(Λ), then delet-
ing clauses from Φ does not change anything. Otherwise let {(Ci ·Γi;γi) | 1 ≤ i ≤ n} be a
minimal set of ground closures of clauses in Φ (wrt. the multiset extension of the closure
ordering) that satisfies the conditions of Definition 17. Suppose that one of the (Ci ·Γi;γi),
say (C1 ·Γ1;γ1), is universally redundant itself. Then either there exists an L ∈ Γ1 such that
Lγ1 ∈ grd(Λ), but since Λ is assumed to be non-contradictory, this contradicts the fact that
L ∈ grd(Λ), or there exist ground closures (C1i ·Γ1i;γ1i) of constrained clauses C1i ·Γ1i ∈ Φ

that satisfy the conditions of Definition 17 for (C1 ·Γ1;γ1). But then {(Ci ·Γi;γi) | 2 ≤ i ≤
n} ∪ {(C1i ·Γ1i;γ1i) | 1 ≤ i ≤ m} would also satisfy the conditions of Definition 17 for
(C ·Γ ;γ), contradicting the minimality of {(Ci ·Γi;γi) | 1≤ i≤ n}. ut

We are going to establish some results that relate redundancy and universal redundancy.

Lemma 19 If (C ·Γ ;γ) is universally redundant wrt. Λ ` Φ and D , and (C ·Γ ;γ) is a
relevant closure wrt. (Λ ,RD), then (C ·Γ ;γ) is redundant wrt. Λ ` Φ and D .

Proof Assume that (C ·Γ ;γ) is universally redundant wrt. Λ ` Φ and D and that (C ·Γ ;γ)
is a relevant closure wrt. (Λ ,RD). Then Λ produces Γ and Γ γ by the same literals. Con-
sequently, there cannot exist a K ∈ Γ such that Kγ ∈ grd(Λ). By property (iii) of universal
redundancy, there are ground closures (Ci ·Γi;γi) of constrained clauses Ci ·Γi ∈ Φ such
that C1γ1 . . .Cnγn |= Cγ; from property (i) we conclude that (C ·Γ ;γ) is entailed by {(C1 ·
Γ1;γ1), . . . ,(Cn ·Γn;γn)} wrt. Λ , i.e., (C1 ·Γ1;γ1), . . . ,(Cn ·Γn;γn) |=Λ (C ·Γ ;γ). It remains to
show that (Ci ·Γi;γi) is a relevant closure wrt. Λ , for all i = 1, . . . ,n. First, by property (i)
again we get that Λ produces Γi and Γiγi by the same literals. Second, because (C ·Γ ;γ) is
a relevant closure wrt. (Λ ,RD), yγ is irreducible wrt. RD for every y ∈ Var(C) ∩ Var(Γ).
By property (ii), each (Ci ·Γi;γ) is smaller than D . It follows R(Ci·Γi;γ) ⊆ RD . By property
(iv) then, xγi is irreducible wrt. R(Ci·Γi;γ) for every x ∈ Var(Ci) ∩ Var(Γi), which suffices to
complete the proof. ut

Corollary 20 If C ·Γ is universally redundant wrt. Λ ` Φ , then every relevant closure of
C ·Γ wrt. Λ is redundant wrt. Λ ` Φ .

Proof Suppose that C ·Γ is universally redundant wrt. Λ ` Φ , i.e., that every ground closure
(C ·Γ ;γ) is universally redundant wrt. Λ ` Φ and (C ·Γ ;γ), for every ground substitution γ

for C ·Γ . Let γ be any ground substitution for C ·Γ such that (C ·Γ ;γ) is a relevant closure
wrt. Λ . By setting D = (C ·Γ ;γ) the result follows immediately from Lemma 19. ut

The restriction to relevant closures in Corollary 20 can not be dropped. For example,
with C ·Γ = y≈ b∨y≈ b ·P(y) and γ = {y 7→ a} the ground closure (C ·Γ ;γ) is universally
redundant wrt. P(x) ` (x≈ b ·P(x)), a≈ c (take the ground closure (x≈ b ·P(x);{x 7→ a})

19

to show that), but (C ·Γ ;γ) is not redundant wrt. this sequent, as the ground closure (x ≈
b ·P(x);{x 7→ a}) needed to establish that, is not a relevant closure, as xγ = a is reducible
wrt. a→ c ∈ R(x≈b·P(x);{x 7→a}).

Lemma 16 also holds in terms of universal redundancy.

Corollary 21 Let Λ ` Φ be a sequent and (C ·Γ ;γ) a ground closure of a clause C ·Γ ∈Φ .
If (C ·Γ ;γ) is universally redundant wrt. Λ ` Φ and (Λ ,R(C·Γ ;γ)) |= ΦΛ

(C·Γ ;γ) then (C ·Γ ;γ)

does not generate a rewrite rule in RΛ `Φ .

Proof Suppose that (C ·Γ ;γ) is universally redundant wrt. Λ ` Φ . If (C ·Γ ;γ) is not a
relevant closure wrt. Λ , then by property 5 of the definition of model construction (C ·Γ ;γ)
cannot generate a rewrite rule. If (C ·Γ ;γ) is a relevant closure wrt. Λ , then by Corollary 20
(C ·Γ ;γ) is redundant wrt. Λ ` Φ . Now apply Lemma 16. ut

The following definition exploits the notion of universal redundancy in universally re-
dundant inferences.

Definition 22 (Universally Redundant ιME+Sup Inference) Let Λ ` Φ and Λ ′ ` Φ ′ be
sequents. An ιME+Sup inference with premise Λ ` Φ and selected clause C ·Γ ∈ Φ is
universally redundant wrt. Λ ′ ` Φ ′ iff for every ground closure (C ·Γ ;γ) of C ·Γ , (C ·Γ ;γ)
is universally redundant wrt. Λ ′ ` Φ ′, or the following holds, depending on the inference
rule applied:

Deduce: One of the following holds, where C′ ·Γ ′ is the conclusion of the underlying ιBase
inference:
(i) Applying γ to all premises and C′ ·Γ ′ of the underlying ιBase inference does not

result in a ground instance via γ of this ιBase inference.
(ii) (C′ ·Γ ′;γ) is universally redundant wrt. Λ ′ ` Φ ′ and (C ·Γ ;γ).

(iii) In case of Sup-Neg or Sup-Pos, (C′′ ·Γ ′′;γ) is universally redundant wrt. Λ ′ ` Φ ′,
where C′′ ·Γ ′′ is the left premise.

Split: C ·Γ =� ·Γ and Λ ′ does not produce Γ .
Close: C ·Γ =� · /0 ∈Φ ′. ut

With a view to implementation, it is important to know that adding the conclusion of a
Deduce inference to the current clause set renders the inference universally redundant. This
follows from the following proposition.

Proposition 23 Let Λ ` Φ be a sequent, C ·Γ and C′ ·Γ ′ be two constrained clauses with
C ·Γ ∈Φ , and γ a ground substitution. If (C′ ·Γ ′;γ)� (C ·Γ ;γ) then (C ·Γ ;γ) is universally
redundant wrt. Λ ` Φ and (C′ ·Γ ′;γ).

Proof Assume (C′ ·Γ ′;γ)� (C ·Γ ;γ). By taking D = (C′ ·Γ ′;γ), n = 1, C1 ·Γ1 =C ·Γ and
γ1 = γ in Definition 17 the result follows trivially. ut

The following lemma will be used later to prove completeness in presence of a simplification
rule, which permits to delete constrained clauses from the current sequent.

Lemma 24 If a Deduce inference is universally redundant wrt. Λ ` Φ , Λ ′ ⊇Λ , and Φ ′ is
obtained from Φ by deleting constrained clauses that are universally redundant wrt. Λ ` Φ

and/or by adding arbitrary constrained clauses, then it universally redundant wrt. Λ ′ ` Φ ′.

Proof Analogously to the proof of Lemma 18. ut

20

Summarizing, and referring to the notion of derivation trees formally defined in Sec-
tion 9 below, the results so far indicate that a constrained clause that is universally redundant
at some node of the derivation tree will remain universally redundant in all successor nodes
(by Lemma 18), that all its relevant ground closures are redundant (and therefore cannot be
minimal counterexamples in the model construction, by Corollary 20), and that its ground
closures cannot generate rewrite rules (by Corollary 21). Consequently, a universally redun-
dant clause can be deleted from a clause set without endangering refutational completeness.
We emphasize that for clauses with empty constraints, universal redundancy coincides with
the classical notion of redundancy for the Superposition calculus.

Definition 25 (Saturated Sequent) A sequent Λ ` Φ is saturated iff every ιME+Sup infer-
ence with premise Λ ` Φ is universally redundant wrt. Λ ` Φ . ut

The results so far allow us to establish our first main result.

Theorem 26 (Static Completeness) If Λ ` Φ is a saturated sequent with a non-contradictory
context Λ and� · /0 /∈Φ then the induced rewrite system RΛ `Φ satisfies all relevant closures
of all clauses in Φ wrt. Λ , i.e., (Λ ,RΛ `Φ) |= ΦΛ . Moreover, if Ψ is a clause set and Φ

includes Ψ , i.e., {D · /0 | D ∈Ψ} ⊆Φ , then R?
Λ `Φ

|=Ψ .

The stronger statement (Λ ,RΛ `Φ) |= Φ does in general not follow, as (Λ ,RΛ `Φ) possibly
falsifies a non-relevant ground closure of a constrained clause in Φ . An example is the
sequent

Λ ` Φ = P(x), a→ b, ¬P(b) ` P(x) ·P(x) .

Suppose a� b. We get RΛ `Φ = {a→ b}. By taking γ = {x 7→ a} observe that Λ |= (P(x),γ)
but R?

Λ `Φ
6|= P(x)γ , hence (Λ ,RΛ `Φ) 6|= (P(x) ·P(x); γ). Deriving � · (¬P(x),P(x)) does

not help to close Λ ` Φ . But notice that x is a shared variable and xγ is reducible wrt. RΛ `Φ ,
and so (P(x) ·P(x);γ) is not a relevant closure, and Theorem 26 is not violated.

Proof Let Λ ` Φ be a saturated sequent with a non-contradictory context and suppose
� · /0 /∈ Φ . Once (Λ ,RΛ `Φ) |= ΦΛ is established we get the second statement R?

Λ `Φ
|=Ψ

by the following argument. Let Cγ be a ground instance of a clause C ∈Ψ . It suffices to show
R?

Λ `Φ
|=Cγ . With Definition 5 it follows that every ground closure of a constrained clause

with empty constraint is always relevant, for every pair (Λ ,R). Hence, and more formally,
(C · /0;γ)∈{D · /0 |D∈Ψ}Λ . With {D · /0 |D∈Ψ}⊆Φ conclude trivially (C · /0;γ)∈ΦΛ . With
(Λ ,RΛ `Φ) |= ΦΛ we get (Λ ,RΛ `Φ) |= (C · /0;γ), which means Λ 6|= (/0,γ) or R?

Λ `Φ
|=Cγ ,

equivalently R?
Λ `Φ

|=Cγ .
It remains to show (Λ ,RΛ `Φ) |=ΦΛ . For that, we show below that every ground closure

(C ·Γ ;γ) ∈ΦΛ satisfies one of the following two properties:

(i) (Λ ,R(C·Γ ;γ)) |= (C ·Γ ;γ).
(ii) (C ·Γ ;γ) generates a rewrite rule in RΛ `Φ .

By Corollary 13 and Lemma 11 we conclude in both cases (Λ ,RΛ `Φ) |= (C ·Γ ;γ), which
suffices to complete the proof.

Recall we need to show that every ground closure (C ·Γ ;γ) ∈ ΦΛ satisfies (i) or (ii).
We proceed by well-founded induction over the closure ordering. Assume, by contradiction,
a relevant counterexample, that is, a ground closure of a constrained clause in Φ that is
relevant wrt. Λ and satisfies neither (i) nor (ii). By well-foundedness of the closure ordering
� there is a minimal such counterexample (C ·Γ ;γ) wrt. �, for some C ·Γ ∈Φ and ground
substitution γ . By minimality of (C ·Γ ;γ), every ground closure of a clause in Φ that is

21

relevant wrt. Λ and that is smaller than (C ·Γ ;γ) satisfies (i) or (ii), hence, by Corollary 13
and Lemma 11 again, is satisfied by (Λ ,RC·Γ ;γ).

We distinguish various cases now, each leading to a contradiction.

Case 1: (C ·Γ ;γ) is redundant wrt. Λ ` Φ or (C ·Γ ;γ) is universally redundant wrt. Λ ` Φ .
If (C ·Γ ;γ) is redundant wrt. Λ ` Φ then there are ground closures of clauses in Φ that are
relevant wrt. Λ , each smaller wrt. � than (C ·Γ ;γ), and that entail (C ·Γ ;γ) wrt. Λ . By the
induction hypothesis, all these closures are satisfied by (Λ ,R(C·Γ ;γ)). As they entail (C ·Γ ;γ)
wrt. Λ , we conclude (Λ ,R(C·Γ ;γ)) |= (C ·Γ ;γ), contradicting our assumption that (i) is not
satisfied.

Because (C ·Γ ;γ) is assumed to be a relevant closure wrt. Λ , by Corollary 20 (C ·Γ ;γ)
cannot be universally redundant wrt. Λ ` Φ either.

Case 2: Var(C)γ is reducible wrt. R(C·Γ ;γ).
The ME+Sup calculus does not need to paramodulate into or below variables. To explain
the completeness of this restriction we have to know that property (i) is always satisfied if
Var(C)γ is reducible wrt. R(C·Γ ;γ). Because (C ·Γ ;γ) is a relevant closure we already know
with Definition 5 that (Var(C) ∩ Var(Γ))γ is irreducible wrt. R(C·Γ ;γ). If xγ is reducible
for some x ∈ Var(C) \Var(Γ), then a term in the range of γ can be replaced by a smaller
yet congruent term wrt. R?

(C·Γ ;γ). Observe that this results in a smaller (wrt. �) relevant
counterexample, thus contradicting the choice of (C ·Γ ;γ).

Case 3: C = s 6≈ t ∨D with (s 6≈ t)γ maximal in (s 6≈ t ∨D)γ .
Suppose that none of the preceding cases holds, that C is of the form s 6≈ t ∨D, and that
(s 6≈ t)γ is maximal in (s 6≈ t ∨D)γ .

Case 3.1: sγ = tγ .
If sγ = tγ then there is a ground Deduce inference with premise (C ·Γ)γ = (s 6≈ t ∨D ·Γ)γ
and conclusion (D ·Γ)γ , which is an instance of a Deduce inference with an underlying
Ref inference applied to C ·Γ . By saturation, this Deduce inference is universally redundant
wrt. Λ ` Φ . Because (C ·Γ ;γ) is not universally redundant wrt. Λ ` Φ , the closure (D ·
Γ ;γ) must be universally redundant wrt. Λ ` Φ and (C ·Γ ;γ) by definition of redundant
inferences. Furthermore, by Lemma 10, (D ·Γ ;γ) is a relevant closure wrt. (Λ ,R(C·Γ ;γ)),
hence, by Lemma 19, (D ·Γ ;γ) is redundant wrt. Λ ` Φ and (C ·Γ ;γ) and therefore follows
from relevant closures of clauses in Φ wrt. Λ that are smaller than (C ·Γ ;γ). By the induction
hypothesis, these clauses are satisfied by (Λ ,R(C·Γ ;γ)), hence (Λ ,R(C·Γ ;γ)) |= (D ·Γ ;γ), and,
trivially, (Λ ,R(C·Γ ;γ)) |= (C ·Γ ;γ), contradicting our assumption. (In other cases below we
will use similar arguments without explicit reference to Lemmas 10 and 19)

Case 3.2: sγ 6= tγ .
If sγ 6= tγ then without loss of generality assume sγ � tγ . With (Λ ,R(C·Γ ;γ)) 6|= (s 6≈ t ∨
D ·Γ ;γ) it follows Λ |= (Γ ,γ) and R?

(C·Γ ;γ) 6|= (s 6≈ t ∨D)γ , and so R?
(C·Γ ;γ) |= (s ≈ t)γ .

Because R(C·Γ ;γ) is a convergent (ordered) rewrite system, sγ and tγ must have the same
normal forms. Recall we assumed sγ � tγ , and so sγ must be reducible wrt. R(C·Γ ;γ). Suppose
sγ = sγ[l]p for some position p and rule l→ r ∈ R(C·Γ ;γ). We distinguish two cases.

Case 3.2.1: l ≈ r is a split atom.
If l ≈ r is a split atom then with l→ r ∈ R(C·Γ ;γ) and Lemma 7-(i) it follows that Λ produces
l→ r. For later use let l′→ r′ ∈∼ Λ be a fresh variant of a rewrite literal in Λ that produces
l→ r in Λ and assume that γ has already been extended so that (l′→ r′)γ = l→ r.

The conclusions so far give that Deduce is applicable with underlying ground U-Sup-

Neg inference with left premise l → r, right premise sγ[l]p 6≈ tγ ∨Dγ ·Γ γ and conclusion

22

sγ[r]p 6≈ tγ ∨Dγ ·(Γ γ, l→ r). The next step is to show that this ground inference is a ground
instance via γ of a U-Sup-Neg inference with premises l′→ r′ and C ·Γ = s[u]p 6≈ t ∨D ·Γ
and conclusion C′ ·Γ ′ := (s[r′]p 6≈ t ∨D · (Γ , l′ → r′))σ , where σ is an mgu of l′ and u.
This follows from the observation that the position p in s indeed exists and that u cannot
be a variable, because otherwise uγ would be reducible wrt. R(C·Γ ;γ) (the rule l→ r would
rewrite it, as l = uγ), but we know that Var(C)γ is irreducible wrt. R(C·Γ ;γ).

We need to know that Deduce is applicable with this U-Sup-Neg inference underlying
it. For this, it only remains to be shown that Λ produces (l′→ r′)σ . This, however, follows
trivially from the fact that l′→ r′ ∈Λ produces l→ r in Λ , as obtained above, and l′→ r′ &
(l′→ r′)σ & l→ r (for if there were an l′′ 6→ r′′ ∈Λ such that l′→ r′ � l′′→ r′′ & (l′→ r′)σ
then l′→ r′ would not produce l→ r in Λ either).

By saturation, this Deduce inference is universally redundant wrt. Λ ` Φ . Because
the ground closure (C ·Γ ;γ) is not universally redundant wrt. Λ ` Φ , the ground closure
(C′ ·Γ ′;γ) must be universally redundant wrt. Λ ` Φ and (C ·Γ ;γ) by definition of redundant
inferences. Furthermore, by Lemma 10 (C′ ·Γ ′;γ) is a relevant closure wrt. (Λ ,R(C·Γ ;γ)).
With Lemma 19 it follows that (C′ ·Γ ′;γ) is redundant wrt. Λ ` Φ and (C ·Γ ;γ) and hence
follows from relevant closures of clauses in Φ wrt. Λ that are smaller than (C ·Γ ;γ). By
the induction hypothesis, these clauses are satisfied by (Λ ,R(C·Γ ;γ)), hence (Λ ,R(C·Γ ;γ)) |=
(C′ ·Γ ′;γ). Recall we are considering a ground U-Sup-Neg inference that is a ground instance
(via γ) of the U-Sup-Neg inference concluded above. Therefore, C′γ = (s[r′]p 6≈ t∨D)σγ =
(s[r]p 6≈ t ∨D)γ . With l→ r ∈ R(C·Γ ;γ) by congruence it follows R?

(C·Γ ;γ) |= (s 6≈ t ∨D)γ , a
plain contradiction to the assumption above for case (3.2).

Case 3.2.2: l ≈ r is a superposition atom.
The proof is similar to case (3.2.1), however referring to Sup-Neg inferences instead of U-
Sup-Neg inferences, and where the rewrite rule l→ r ∈ R is generated by a ground closure
(C0 ·Γ0;γ) of a constrained clause C0 ·Γ0 ∈ Φ instead of a rewrite literal from ΠΛ . With
Lemmas 10 and 11, and the same congruence argument using l→ r we get the same contra-
diction as in case (3.2.1).

Case 4: C = s≈ t ∨D with (s≈ t)γ maximal in (s≈ t ∨D)γ .
Suppose that C is of the form s ≈ t ∨D and that (s ≈ t)γ is maximal in (s ≈ t ∨D)γ . With
(C ·Γ ;γ) being a counterexample it follows Λ |= (Γ ,γ) but R?

(C·Γ ;γ) 6|= (s ≈ t ∨D)γ . From
the latter follows R?

(C·Γ ;γ) 6|= (s≈ t)γ , and so sγ = tγ is impossible. Hence suppose sγ 6= tγ .

Case 4.1: (s≈ t)γ is a split atom.
If (s≈ t)γ is a split atom we distinguish two further cases.

Case 4.1.1: sγ or tγ is reducible wrt. R(C·Γ ;γ).
If sγ or tγ is reducible wrt. R(C·Γ ;γ) then there is a rule l→ r ∈ R(C·Γ ;γ) such that sγ = sγ[l]p
or tγ = tγ[l]p, for some position p. If l→ r is generated by a rewrite literal from ΠΛ then the
same argumentation as in case (3.2.1) applies. The only changes are that instead of (ground
instances of) U-Sup-Neg inferences now (ground instances of) U-Sup-Pos inferences are
considered, and that sγ � tγ does not apply.

If l → r is generated by a ground closure from Φgr then the same argumentation as in
case (3.2.2) applies. The relevant inference rule in this case is Sup-Pos.

Case 4.1.2: sγ and tγ are irreducible wrt. R(C·Γ ;γ).
If sγ and tγ are irreducible wrt. R(C·Γ ;γ) then assume, w.l.o.g., sγ � tγ . The ordering on
closures and rewrite literals is defined in such a way that the closure (s ≈ t ∨D ·Γ ;γ) is
necessarily greater than the rewrite literal (s→ t)γ . With Lemma 7-(ii) then conclude that Λ

23

produces (s 6→ t)γ . This indicates that a Deduce inference with an underlying ground U-Res

inference exists. More precisely, the left premise of that ground inference is (s 6→ t)γ , the
right premise is (s≈ t ∨D ·Γ)γ and the conclusion is (D · (Γ ,s 6→ t))γ . It is routine by now
to check that this ground U-Res inference is a ground instance via γ of a U-Res inference
with a right premise from Φ that is not universally redundant wrt. Λ ` Φ , and a left premise
from Λ .

As in case (3.2.1) we can show that the Deduce inference with the latter underlying
U-Res inference exists. The rest of the proof uses the same arguments as in case (3.2.1), too.

Case 4.2: (s≈ t)γ is a superposition atom.
If (s≈ t)γ is a superposition atom assume, w.l.o.g., sγ � tγ and distinguish two cases.

Case 4.2.1: sγ is reducible wrt. R(C·Γ ;γ).
If s is reducible wrt. R(C·Γ ;γ) the argumentation is similar to case (3.2.2) and is omitted.

Case 4.2.2: sγ is irreducible wrt. R(C·Γ ;γ).
In this case, either (s ≈ t ∨D ·Γ ;γ) generates (s→ t)γ , so property (ii) would be satisfied,
contradicting our assumption. Or a Eq-Fact inference exists, which shows that a smaller
ground closure exists that, by redundancy, is satisfied in (Λ ,R(C·Γ ;γ)) and entails (s ≈ t ∨
D ·Γ ;γ). Then we get a contradiction to the assumption that (s ≈ t ∨D ·Γ ;γ) is a minimal
counterexample.

Case 5: C =�.
Suppose C = �. By assumption � · /0 /∈ Φ , and so � · /0 /∈ Φgr. Hence Γ 6= /0. First we are
going to show that Split is applicable to Λ ` Φ with � ·Γ ∈Φ .

Because� ·Γ is a relevant closure wrt. Λ , by Definition 5 Λ produces Γ and Λ produces
Γ γ by the same literals. We are given that Λ is not contradictory. This entails L /∈∼ Λ , for
every L ∈ Γ . For, if there is a literal L ∈Γ with L ∈∼ Λ then Λ would produce L. But in this
case Λ can produce L only if L ∈∼ Λ , and so Λ would be contradictory.

It is also impossible that L ∈∼ Λ , for every L ∈ Γ because then Close would be appli-
cable, and by saturation Close would be universally redundant, which is the case only if
� · /0 ∈Φ , which we have already excluded. Altogether conclude that there is a literal K ∈Γ

such that neither K nor K is contradictory with Λ . This shows that a Split inference with se-
lected clause� ·Γ exists, where K is the literal split on. Moreover, from above we know that
Λ produces Γ . It follows that this Split inference is not universally redundant wrt. Λ ` Φ .
However, by saturation it is universally redundant wrt. Λ ` Φ , a plain contradiction. ut

Theorem 26 applies to a statically given sequent Λ ` Φ . The connection to the dynamic
derivation process of the ME+Sup calculus will be given later, and Theorem 26 will be
essential then in proving the completeness of the ME+Sup calculus.

9 Derivations with Simplification

To make derivations in ME+Sup practical, the universal redundancy criteria defined above
should be made available not only to avoid inferences, but also to, e.g., delete universally
redundant clauses that come up in derivations. The following generic simplification rule
covers many practical cases.

Simp
Λ ` Φ ,C ·Γ

Λ ` Φ ,C′ ·Γ ′

if

24

(i) C ·Γ is universally redundant wrt. Λ ` Φ ,C′ ·Γ ′, and
(ii) (Λ c)a ∪ (Φ ∪ {C ·Γ })c |= (C′ ·Γ ′)c.

The Simp rule generalizes the widely-used simplification rules of the Superposition cal-
culus, such as deletion of trivial equations t 6≈ t from clauses, demodulation with unit clauses
and (non-proper) subsumption; these rules immediately carry over to ME+Sup as long as all
involved clauses have empty constraints. Also, as said above, the usual unit propagation rules
of the (propositional) DPLL procedure are covered in a more general form. As ME+Sup is
intended as a generalization of propositional DPLL (among others), it is mandatory to pro-
vide this feature.

Condition (ii) is needed for soundness. The ·a-operator uniformly replaces each variable
in each (unit) clause by a constant a. This way, all splits are effectively over complementary
propositional literals.

Derivations. The purpose of the ME+Sup calculus is to build for a given clause set a deriva-
tion tree over sequents all of whose branches end in a closed sequent iff the clause set is
unsatisfiable. Formally, we consider ordered trees T = (N,E) where N and E are the sets of
nodes and edges of T, respectively, and the nodes N are labelled with sequents. Often we
will identify a node’s label with the node itself.

Derivation trees T (of a set {C1, . . . ,Cn} of clauses) are defined inductively as follows:
an initial tree is a derivation tree, i.e., a tree T with a root node only that is labeled with
the sequent ¬x ` C1 · /0, . . . ,Cn · /0; if T is a derivation tree, N is a leaf node of T and T′ is
a tree obtained from T by adding one or two child nodes to N so that N is the premise of
an ιME+Sup inference or a Simp inference, and the child node(s) is (are) its conclusion(s),
then T′ is derivation tree. In this case we say that T′ is derived from T. A derivation (of
{C1, . . . ,Cn}) is a possibly infinite sequence of derivation trees that starts with an initial
tree and all subsequent derivation trees are derived from their immediate predecessor. A
derivation ∆ =((Ni,Ei))i<κ , where κ ∈N∪ {ω}, determines a limit tree (

⋃
i<κ Ni,

⋃
i<κ Ei).

It is easy to show that a limit tree of a derivation ∆ is indeed a tree. But note that it will not
be a derivation tree unless ∆ is finite.

Now let T be the limit tree of some derivation, let B = (Ni)i<κ be a branch in T
with κ nodes, and let Λi ` Φi be the sequent labeling node Ni, for all i < κ . Define
ΛB =

⋃
i<κ

⋂
i≤ j<κ Λ j

12 and ΦB =
⋃

i<κ

⋂
i≤ j<κ Φ j, the sets of persistent context literals and

persistent clauses, respectively. These two sets can be combined to obtain the limit sequent
ΛB ` ΦB (of T).

As usual, the completeness of ME+Sup relies on a suitable notion of fairness, which is
defined in terms of exhausted branches. When we say that “X is not persistent” we mean
that X is not among the persistent context literals or X is not among the persistent clauses,
depending on whether X is a rewrite literal or a constrained clause.

Definition 27 (Exhausted Branch) Let T be a limit tree and B = (Ni)i<κ a branch in T
with κ nodes. For all i < κ , let Λi ` Φi be the sequent labeling node Ni. The branch B is
exhausted iff

(i) for all i < κ , every ιME+Sup inference with premise Λi ` Φi and a persistent selected
clause and a persistent left premise (in case of Deduce) is universally redundant wrt.
Λ j ` Φ j, for some j < κ with j ≥ i, and

(ii) � · /0 /∈ΦB ut
12 The definition of ΛB is slightly more general as needed. Currently, there are no inference rules to delete

context elements, and so ΛB is always
⋃

i<κ Λi.

25

A limit tree of a derivation is fair iff it is a refutation tree, that is, a finite tree all of whose
leafs contain � · /0 in the constrained clause part of their sequent, or it has an exhausted
branch. A derivation is fair iff its limit tree is fair.

Notice that if in Definition 27, condition (i), the selected clause or the left premise (in
case of Deduce) is universally redundant wrt. Λi ` Φi, then the ιME+Sup inference is already
redundant wrt. Λi ` Φi. In other words, inferences with a universally redundant premise need
not be carried out. In general, a fair proof procedure (and implementation) needs to make
sure that every inference satisfying condition (i) eventually becomes universally redundant.
This can always be achieved by actually carrying out the inference. (Proposition 23 provides
the explanation for Deduce, for all other rules this is trivial.)

We are now going to establish some auxiliary results that justify to employ our concepts
of redundancy in derivations.

The intended interpretation of a limit sequent ΛB ` ΦB is the rewrite system RΛB `ΦB
which will denote by RB for simplicity. As a further convenience, we denote the union of all
context literals or all clauses of a branch B = (Ni)i<κ by Λ

+
B =

⋃
i<κ Λi and Φ

+
B =

⋃
i<κ Φi,

respectively.

Lemma 28 Let C ·Γ be a constrained clause. If C ·Γ is universally redundant wrt. Λ j ` Φ j,
for some j < κ , then C ·Γ is universally redundant wrt. ΛB ` ΦB.

Proof The proof works in essentially the same way as in [BGW94]. Suppose that C ·Γ is
universally redundant wrt. Λ j ` Φ j. Since ΛB ⊇ Λ j and Φ

+
B ⊇ Φ j, Lemma 18 implies that

C ·Γ is universally redundant wrt. Λ j ` Φ
+
B . Now observe that every constrained clause in

Φ
+
B \ΦB has been deleted at some node of the branch B, which is only possible if it was

universally redundant wrt. some Λk ` Φk with k < κ . Again using Lemma 18, we see that
every constrained clause in Φ

+
B \ΦB is universally redundant wrt. Λ j ` Φ

+
B . Hence ΦB is

obtained from Φ
+
B by deleting universally redundant clauses, and using Lemma 18 a third

time, we conclude that C ·Γ is universally redundant wrt. Λ j ` ΦB. Because every ground
rewrite literal in Λ j is also contained in ΛB, the claim of the lemma follows immediately. ut

Lemma 29 Every Deduce inference that is universally redundant wrt. Λ j ` Φ j, for some
j < κ , is universally redundant wrt. ΛB ` ΦB.

Proof Analogously to the proof of Lemma 28 using Lemma 24. ut

Proposition 30 (Exhausted Branches are Saturated) If B is an exhausted branch of a
limit tree of a fair derivation then ΛB ` ΦB is saturated.

Proof Suppose B is an exhausted branch of a limit tree of some fair derivation. We have
to show that every ιME+Sup inference with premise ΛB ` ΦB is universally redundant wrt.
ΛB ` ΦB. We do this by assuming such an inference and carrying out a case analysis wrt.
the inference rule applied.

By Definition 27 there is no Close inference with premise Λi ` Φi, for no i < κ , with a
persistent closing clause and persistent closing literals. But then there is no Close inference
with premise ΛB ` ΦB either. (Because if so, for a large enough i there would be Close

inference with premise Λi ` Φi, which we excluded.) Thus there is nothing to show for
Close.

If the inference rule is Split then let � ·Γ be the selected clause. There are only finitely
many literals K, modulo renaming and modulo sign, that are more general than a given literal
or set of literals such as Γ . Because no inference rule ever removes a literal from a context

26

or adds a variant or its complement to a literal that is already in a context, from some time k
onwards, no more such literal K will be added to Λk,Λk+1,

We are given that � ·Γ is persistent. Therefore suppose also � ·Γ ∈ Λk,Λk+1, . . ., or
choose k big enough. Together this shows that a Split inference with premise Λi ` Φi exists
(i could be k or smaller). By Definition 27 then, the Split inference is universally redundant
wrt. Λ j ` Φ j, for some j < κ with j ≥ i. By universal redundancy, this means that the
selected clause � ·Γ is universally redundant wrt. Λ j ` Φ j, or Λ j does not produce Γ .

In the first case, use Lemma 28 to conclude that � ·Γ is universally redundant wrt.
ΛB ` ΦB, and so the Split inference with selected clause � ·Γ is universally redundant wrt.
ΛB ` ΦB.

In the second case let j1 < j2 < · · · be all those points greater than j such that each
Λ j1 ,Λ j2 , . . . produces Γ . By fairness, for each point jl there must be a later point j′l such that
Λ j′l

does not produce Γ . This can be achieved only by adding literals to the context. With
the argument above about the finitely many literals K with the properties mentioned there,
the sequence j1 < j2 < · · · must be finite (it could be empty). In other words, there is a jl
such that for every k ≥ jl , Λk does not produce Γ . But then, ΛB does not produce Γ either,
which entails that � ·Γ is universally redundant wrt. ΛB ` ΦB, and we are done, as in the
first case.

If the inference rule is Deduce then by Definition 27 it is universally redundant wrt.
Λ j ` Φ j, for some j ≥ i, and by Lemma 29 it is universally redundant wrt. ΛB ` ΦB. ut

Proposition 30 is instrumental in the proof of our main result, which is the following.

Theorem 31 (Completeness) Let Ψ be a clause set and T be the limit tree of a fair deriva-
tion of Ψ . If T is not a refutation tree then Ψ is satisfiable; more specifically, for every ex-
hausted branch B of T with limit sequent ΛB ` ΦB and induced rewrite system RB =RΛB `ΦB
it holds ΛB,RB |= (ΦB)

ΛB and R?
B |=Ψ .

Proof Suppose T is not a refutation tree and let B an exhausted branch of T. By Proposi-
tion 30 the limit sequent ΛB ` ΦB is saturated. It is easy to see that ΛB is non-contradictory
(the context in the initial sequent of the derivation is non-contradictory, and all inference
rules preserve this property.) By Theorem 26 then ΛB,RB |= (ΦB)

ΛB .
To show R?

B |=Ψ , let C ∈Ψ be any clause from Ψ , and it suffices to show R?
B |=C. By

definition of derivation, C · /0 ∈ Φ1. If C · /0 ∈ ΦB then the second part of Theorem 26 gives
R?

B |=C immediately. Otherwise assume C · /0 /∈ ΦB. Hence C · /0 has been removed at some
time k < κ from the clause set Φk of the sequent Λk ` Φk by an application of the Simp rule.
By definition of Simp, C · /0 is universally redundant wrt. Λk+1 ` Φk+1. By Lemma 28, C · /0
is universally redundant wrt. ΛB ` ΦB. Since C · /0 has an empty constraint, all its ground
closures are relevant, and by Corollary 20, all relevant closures wrt. ΛB are redundant wrt.
ΛB ` ΦB, hence they are entailed wrt. ΛB by clauses in (ΦB)

ΛB . With ΛB,RB |= (ΦB)
ΛB , the

first part of the theorem, which is already proved, we get ΛB,RB |=C · /0. With the constraint
being empty, R?

B |=C follows immediately. ut

The ME+Sup calculus is also sound. The idea behind the soundness proof is to concep-
tually replace in a refutation tree every variable in every literal in all contexts by a constant,
say, a. This results in a refutation tree where all splits are over complementary propositional
literals. Regarding Close inferences, any closing clause will still be closing after instantiat-
ing all its variables in the same way. Furthermore, observe that the Ref, Sup-Neg, Sup-Pos
and Eq-Fact inference rules are sound in the standard sense by taking the clausal forms of
the premises and the conclusions. For the remaining ιBase inference rules U-Sup-Pos, U-
Sup-Neg and U-Res this is even simpler as the constraint in the conclusion contains the left

27

premise (they are strongly sound). The soundness of Simp follows from its condition (ii).
This way, a set of ground instances can be identified that demonstrates the unsatisfiability of
the clausal form of the constrained clause set in the root sequent. A formal soundness proof
can be carried out as for the MEE calculus [BT05].

10 Querying the Limit Model

Many application areas not only require (refutational) theorem proving but also model com-
putation. In software verification, for instance, non-valid conjectures come up frequently
during the design process, which lead to non-provable, i.e., consistent input formulas for
a theorem prover. Furthermore, certain application problems like consistency-based diag-
nosis, discourse representation, and planning can naturally be expressed as model compu-
tation tasks. Quite often then it is enough to compute a (one) designated model and being
able to ask queries with respect to it, for instance, the model given by the rewrite system
RB = RΛB `ΦB for a finite exhausted branch B.

If the sequent ΛB ` ΦB is non-ground and Σ contains at least one non-constant function
symbol, then RB is usually infinite. On the other hand, to test whether any given ground
literal L is true in the interpretation R?

B, it is sufficient to compute an initial fragment of
the infinite union RB =

⋃
C∈(ΦB)gr∪ΠΛB

εC : Since R?
B |= s ≈ t if and only if s and t can be

reduced to the same term using RB, and since a ground term cannot be reduced by a ground
rewrite rule whose left-hand side is larger than the term itself, it is clear that R?

B |= s ≈ t if
and only if R?

s,t |= s ≈ t, where Rs,t = {l→ r ∈ RB | s � l or t � l}. Under some additional
restrictions, the set Rs,t can be computed effectively: Let� be a Knuth-Bendix ordering with
strictly positive weights, and assume furthermore that for every constraint literal l → r or
l 6→ r of a constrained clause in ΦB all its instances are split literals.

A Knuth-Bendix ordering with strictly positive weights has the property that for any
ground term u there are only finitely many ground terms v ≺ u, which can moreover be
enumerated effectively. Now observe that the closure ordering is defined in such a way that
a closure (C ·Γ ;γ) ∈ Φgr can only contribute a rule uγ → vγ to Rs,t if xγ � max(s, t) for
all x ∈ Var(C). On the other hand, there is no such size restriction for variables in Var(Γ)\
Var(C). However, almost all conditions of the model construction are independent of xγ

for x ∈ Var(Γ) \Var(C). The only exception is the requirement that (C ·Γ ;γ) must be a
relevant closure wrt. (Λ ,R(C·Γ ;γ)) or, more precisely, the requirement that Λ |= (Γ ,γ). Given
a ground substitution γ ′ for Var(C) that satisfies the remaining conditions, it is therefore
sufficient to check whether there exists some ground substitution γ ′′ for Var(Γ) \Var(C)
such that lγ ′γ ′′ � rγ ′γ ′′, for every l→ r ∈ Γ or l 6→ r ∈ Γ , and such that Λ produces Γ and
Λ produces Γ γ ′γ ′′ by the same literals – it is not necessary to enumerate all possible γ ′′.
Since the first-order theory of the KBO is decidable [ZSM05], this can be done by checking
the KBO formula

∃x1, . . . ,xn
∧

L∈Γ

(
lhs(L)γ ′ � rhs(L)γ ′∧

∨
K∈Λ ,K&L

∀y1, . . . ,ym
∧

K′∈Λ ,K�K′

K′ 6= Lγ
′),

where lhs(L) and rhs(L) denote the left-hand side and right-hand side of the literal L, u 6= v
is to be taken as an abbreviation for u ≺ v∨ u � v, {x1, . . . ,xn} = Var(Γ) \ Var(C) and
{y1, . . . ,ym} are the variables occurring in all the K′.13 The following is now obvious:

13 If lhs(L) � rhs(L) for every L ∈ Γ then all ordering conditions become true, so it is sufficient to solve
the remaining disunifiability problem [Com91].

28

Theorem 32 (Validity in the Limit Model) Let � be a reduction ordering that is total on
ground Σ -terms, such that for any ground term u there are only finitely many ground terms
v ≺ u which can be enumerated effectively. Let B be a finite exhausted branch of a limit
tree of a fair derivation with respect to �. Then it is decidable whether R?

B |= s ≈ t for any
ground literal s≈ t.

11 Conclusions

Our main result is the completeness of the new ME+Sup calculus. On the theoretical side,
we plan to investigate how it can be exploited to obtain decision procedures for fragments
of first-order logic that are beyond the scope of current superposition or instance-based
methods. Ultimately, we will need an implementation to see how the labelling function is
best exploited in practice for general refutational theorem proving.

Acknowledgements. We thank the reviewers for their critical and helpful remarks, which
helped a lot to improve the presentation of this paper. NICTA is funded by the Australian
Government’s Backing Australia’s Ability initiative.

References

[Bau07] Peter Baumgartner. Logical engineering with instance-based methods. In Frank Pfenning, editor,
CADE-21 – The 21st International Conference on Automated Deduction, volume 4603 of Lecture
Notes in Artificial Intelligence, pages 404–409. Springer, July 2007.

[BG98] Leo Bachmair and Harald Ganzinger. Chapter 11: Equational Reasoning in Saturation-Based
Theorem Proving. In Wolfgang Bibel and Peter H. Schmitt, editors, Automated Deduction. A
Basis for Applications, volume I: Foundations. Calculi and Refinements, pages 353–398. Kluwer
Academic Publishers, 1998.

[BGW94] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational theorem proving for hier-
archic first-order theories. Applicable Algebra in Engineering, Communication and Computing,
5(3/4):193–212, April 1994.

[BN98] F. Baader and T. Nipkow. Term Rewriting and all that. Cambridge University Press, Cambridge,
1998.

[BT03] Peter Baumgartner and Cesare Tinelli. The Model Evolution Calculus. In Franz Baader, editor,
CADE-19 – The 19th International Conference on Automated Deduction, volume 2741 of Lecture
Notes in Artificial Intelligence, pages 350–364. Springer, 2003.

[BT05] Peter Baumgartner and Cesare Tinelli. The model evolution calculus with equality. In Robert
Nieuwenhuis, editor, CADE-20 – The 20th International Conference on Automated Deduction,
volume 3632 of Lecture Notes in Artificial Intelligence, pages 392–408. Springer, 2005.

[Com91] Hubert Comon. Disunification: a survey. In Jean-Louis Lassez and Gordon Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robinson. MIT Press, 1991.

[GK03] H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. In Proc.
18th IEEE Symposium on Logic in Computer Science,(LICS’03), pages 55–64. IEEE Computer
Society Press, 2003.

[GK04] H. Ganzinger and K. Korovin. Integrating equational reasoning into instantiation-based theo-
rem proving. In Computer Science Logic (CSL’04), volume 3210 of Lecture Notes in Computer
Science, pages 71–84. Springer, 2004.

[JW07] Swen Jacobs and Uwe Waldmann. Comparing instance generation methods for automated rea-
soning. J. Autom. Reason., 38(1-3):57–78, 2007.

[Kor08] Konstantin Korovin. iprover - an instantiation-based theorem prover for first-order logic (system
description). In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated
Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 2008, vol-
ume 5195 of Lecture Notes in Computer Science, pages 292–298. Springer, 2008.

29

[Kor09] Konstantin Korovin. Instantiation-based automated reasoning: From theory to practice. In Re-
nate A. Schmidt, editor, Automated Deduction - CADE-22, 22nd International Conference on
Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, volume 5663 of Lec-
ture Notes in Computer Science, pages 163–166. Springer, 2009.

[LM09] Chrystopher Lynch and Ralph Eric McGregor. Combining instance generation and resolution. In
Silvio Ghilardi and Roberto Sebastiani, editors, Frontiers of Combining Systems (FroCoS 2009),
volume 5749 of LNAI, pages 304–318. Springer Verlag, September 2009.

[NR95] Robert Nieuwenhuis and Albert Rubio. Theorem Proving with Ordering and Equality Constrained
Clauses. Journal of Symbolic Computation, 19:321–351, 1995.

[PZ00] David A. Plaisted and Yunshan Zhu. Ordered Semantic Hyper Linking. Journal of Automated
Reasoning, 25(3):167–217, 2000.

[WSH+07] Christoph Weidenbach, Renate Schmidt, Thomas Hillenbrand, Rostislav Rusev, and Dalibor
Topic. System description: Spass version 3.0. In Frank Pfenning, editor, CADE-21 — 21st
International Conference on Automated Deduction, volume 4603 of Lecture Notes in Artificial
Intelligence, pages 514–520. Springer, 2007.

[ZSM05] Ting Zhang, Henny B. Sipma, and Zohar Manna. The decidability of the first-order theory of term
algebras with Knuth-Bendix order. In Robert Nieuwenhuis, editor, 20th International Conference
on Automated Deduction (CADE’05), volume 3632 of Lecture Notes in Artificial Intelligence,
pages 131–148. Springer-Verlag, 2005.

A Proof of Lemma 10

Proof For convenience we abbreviate R := R(C·Γ ;γ) below. Assume that all preconditions of the lemma state-
ment hold. With (i) then, by Definitions 5 and 2, Γ γ consists of split rewrite literals, Λ produces Γ and Λ

produces Γ γ by the same literals, and (Var(C) ∩ Var(Γ))γ is irreducible wrt. R. We have to show

(1) Γ ′γ consists of split rewrite literals,
(2) Λ produces Γ ′ and Λ produces Γ ′γ by the same literals, and
(3) (Var(C′) ∩ Var(Γ ′))γ is irreducible wrt. R.

The proof of (1) follows easily from inspection of the ιBase inference rules. Each inference rule requires
that the (instantiated) constraints in the constrained clauses in the premise consist of split rewrite literals.
Furthermore, U-Sup-Neg, U-Sup-Pos and U-Res, as the only rules that add new rewrite literals, come with
conditions that force that for the new rewrite literals.

Let σ (σπ in case of Sup-Pos- or Sup-Neg inference) be the mgu used in the ιBase inference. Assume
σ (σπ) is idempotent, which is the case with usual unification algorithms. Because γ gives a ground instance
of the given ιBase inference, γ must be a unifier for the same terms as σ (σπ). Because σ (σπ) is a most
general unifier, there is a substitution δ such that γ = σδ (γ = σπδ). With the idempotency of σ (σπ) we
get γ = σδ = σσδ = σγ (γ = σπδ = σπσπδ = σπγ).

It remains to show (2) and (3). We first establish some useful facts:

(i) Λ produces Γ σ (Γ σπ) and Λ produces Γ σγ (Γ σπγ) by the same literals.
Proof: Consider an arbitrary literal L ∈ Γ and suppose that K ∈ Λ produces L and Lγ in Λ . If K didn’t
produce Lσ in Λ then there would be a K′ ∈ Λ with K � K′ & Lσ . With γ = σδ and by transitivity of
& we would get K � K′ & Lγ , and so K would not produce Lγ either. With γ = σγ obtained above the
second claim is trivial.
The proof that Λ produces Γ σπ and Λ produces Γ σπγ by the same literals is the same after replacing
σ by σπ .

(ii) For every term t, if Var(t)γ is irreducible wrt. R then Var(tσ)γ (Var(tσπ)γ) is irreducible wrt. R.
Proof: Let t be a term and suppose Var(t)γ is irreducible wrt. R. Chose a variable y ∈ Var(tσ) arbitrarily.
It suffices to show that yγ is irreducible wrt. R. With y ∈ Var(tσ), y must occur in a term xσ , for some
variable x ∈ Var(t) (y = x is possible). With y being a subterm of xσ , yγ is a subterm of xσγ . With the
identity γ = σγ above we get that yγ is a subterm of xγ . We assumed Var(t)γ irreducible wrt. R. With
x ∈ Var(t), xγ is irreducible wrt. R, and it is clear that its subterm yγ then irreducible wrt. R, too.
The proof that Var(tσπ)γ is irreducible wrt. R is the same after replacing σ by σπ .

(iii) (Var(Cσ) ∩ Var(Γ σ))γ is irreducible wrt. R.
Proof: From above we know that (Var(C) ∩ Var(Γ))γ is irreducible wrt. R. If x ∈ Var(C) ∩ Var(Γ)
take t = x and conclude with fact (ii) that Var(xσ)γ is irreducible wrt. R. Because this holds for every
x ∈ Var(C) ∩ Var(Γ) we get that Var((Var(C) ∩ Var(Γ))σ)γ is irreducible wrt. R. The next step is to
show Var((Var(C) ∩ Var(Γ))σ) = Var(Cσ) ∩ Var(Γ σ). The claim then follows immediately.

30

It is not difficult to see Var((Var(C) ∩ Var(Γ))σ)⊆ Var(Cσ) ∩ Var(Γ σ). We are going to exclude the
possibility that there is a variable y in the right set but not in the left set of the inequality. The existence
of such a variable y can only be explained with two variables xC ∈ Var(C) \Var(Γ) and xΓ ∈ Var(Γ) \
Var(C) such that y ∈ Var(xCσ) and y ∈ Var(xΓ σ). However, recall that σ (or σπ) is a unifier between
terms in the clause part only of the right premise and possibly the left premise. Also, we are always
taking fresh variants of a premise in inference rules. Together this entails that extraneous variables xΓ

cannot be moved by σ (or σπ), and that xΓ is not in the codomain of σ . Under these (safe) assumptions
then we can conclude that the claimed variable y does not exist.
The above argumentation can be used in the same way to conclude that (Var(Cσπ) ∩ Var(Γ σπ))γ is
irreducible wrt. R.

To prove (2) and (3) we carry out a case analysis with respect to the ιBase inference rule applied.

Case a: Ref.
In case of a Ref inference let the premise be s 6≈ t ∨D ·Γ and the conclusion (D ·Γ)σ . Then (2) follows
directly from fact (i). Regarding (3), we already know that (Var(s 6≈ t ∨D) ∩ Var(Γ))γ is irreducible wrt. R.
By fact (iii) then (Var((s 6≈ t ∨D)σ) ∩ Var(Γ σ))γ is irreducible wrt. R. The subset (Var(Dσ) ∩ Var(Γ σ))γ
then is trivially irreducible wrt. R, too, which proves (3).

Case b: U-Sup-Neg.
In case of a U-Sup-Neg inference let the left premise be l→ r, the right premise C ·Γ = s[u]p ≈ t∨D ·Γ and
the conclusion C′ ·Γ ′ = (s[r]p ≈ t∨D · (Γ , l→ r))σ . First we show (2), i.e., that Λ produces (Γ ∪ {l→ r})σ
and Λ produces (Γ ∪ {l → r})σγ by the same literals. With respect to the subsets Γ σ and Γ σγ the claim
follows from fact (i). With respect to (l → r)σ and (l → r)σγ recall we are given that (l → r)σ generates
(l→ r)γ in RΛ `Φ , and hence l→ r ∈R. By Lemma 7-(i) then Λ produces (l→ r)γ , that is, some literal K ∈Λ

produces (l→ r)γ in Λ . It remains to show that K produces (l→ r)σ in Λ . With K producing (l→ r)γ in Λ ,
and (l→ r)γ being an instance of (l→ r)σ the proof is similar to the one of fact (i) above and is omitted.

To prove (3) we show that (Var((s[r]p ≈ t ∨D)σ) ∩ Var((Γ ∪ {l→ r})σ))γ is irreducible wrt. R. Fact
(iii) above only gives us that (Var((s[u]p ≈ t ∨D)σ) ∩ Var(Γ σ))γ is irreducible wrt. R. To get the desired
result from that it is enough to show that Var(rσ)γ and Var(lσ)γ are irreducible wrt. R, because only rσ and
lσ (via (l→ r)σ) can contribute additional variables beyond those in Var((s[u]p ≈ t ∨D)σ) ∩ Var(Γ σ).

Regarding Var(rσ)γ , with fact (ii) it suffices to show that Var(r)γ is irreducible wrt. R. With (l → r)γ
generating (l → r)γ in RΛ `Φ it is impossible that rγ (and lγ) are reducible wrt. R(l→r)γ . With lγ � rγ it
is clear that (l → r)γ cannot reduce rγ , nor can any other rule greater than (l → r)γ . This shows that rγ is
irreducible even wrt. R.

Regarding Var(lσ)γ we use a different argumentation. From the lemma precondition (ii-a) we know
that the ground closure (l ≈ r∨C′′ ·Γ ′′;γ) generates (l→ r)γ in RΛ `Φ . Hence, trivially, (l→ r)γ ∈ RΛ `Φ .
Trivially, (l→ r)γ reduces lγ , but no other rule in RΛ `Φ can reduce lγ . This is, because that rule would either
have to be smaller, and so (l → r)γ would not be generated, or its left hand side would have to be equal to
lγ , but with (l→ r)γ ∈ RΛ `Φ that rule would be reducible by the (smaller) rule (l→ r)γ , thus not generated,
and thus not be in RΛ `Φ . Because R ⊆ RΛ `Φ by construction, the only rule in R that can reduce lγ thus is
(l→ r)γ .

An important detail now is that the target term u unified with l by σ in the non-ground inference is not a
variable. Every variable x ∈ Var(lσ) therefore must be a proper subterm of lσ . And so xγ is a proper subterm
of lσγ (= lγ). But then xγ can be reducible wrt. R only by rules in R that are strictly smaller than (l→ r)γ ,
which, as argued, do not exist. In conclusion, xγ , and hence Var(lσ) is irreducible wrt. R (and also irreducible
wrt. R(l→r)γ).

Case c: U-Sup-Pos.
The proof for the case of a U-Sup-Pos inference is essentially the same and is omitted.

Case d: U-Res.
In case of a U-Res inference let the left premise be ¬A, the right premise C ·Γ = s ≈ t ∨D ·Γ and the
conclusion C′ ·Γ ′ = (D · (Γ ,s 6→ t))σ . First we show that Λ produces (Γ ∪ {s 6→ t})σ and Λ produces
(Γ ∪ {s 6→ t})σγ by the same literals. With respect to the subsets Γ σ and Γ σγ this follows from fact (i).

With respect to (s 6→ t)σ and (s 6→ t)σγ recall that by the lemma precondition (ii-c) we know that sγ and
tγ are irreducible wrt. R. The ordering on ground closures and ground rewrite literals is defined (cf. Section 7)
in such a way that (C ·Γ ;γ)� (s→ t)γ whenever C contains an (the) equation s≈ t. By Lemma 7-(ii) then Λ

produces (s 6→ t)γ , that is, some literal K ∈Λ produces (s 6→ t)γ in Λ . To complete the proof of (2) it remains
to be shown that K produces (s 6→ t)σ in Λ . With K producing (s 6→ t)γ in Λ , and (s 6→ t)γ being an instance
of (s 6→ t)σ the proof is again similar to the one of fact (i) above and is omitted.

We still need to show (3), that (Var(Dσ) ∩ Var((Γ ∪ {l 6→ r})σ))γ is irreducible wrt. R. Fact (iii) above
only gives us that (Var((s≈ t ∨D)σ) ∩ Var(Γ σ))γ is irreducible wrt. R. But only rσ and lσ (via (l 6→ r)σ)

31

can contribute additional variables beyond those in Var((s ≈ t ∨D)σ) ∩ Var(Γ σ). It is therefore enough to
show that Var(rσ)γ and Var(lσ)γ are irreducible wrt. R. This however follows immediately from the fact
above that sγ and tγ are irreducible wrt. R and fact (ii).

Case e: Sup-Neg.
In case of a Sup-Neg inference the left premise is l ≈ r ∨C′′ ·Γ ′′, the right premise is C ·Γ = s[u]p ≈
t ∨D ·Γ and the conclusion is C′ ·Γ ′ = (s[r]p ≈ t ∨D∨C′′ · (Γ ,Γ ′′))σπ . Recall we are given that (l ≈
r∨C′′ ·Γ ′′;γ) generates (l→ r)γ in RΛ `Φ . By definition then, (l ≈ r∨C′′ ·Γ ′′;γ) is a relevant closure wrt.
(Λ ,R(l≈r∨C′′ ·Γ ′′;γ)), which means that Λ produces Γ ′′ and Λ produces Γ ′′γ by the same literals, and that
(Var(l ≈ r∨C′′) ∩ Var(Γ ′′))γ is irreducible wrt. R(l≈r∨C′′·Γ ′′;γ).

For (2) we need to show that Λ produces (Γ ∪ Γ ′′)σπ and Λ produces (Γ ∪ Γ ′′)σπγ by the same
literals. With respect to the subsets Γ σπ and Γ σπγ the claim follows again from fact (i). With respect to
the subsets Γ ′′σπ and Γ ′′σπγ we can use the same argumentation as in fact (i) above, but starting from the
fact that Λ produces Γ ′′ and Λ produces Γ ′′γ by the same literals, yielding that Λ produces Γ ′′σπ and Λ

produces Γ ′′σπγ by the same literals.
Before proceeding with (3), proper, recall that (l ≈ r ∨C′′ ·Γ ′′;γ) generates (l → r)γ in RΛ `Φ , thus

(l→ r)γ ∈ R (because in ground Sup-Neg inferences the left premise always smaller than the right premise).
It can be shown that the only rule in R \ R(l≈r∨C′′ ·Γ ′′;γ) that can rewrite (l ≈ r ∨C′′)γ is (l → r)γ itself:
rewriteability by any other rule would give a contradiction to the maximality of (l ≈ r)γ in (l ≈ r∨C′′)γ
or that rule could not have been generated, as its left-hand side would be reducible by (l → r)γ . Moreover,
(l→ r)γ can rewrite (l ≈ r∨C′′)γ only at topmost positions of greater sides wrt. � of positive equations in
(l ≈ r∨C′′)γ . All other terms in (l ≈ r∨C′′)γ are irreducible wrt. R\R(l≈r∨C′′·Γ ′′;γ). In particular, as lγ � rγ ,
rγ is irreducible wrt. R\R(l≈r∨C′′ ·Γ ′′;γ).

For (3) we need to show that (Var((s[r]p ≈ t ∨D∨C′′)σπ) ∩ Var((Γ ∪ Γ ′′)σπ))γ is irreducible wrt. R.
The first sub-proof is to show that (Var(C′′σπ) ∩ Var(Γ ′′σπ))γ is irreducible wrt. R. From above we

(only) know so far that (Var(l ≈ r∨C′′) ∩ Var(Γ ′′))γ and hence (Var(C′′) ∩ Var(Γ ′′))γ is irreducible wrt.
R(l≈r∨C′′ ·Γ ′′)γ . Using the results from further above, the only rule in R\R(l≈r∨C′′ ·Γ ′′;γ) that can reduce C′′γ is
(l→ r)γ , and only at top-level positions of bigger sides of positive equations in C′′γ . Let (x1≈ t1∨·· ·xn≈ tn)γ
be the biggest subclause of C′′γ such that lγ = x1γ = · · · = xnγ . The substitution π must now be chosen as
an mgu for the terms lσ ,x1σ , . . . ,xnσ . Observe this is possible because rγ � lγ and lγ � x1γ, . . . , lγ � xnγ .
Because lσ is not a variable, none of the terms x1σπ, . . . ,xnσπ is a variable either. Thus every variable
occurring in one of these terms must be a proper subterm of (the same) term lσπ . This entails that every
term in Var(xiσπ)γ is a proper subterm of lσπγ (= lγ), for all i = 1, . . . ,n and hence irreducible by (l→ r)γ .
Because of the choice as the biggest subclause above, there is no term in Var(C′′σπ)γ left that can be reduced
by l → r, or any other rule in R \ R(l≈r∨C′′ ·Γ ′′;γ). It follows trivially that (Var(C′′σπ) ∩ Var(Γ ′′σπ))γ is
irreducible wrt. R\R(l≈r∨C′′ ·Γ ′′;γ). To complete the first sub-proof it remains to be shown that (Var(C′′σπ) ∩
Var(Γ ′′σπ))γ is irreducible wrt. R(l≈r∨C′′ ·Γ ′′;γ). This, however, can be done with the same arguments as in
fact (iii), however using the rewrite system R(l≈r∨C′′ ·Γ ′′;γ) instead of R, and starting from (Var(l ≈ r∨C′′) ∩
Var(Γ ′′))γ being irreducible wrt. R(l≈r∨C′′ ·Γ ′′;γ).

Fact (iii) above gives us that (Var((s[u]p ≈ t∨D)σπ) ∩ Var(Γ σπ))γ is irreducible wrt. R. This result can
be combined with the result from the first sub-proof to obtain that (Var((s[u]p ≈ t ∨D∨C′′)σπ) ∩ Var((Γ ∪
Γ ′′)σπ))γ is irreducible wrt. R. The arguments for that are the same as in fact (iii) and assume that the
substitution σπ does not move extraneous variables in constraints and that these variables do not occur in the
codomain of σπ .

But this result is not quite what we need. For (3) we need to show that (Var((s[r]p ≈ t ∨D∨C′′)σπ) ∩
Var((Γ ∪ Γ ′′)σπ))γ is irreducible wrt. R. Observe that any additional variables in the latter set must stem
from Var(rσπ). It is therefore enough to show that (Var(rσπ) ∩ Var(Γ ′′σπ))γ is irreducible wrt. R.

From further above we know that rγ is irreducible wrt. R\R(l≈r∨C′′ ·Γ ′′;γ). Because every term in Var(r)γ
is a (possibly non-proper) subterm of rγ , Var(r)γ is irreducible wrt. R\R(l≈r∨C′′·Γ ′′;γ), too. Also from above
we know that (Var(l ≈ r∨C′′) ∩ Var(Γ ′′))γ is irreducible wrt. R(l≈r∨C′′ ·Γ ′′;γ). With the same arguments as
in fact (iii) conclude that (Var((l ≈ r∨C′′)σπ) ∩ Var(Γ ′′σπ))γ is irreducible wrt. R(l≈r∨C′′ ·Γ ′′;γ). Trivially,
(Var(rσπ) ∩ Var(Γ ′′σπ))γ is irreducible wrt. R(l≈r∨C′′ ·Γ ′′;γ). Together, (Var(rσπ) ∩ Var(Γ ′′σπ))γ is irre-
ducible wrt. R. This completes the proof of this case.

Case f: Sup-Pos.
In case of a Sup-Pos inference the proof is exactly the same as in case (e).

Case g: Eq-Fact.
Finally, in case of a Eq-Fact inference observe that Var(l ≈ t∨ r 6≈ t∨C)⊆ Var(l ≈ r∨ s≈ t∨C). The proof
then follows easily with facts (i) and (iii). ut

32

