
Proving Infinite Satisfiability

Peter Baumgartner and Joshua Bax

NICTA? and Australian National University, Canberra, Australia
Firstname.Lastname@nicta.com.au

Abstract. We consider the problem of automatically disproving invalid conjec-
tures over data structures such as lists and arrays over integers, in the presence
of additional hypotheses over these data structures. We investigate a simple ap-
proach based on refutational theorem proving. We assume that the data structure
axioms are satisfiable and provide a template language for additional hypotheses
such that satisfiability is preserved. Then disproving is done by proving that the
negated conjecture follows. By means of examples we demonstrate that our tem-
plate language is reasonably expressive and that our approach works well with
current theorem provers (Z3, SPASS+T and Beagle).

1 Introduction

We consider the problem of automatically disproving invalid conjectures over data
structures such as lists and arrays over integers, in the presence of additional hypotheses
over these data structures. Such invalid conjectures come up frequently in applications
of automated reasoning to software verification and the analysis of data-rich state-based
systems, for example. More formally, the disproving problem is to show that AX∪HYP
does not entail a sentence CON, where AX are list and/or array axioms and CON is the
conjecture in question. The obvious approach to disproving is to show satisfiability of
AX∪HYP∪ {¬CON} by means of a (complete) theorem prover. Unfortunately, current
theorem proving technology is of limited usefulness for that: finite model finders cannot
be used because the list axioms do not admit finite models, SMT-solvers are typically
incomplete on quantified formulas and face the same problem, and theorem provers
based on saturation often do not terminate on satisfiable input (let alone completeness
issues in presence of arithmetic background theories).

We propose a different, conceptually simple approach based on refutational theorem
proving. It consists in assuming that AX is satisfiable and providing templates for HYP
that are guaranteed to preserve satisfiability of AX∪HYP. Then disproving is attempted
simply by proving that AX ∪ HYP entails ¬CON, i.e., that AX ∪ HYP ∪ {CON} is
unsatisfiable.

The main point of this paper is to demonstrate the practical feasibility of our ap-
proach. By means of examples, we demonstrate that our template language covers use-
ful cases. We also report on our experiences disproving sample conjectures using cur-
rent theorem provers (Z3 [11], SPASS+T [18] and Beagle [3]), and we compare their
performance.
? NICTA is funded by the Australian Government as represented by the Department of Broad-

band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

Related Work. Kapur and Zarba [8] show by way of reductions to sub-theories how
to decide the satisfiability of conjunctions of ground literals wrt. various theories, in-
cluding arrays and lists. Armando, Bonacina, Ranise and Schulz [2] use the superpo-
sition calculus as a decision procedure, again for conjunctions of ground literals wrt.
these (and other) theories. In a similar way, Lynch and Morawska [9] aim at superpo-
sition as decision procedure based on finite saturation. Ihlemann, Jacobs and Sofronie-
Stokkermans [7] develop decidability results for the theory of arrays and others using
the framework of local theory extensions. DeMoura and Bjoerner [12] give decidabil-
ity results for a theory extending the basic theory of arrays. McPeak and Necula [10]
provide decision procedures for pointer data structures. Bradley, Manna and Sipma [4]
give a decidability result for an expressive fragment of the theory of arrays, the array
property fragment. Certain desirable formulas are not included in this fragment, for ex-
ample totality axioms for functions or an injectivity predicate for arrays (see distinct in
Section 4). Ghilardi, Nicolini, Ranise and Zucchelli [6] provide a decision procedure
for an extension of the array theory and demonstrate how decision procedures may be
derived for extensions to this theory, many of which lie outside the array property frag-
ment. This relies on the existence of a “standard model” for the theory and extension,
whose existence must be demonstrated a priori.
In contrast to these works, we do not provide decision procedures for specific fragments.
This is intentionally so, in order to support disproving tasks in the presence of liberally
formulated additional axioms (the set HYP above). Although we employ superposition-
based provers in our experiments (like some of the approaches above), our approach
does not hinge on finite saturation. Claessen and Lillieström [5] present a method for
showing that a set of formulas does not admit finite models. It does not answer the
question whether infinite models exists, and this way our work is complementary to
theirs. Suter, Köksal and Kuncak [17] have developed a semi-decision procedure for
checking satisfiability of correctness properties of recursive functional programs on al-
gebraic data types. It overlaps with out method on lists (Section 3) by imposing similar
syntactic restrictions. Their method works differently, by partial unrolling of function
definitions into quantifier-free logic instead of theorem proving on (quantified) formu-
las. In [15], Rümmer and Shah use a program logic for Java to prove the incorrectness of
programs. It utilizes a sequent calculus for unfolding lists and reasoning with arithmetic
constraints, and this way is somewhat more spcialised than our approach.

Preliminaries. We work in the context of many-sorted logic with first-order signatures
comprised of sorts and operator symbols (i.e., function symbols and predicate symbols)
of given arities over these sorts. In this paper we focus on theorem proving modulo the
fixed background theory of (linear) integer arithmetic. Our signatures Σ are comprised
of sort symbols s1, . . . , sn where sn = Z, the integer sort. Let sorts(Σ) = {s1, . . . , sn}.
We assume Σ contains an equality symbol ≈si for each sort si. We usually drop the sort
annotion from ≈si . We also assume infinite supplies of variables of each sort. When x is
a variable and s is a sort we write xs to make clear that the sort of x is s.

We use the notions commonly used in automated theorem proving in a standard way.
The (well-sorted Σ-) terms, atoms, and formulas are defined as usual. Let x1, . . . , xn be
pairwise different variables of corresponding sorts s1, . . . , sn. We write F[x1, . . . , xn] to
indicate that the formula F has free variables at most x1, . . . , xn, and we say that F has

the arity s1×· · ·× sn. We write F[t1, . . . , tn] for the formula obtained from F[x1, . . . , xn]
by replacing every free occurrence of xi in F by ti, for all 1 ≤ i ≤ n.

Our logical language is essentially the same as the TPTP-language TFA (“Typed
Formulas with Arithmetic”) and we adopt the semantics given for it in [16]. In brief, a
(Σ-)interpretation I consists of a (Σ-)domain D = Ds1] . . .] Dsn with disjoint, non-
empty sub-domains for each sort, and an arity-respecting mapping of function symbols
to functions and predicate symbols to relations (representing the tuples of which the
predicate holds true). We work with E-interpretations only. That is, I(≈si) = {(d, d) |
d ∈ Dsi }, where I(op) is the interpretation of the operator op. Furthermore, we consider
only interpretations that extend arithmetic, that is, (i) the domain DZ of the integer sort
Z is the set of all integer numbers and, (ii) the numeric operators such as >, ≥, +, −
and · are interpreted as expected. The usual notions of satisfaction, validity, model etc.
apply in the standard way. In particular, when N is a set of sentences we write I |= N to
indicate that I is a model of (all elements of) N, and we say that N entails a formula F,
written as N |= F iff every model of N is a model of F.

2 Approach

Our approach consists in starting with a signature Σ and a set of Σ-sentences Ax that
is known to be satisfiable. Our main interest is in lists and arrays, and so Ax will be
corresponding axioms, see below. Then we stepwise expand Σ and Ax with new user-
defined operators and additional definitions for these.

More formally, for two signatures Σ and Σ′ over the same sorts we use set operators
to relate the sets of their operators in the obvious way. For instance, we write Σ′ =

Σ ∪ {op} to indicate that Σ′ is obtained from Σ by adding the operator op. We consider
sequences (Ax,Defop1

, . . . ,Defopn
) such that Defopi

is a set of Σi-sentences (“Definition
for opi”) of a certain form explained below, where Σ0 = Σ, opi < Σi−1 and Σi = Σi−1 ∪

{opi} for all 1 ≤ i ≤ n. We call any such sequence an extension of Ax.

Definition 2.1 (Admissible Definition). Let Σ be a signature, D a Σ-domain, and op <
Σ an operator with an arity over sorts(Σ). We say that a set of (Σ ∪ {op})-sentences N is
an admissible definition of op (wrt. Σ and D) iff every Σ-interpretation I with domain
D can be expanded to a (Σ ∪ {op})-interpretation I′ with domain D such that I′ |= N.

That is, I′ differs from I only by adding an interpretation for op which satisfies N. We
indicate this by writing I′ = I ∪ I(op).

Proposition 2.2. Let (Ax,Defop1
, . . . ,Defopn

) be an extension of Ax. Suppose there is
a Σ0-model I |= Ax with domain D. If Defopi

is an admissible definition of opi wrt.
Σi−1 and D, for all 1 ≤ i ≤ n, then there is a Σn-interpretation I′ such that I′ |=
Ax ∪

⋃
1≤i≤n Defopi

.

Proof. By induction over the length n of extensions, using the given model I in the
induction start and using admissibility in the induction step. ut

As said, in this paper we are mainly interested in disproving conjectures. With the
current terminology, the problem is to show that N = Ax∪

⋃
1≤i≤n Defopi

does not entail

a given Σn-sentence Con, the conjecture in question. Assuming admissible definitions,
Proposition 2.2 gives us I′ |= N, for some Σn-interpretation I′. Now, suppose we are
able to prove (by a theorem prover) the entailment N |= ¬Con. It follows I′ |= ¬Con,
and so I′ 6|= Con. By definition, then N 6|= Con, and so the conjecture is disproven.

Our intended application context is that of dynamically evolving systems. By this
we mean computations that start in a (typically partially) specified initial state, modify
some data until a final state is reached, and then the resulting (partially specified) final
state is queried as to whether a property P holds in it. This leads to universally quantified
implications Con in which the premise encodes both the initial state and computation,
while the conclusion encodes property P.

A trivial example of this situation is the formula Con = ∀ lLIST l′LIST . l 0 nil ∧ l′ ≈
tail(l) ⇒ l′ 0 nil. Here, l 0 nil is meant to represent the initial state; l′ ≈ tail(l) the
computation; and P = l′ 0 nil. Where AxLIST are the list axioms of Section 3 below,
we wish to show AxLIST 6|= Con. With the approach indicated above, we have to prove
AxLIST |= ∃ lLIST l′LIST . l 0 nil ∧ l′ ≈ tail(l) instead, which is a theorem proving task.

3 Lists

We consider lists over integers. To this end let the signature ΣLIST consist of sorts LIST
and Z and the operators nil : LIST, cons : Z × LIST 7→ LIST, head : LIST 7→ Z,
tail : LIST 7→ LIST. The list axioms AXLIST are the following formulas, each implicitly
universally quantified, where k is Z-sorted and l is LIST-sorted:

head(cons(k, l)) ≈ k cons(k, l) 0 nil

tail(cons(k, l)) ≈ l cons(head(l), tail(l)) ≈ l ∨ l ≈ nil

Structurally identical axioms have been mentioned in [13]. The satisfiability of the list
axioms is well known. It can also be determined automatically. For example, the theo-
rem prover Beagle [3] in a complete setting and after adding the axioms ∃ dZ . head(nil) ≈
d and tail(nil) ≈ nil, terminates on AXLIST in a saturated state. Because the axioms sat-
isfy a certain sufficient completeness requirement, this provides a proof of satisfiability.
In particular, the list axioms are satisfied in the interpretation ILIST with the domain
DLIST = LIST, the finite length lists (over integers), which we assume to be freely
generated by the constructors nil and cons(·, ·), and the obvious interpretation for the
ΣLIST-operators.

We now turn to the templates for definitions.

Relations. Let Σ+ be an expansion of ΣLIST and P < Σ+ a predicate symbol with arity
Z × LIST. Let DefP a formula of the form

∀ kZ lLIST . P(k, l)⇔
l ≈ nil ∧ B[k] (P1)
∨ ∃ hZ tLIST . l ≈ cons(h, t) ∧C[k, h, t] (P2)
∨ ∃ hZ tLIST . l ≈ cons(h, t) ∧ D[k, h, t] ∧ P(k, t) (P3)

where B is a Σ+-formula of arity Z, and C and D are Σ+-formulas of arity Z×Z×LIST.

Lemma 3.1. Let D be a Σ+-domain with DLIST = LIST. Then DefP is an admissible
definition of P wrt. Σ+ and D.

Proof. Briefly, the proof proceeds by constructing a canonical (minimal) model of the
⇐-direction of DefP, which is also always a model of the ⇒-direction. From a logic-
programming angle, the user could as well give only the⇐-direction of DefP, then the
system can add the completion (⇒-direction) for disproving purposes.

We assume Interpretations include a valuation component for variables. We write
I[x 7→d] to indicate an update for the variable x to the domain element d.

Let I be a Σ+-interpretation with domain D. We have to show that I can be expanded
to a (Σ+ ∪ {P})-interpretation I′ = I ∪ I(P), such that I′ |= DefP.

The definition of I(P) utilizes transfinite induction, and we need several orderings
for that. Let �Z be a (any) well-ordering on the integers and � its extension to the
quasi-lexicographic ordering on LIST.1 Because �Z is well-founded and total, � is
well-founded and total, too (this is well-known). Let � denote the strict subset of �.

Next, we define an ordering �P on pairs over integers and finite lists over integers
as (k1, l1) �P (k2, l2) iff l1 � l2 or else l1 = l2 and k1 �Z k2. Notice that �P is also total
and well-founded. Let �P denote the strict subset of �P.

Let (k, l) ∈ Z × LIST be chosen arbitrarily. We need to decide whether to include
(k, l) in I′(P) or not, that is, whether to make I′(P)(k, l) true or false, respectively. We
do this by evaluating the body of DefP, which resorts to evaluating smaller elements
only.

More formally, for a given pair (k, l) we define subsets εP(k, l) and I(P)(k,l) of Z ×
DLIST. Assume that εP(k′, l′) has already been defined for all (k′, l′) ∈ Z × DLIST with
(k, l) �P (k′, l′). Where I(P)(k,l) =

⋃
(k,l)�P(k′,l′) εP(k′, l′) define

εP(k, l) = {(k, l)} if



l = nil and I[k 7→k] |= B[k] or

l = cons(h, t) and I[k 7→k,h 7→h,t 7→t] |= C[k, h, t],
for some h ∈ Z and t ∈ DLIST or

l = cons(h, t), I[k 7→k,h 7→h,t 7→t] |= D[k, h, t] and
(I ∪ I(P)(k,l))[k 7→k,t 7→t] |= P(k, t),

for some h ∈ Z and t ∈ DLIST

In all other cases define εP(k, l) = ∅. Finally define I(P) =
⋃

(k,l) εP(k, l).
Notice that the conditions in the definition of εP(k, l) are all well-defined. In partic-

ular, we have (k, l) �P (k, t) in the last case. With the definition of I(P) it is straight-
forward to show (I ∪ I(P)) |= DefP (assume a �P-minimal pair (k, l) under which DefP

evaluates to false in I ∪ I(P) and lead this to a contradiction). ut

Example. Let inRange : Z × LIST be a predicate symbol. Consider the extension of
AxLIST with the following (admissible) definition for P (the free variables are universally
quantified with the obvious sorts).

inRange(n, l)⇔ l ≈ nil ∨ ∃ hZ tLIST . (l ≈ cons(h, t) ∧ 0 ≤ h ∧ h < n ∧ inRange(n, t))
1 A quasi-lexicographic ordering, or shortlex ordering, compares firstly lists by their length, so

that nil comes first, and then compares lists of the same length lexicographically.

This example comes from a case study with the first-order logic model checker from [1].
The inRange predicate is used there to specify lists of “ordered items” handled in a
purchase order process, which must all be in a range 0..N − 1, for some N ≥ 0. The
other examples in this paper are contrived.

The following table lists some sample problems together with the runtimes (in sec-
onds) needed to disprove them with the provers mentioned.2

Problem Beagle Spass+T Z3
inRange(4, cons(1, cons(5, cons(2, nil)))) 6.2 0.3 0.2
n > 4⇒ inRange(n, cons(1, cons(5, cons(2, nil)))) 7.2 0.3 0.2
inRange(n, tail(l))⇒ inRange(n, l) 3.9 0.3 0.2
∃ nZ lLIST . l 0 nil ∧ inRange(n, l) ∧ n − head(l) < 1 2.7 0.3 0.2
inRange(n, l)⇒ inRange(n − 1, l) 8.2 0.3 >60
l 0 nil ∧ inRange(n, l)⇒ n − head(l) > 2 2.8 0.3 0.2
n > 0 ∧ inRange(n, l) ∧ l′ = cons(n − 2, l)⇒ inRange(n, l′) 4.5 5.2 0.2

We remark that none of these problems are solvable by using any of the provers to
directly establish consistency of the axioms, definitions and the conjecture. Even if
only the⇐-direction is used, Z3 and Spass+T do not terminate. Because the universally
quantified variables in the conjectures lead to Skolem constants, the resulting clause set
is no longer sufficiently complete (see [3]), and a finite saturation obtained by Beagle
does not allow one to conclude satisfiability.

Functions. Let Σ+ ⊇ ΣLIST be a signature, s ∈ sorts(Σ) and f < Σ+ a function symbol
with arity Z×LIST 7→ s. Let Def f be a set of (implicitly) universally quantified formulas
of the form below, where k and h are Z-sorted and t is LIST-sorted:

f (k, nil) ≈ b[k]⇐ B[k] (f0)
f (k, cons(h, t)) ≈ c1[k, h, t, f (k, t)]⇐ C1[k, h, t, f (k, t)] (f1)

...

f (k, cons(h, t)) ≈ cn[k, h, t, f (k, t)]⇐ Cn[k, h, t, f (k, t)] (fn)

where B is a Σ+-formula of arity Z, each Ci is a Σ+-formula of arity Z×Z× LIST× s, b
is a Σ+-term of arity Z 7→ s, and each ci is a Σ+-term with arity Z × Z × LIST × s 7→ s.

Lemma 3.2. Let D be a Σ+-domain with DLIST = LIST. If for all 1 ≤ i < j ≤ n the
formula

∀ kZ hZ tLIST xs .Ci[k, h, t, x] ∧C j[k, h, t, x]⇒ ci[k, h, t, x] ≈ c j[k, h, t, x]

is valid in all Σ+-interpretations with domain D then Def f is an admissible definition
of f wrt. Σ+ and D.

2 Here and below, Beagle has been run with “cautious simplification on” and “ordinary vari-
ables on”; Z3, version 4.3.1 with the options ”pull-nested-quantifiers”, “mbqi” and “macro-
finder” on; SPASS+T used Yices as a theory solver. All timings obtained on reasonable
recent computer hardware. The input problems are available on the Beagle website http:
//users.cecs.anu.edu.au/˜baumgart/systems/beagle/.

http://users.cecs.anu.edu.au/~baumgart/systems/beagle/
http://users.cecs.anu.edu.au/~baumgart/systems/beagle/

Proof. The proof of Lemma 3.2 uses the same model construction technique as the
proof of Lemma 3.1. Totality is obtained by interpreting f on an argument tuple such
that none of the conditions f0 to fn holds true by an arbitrary domain element. The
condition in the lemma statement enforces right-uniqueness (functionality). ut

The condition in the statement of Lemma 3.2 is needed to make sure that all cases (fi)
and (f j) for i , j are consistent. For example, for f(cons(h, t)) ≈ 1 ⇐ h ≈ 1 and
f(cons(h, t)) ≈ a ⇐ h ≈ 1 + a this is not the case. Indeed, ∀ hZ . h ≈ 1 ∧ h ≈ 1 + a ⇒
1 ≈ a is not valid. Notice that establishing the condition is a theorem proving task,
which fits well with our method. In the examples below it is trivial.

Example. Let length : LIST 7→ Z, count : Z × LIST 7→ Z, append : LIST × LIST 7→
LIST and in : Z×LIST be operators. Consider the extension of AxLIST with the following
(admissible) definitions, in the given order.

length(nil) ≈ 0 append(nil, l) ≈ l

length(cons(h, t) ≈ 1 + length(t) append(cons(h, t), l) ≈ cons(h, append(t, l))

count(k, nil) ≈ 0

count(k, cons(h, t)) ≈ count(k, t)⇐ k 0 h in(k, l)⇔ count(k, l) > 0

count(k, cons(h, t)) ≈ count(k, t) + 1⇐ k ≈ h

Here are some sample conjectures together with the times for disproving them.3

Problem Beagle Spass+T Z3
length(l1) ≈ length(l2)⇒ l1 ≈ l2 4.3 9.0 0.2
n ≥ 3 ∧ length(l) ≥ 4⇒ inRange(n, l) 5.4 1.1 0.2
count(n, l) ≈ count(n, cons(1, l)) 2.5 0.3 >60
count(n, l) ≥ length(l) 2.7 0.3 >60
l1 0 l2 ⇒ count(n, l1) 0 count(n, l2) 2.4 0.8 >60
length(append(l1, l2)) ≈ length(l1) 2.1 0.3 0.2
length(l1) > 1 ∧ length(l2) > 1⇒ length(append(k, l)) > 4 37 >60 >60
in(n1, l1) ∧ ¬in(n2, l2) ∧ l3 ≈ append(l1, cons(n2, l2))⇒

count(n, l3) ≈ count(n, l1)
>60 (6.2) 9.1 >60

4 Arrays

The signature ΣARRAY consist of sorts ARRAY and Z and the operators read : ARRAY×
Z 7→ Z, write : ARRAY × Z × Z 7→ ARRAY, and init : Z 7→ ARRAY. The array axioms
AXARRAY follow:

read(write(a, i, x), i) ≈ x read(a, i) ≈ read(b, i)⇒ a ≈ b

read(write(a, i, x), j) ≈ read(a, j) ∨ i ≈ j read(init(x), i) ≈ x

3 The time of 6.2 seconds for the last problem is with “ordinary variables off”.

With the axiom read(init(x), i) ≈ x, a term init(t) represents an array that is initialized
everywhere with t. As with the list axioms, the satisfiability of the array axioms can be
established automatically with the Beagle prover by means of a finite saturation.

Relations. Let Σ+ ⊇ ΣARRAY be a signature and P < Σ+ a new predicate symbol with
arity Z × ARRAY. Let DefP be a formula of the form ∀ kZ xARRAY . P(k, x) ⇔ C[k, x],
where C is a Σ+-formula with arity Z × ARRAY.

This is a simpler definition than that for LIST, as it does not admit recursion with
the new operator P. Of course, this is balanced by the strength of the read operator for
arrays. Using it we can easily define useful predicates without recursion. For example
the sorted predicate defines arrays in which the first N elements are sorted in increasing
order: sorted(a, n)⇔ (0 ≤ i ∧ i < j ∧ j < n)⇒ read(a, i) ≤ read(a, j).

Lemma 4.1. DefP is an admissible definition of P wrt. Σ+ and D.

Proof. This must be so, since for any Σ+-interpretation I over D and any x, k, I provides
an evaluation of φ[k, x] and so the obvious interpretation I(P) for Σ+ ∪ {P} can be
defined. ut

Functions. Let Σ+ ⊇ ΣARRAY be a signature, s ∈ sorts(Σ) and f < Σ+ a function symbol
with arity Z × ARRAY 7→ s. Let Def f be a set of (implicitly) universally quantified
formulas of the form below, where k is Z-sorted, a is ARRAY-sorted and y is s-sorted:

f (a, k) ≈ y⇐ C1[a, k, y] (f1)
...

f (a, k) ≈ y⇐ Cn[a, k, y] (fn)

where each Ci is a Σ+-formula of arity ARRAY × Z × s. Note the differences between
the LIST version and this definition. Here we do not allow recursion- each Ci is strictly
over the signature Σ+ and, instead of a term ci we have a universally quantified variable
y as the evaluation of f . While some functions on arrays are difficult or impossible
to express in this way (for example, the sum of the first N elements of an array), many
other interesting functions fit this framework. Consider the function rev : ARRAY×Z 7→
ARRAY that returns a copy of an array with the order of the first N elements reversed:

rev(a, n) ≈ b⇐ ∀ iZ . 0 ≤ i ∧ i < n ∧ read(b, i) ≈ read(a, n − (i + 1))
∨ ((0 > i ∨ i ≥ n) ∧ read(b, i) ≈ read(a, i))

Lemma 4.2. Let D be a Σ+-domain. If, for all 1 ≤ i ≤ j ≤ n the formula

Ci[a, k, y1] ∧C j[a, k, y2]⇒ y1 ≈ y2

is valid in all Σ+-interpretations with domain D, then Def f is an admissible definition
of f wrt. Σ+ and D.

Proof. Assume that the above condition is met and that I is a Σ+ interpretation over
D. For this particular I(f), let f be a function which maps a tuple of domain elements

x to a domain element y of the correct sort such that I |= Ci[x, y] for some i or to
some arbitrary d ∈ D of the correct sort if no such i and y exist. Since each Ci is a Σ+

formula, it has an evaluation in I and by assumption any satisfying y is unique up to
sort equivalence. Where an arbitrary element is selected no contradiction arises since
I(f) 6|= f (x) = d ⇒ C[x, d]. Thus, Def f is an admissible definition for f . ut

Examples. Let the operators inRange : ARRAY × Z × Z, max, distinct be defined as
follows (sorted and rev are as defined previously):

inRange(a, r, n)⇔ distinct(a, n)⇔

∀ i . (n ≥ i ∧ i ≥ 0) ∀ i, j . (n > i ∧ n > j ∧ j ≥ 0 ∧ i ≥ 0)

⇒ (r ≥ read(a, i) ∧ read(a, i) ≥ 0) ⇒ read(a, i) ≈ read(a, j)⇒ i ≈ j)

max(a, n) ≈ w⇐ ∀ i . (n > i ∧ i ≥ 0)⇒ w ≥ read(a, i)) ∧ (∃ i . n > i ∧ i ≥ 0 ∧ read(a, i) ≈ w)

Here are some sample conjectures together with the times for disproving them. 4

Note that u indicates termination with a status “unknown”.

Problem Beagle Spass+T Z3
n ≥ 0⇒ inRange(a,max(a, n), n) 1.40 0.16 u
distinct(init(n), i) 0.98 0.15 u
read(rev(a, n + 1), 0) = read(a, n)) >60 >60(0.27) >60
distinct(a, n)⇒ distinct(rev(a, n)) >60 0.11 0.36
∃ nZ .¬sorted(rev(init(n),m),m) >60 0.16 u
sorted(a, n) ∧ n > 0⇒ distinct(a, n) 2.40 0.17 0.01

In addition, SPASS+T, Beagle and Z3 were used to prove the functionality condition
in Lemma 4.2 for the max and rev operators. All provers verified the condition for max
but only SPASS+T and Z3 verified that for rev.

5 Conclusions

The aim of this work is to provide a reasonably expressive language (in practical terms)
that allows one to specify properties of data structures under consideration, like lists
and arrays, and that supports disproving by existing theorem provers. The main idea
is to capitalize on the strengths of these systems in theorem proving and use these for
solving (appropriately phrased)disproving problems, instead of relying on their model-
building capabilities. The latter, direct approach does not work well in the context of
(integer) background theories: both saturation based and SMT methods are inherently
incomplete, and so non-provability does not entail non-validity. See [3] for further de-
tails under which complete theorem proving is possible.

We gave some example problems and tested them with the theorem provers SPASS+T,
Beagle and Z3. These examples are all non-solvable with the direct approach and solv-
able with our approach. All of them could be solved, and in short time. In general, the

4 SPASS+T used Yices as a theory solver. The time of 0.27s in the third problem is obtained by
excluding the inRange definition.

first-order solvers Beagle and SPASS+T worked most reliably, possibly thanks to han-
dling quantified formulas natively instead of relying solely on instantiation heuristics.
On the other hand, it is easy to find examples where our method does not work. A sim-
ple example is the conjecture ∃ nZ lLIST . length(cons(n, l)) ≈ 0. (The direct approach
does not work either, e.g., Beagle does not find a finite saturation.)

Acknowledgements. We thank the reviewers for their helpful comments.

References

1. M. D. Andreas Bauer, Peter Baumgartner and M. Norrish. Tableaux for verification of data-
centric processes. In D. Galmiche and D. Larchey-Wendling, eds., TABLEAUX, 2013, LNAI
8123, pp. 28–43. Springer.

2. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-based satis-
fiability procedures. ACM Trans. Comput. Log., 10(1), 2009.

3. P. Baumgartner and U. Waldmann. Hierarchic superposition with weak abstraction. In M. P.
Bonacina, ed., CADE-24, 2013, LNAI 7898, pp. 39–57. Springer.

4. A. R. Bradley, Z. Manna, and H. B. Sipma. Whats decidable about arrays? In VMCAI, 2006,
pp. 427–442. Springer.

5. K. Claessen and A. Lillieström. Automated inference of finite unsatisfiability. J. Autom.
Reasoning, 47(2):111–132, 2011.

6. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for extensions of
the theory of arrays. Ann. Math. Artif. Intell., 50(3-4):231–254, 2007.

7. C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in verification. In
Ramakrishnan and Rehof [14], pp. 265–281.

8. D. Kapur and C. G. Zarba. A reduction approach to decision procedures, 2005.
9. C. Lynch and B. Morawska. Automatic decidability. In LICS, 2002, pp. 7–. IEEE Computer

Society.
10. S. McPeak and G. C. Necula. Data structure specifications via local equality axioms. In

K. Etessami and S. K. Rajamani, eds., CAV, 2005, LNCS 3576, pp. 476–490. Springer.
11. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Ramakrishnan and Rehof

[14], pp. 337–340.
12. L. M. de Moura and N. Bjørner. Generalized, efficient array decision procedures. In FMCAD,

2009, pp. 45–52. IEEE.
13. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. Journal

of Association for Computer Machinery, 27(2), 1980.
14. C. R. Ramakrishnan and J. Rehof, eds. TACAS, 2008, LNCS 4963. Springer.
15. P. Rümmer and M. A. Shah. Proving programs incorrect using a sequent calculus for java

dynamic logic. In Y. Gurevich and B. Meyer, eds., TAP, 2007, LNCS 4454, pp. 41–60.
Springer.

16. G. S. S. Schulz, K. Claessen, and P. Baumgartner. The TPTP typed first-order form with
arithmetic. In N. Bjoerner and A. Voronkov, eds., LPAR-18, 2012, LNAI 7180. Springer.

17. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs. In E. Yahav,
ed., SAS, 2011, LNCS 6887, pp. 298–315. Springer.

18. U. Waldmann and V. Prevosto. Spass+t. In S. S. Geoff Sutcliffe, Renate Schmidt, ed.,
ESCoR, Seattle, WA, USA, 2006, CEUR Workshop Proceedings, pp. 18–33.

	Proving Infinite Satisfiability
	Peter Baumgartner and Joshua Bax

