
Anomaly Detection in a Boxed Beef Supply Chain

PETER BAUMGARTNER, Data61|CSIRO, Australia
ALEXANDER KRUMPHOLZ, Data61|CSIRO, Australia

An approach to simulating and analysing sensor events in a boxed beef supply chain is presented. The
simulation component reflects our industrial partner’s transport routes and parameters under normal and
abnormal conditions. The simulated transport events are fed into our situational awareness system for detecting
temperature anomalies or potential box tampering. The situational awareness system features a logic-based
modeling language and an inference engine that tolerates incomplete or erroneous observations. The paper
describes the approach and experimental results in more detail.

CCS Concepts: • Computing methodologies → Model verification and validation; Modeling and
simulation; Model development and analysis; Discrete-event simulation.

Additional Key Words and Phrases: situational awareness, logic programming, knowledge-based approach

1 INTRODUCTION
To boost the value of exports and secure new agricultural markets, Australia needs to grow its
high-value markets where premiums are paid for quality, safety and provenance. This requires
building robust supply chains that deliver products global consumers can trust and enhancing
product integrity across the Australian meat industry [8]. CSIRO’s Data61 recent multidisciplinary
project Supply Chain Integrity Initiative1 has developed technologies that validate claims about the
origin of a product and its authenticity, among others.

In this paper, we report on the methods and results of our sub-project on event inference. Current
industry challenges include timely management of recall for food safety issues, fraud detection and
monitoring compliance with cold chain requirements. The event inference sub-project addresses
this challenge by providing tool support for situational awareness in the red meat supply chain
with a focus on transport. The technology developed aims to improve visibility of goods as they
move through the supply chain and detect anomalies using rule-based analytics.
Our approach depends on the availability of sensor data sampling transport parameters. A

neighbouring sub-project developed a novel technology that uses vibration energy harvesting
for both sensing and generating power. This technology was trialed in collaboration with the
Australian company BeefLedger [1] to collect data from frozen meat transport routes in south-east
Queensland. The sensors monitor motion, temperature, and location using GPS.

Our approach combines such sensor data with domain knowledge on how goods move through
the supply chain. This makes it possible to more accurately identify anomalies, missing data and
fraud than is possible in isolation. We developed a situational awareness model and applied it to a
synthetic data set based on the BeefLedger frozen meat use case. The model was able to identify
anomalies with very high accuracy and capability to distinguishing between different types of
anomalies. Such a model can provide plausible explanations in the context of real world events to
improve tracking and managing anomalies in the supply chain.
Our modelling language is a logical specification language tailored for situational awareness

applications [3]. It succeeds an earlier approach based on state automata [5] and is related to
semantic approaches for the IoT [12] such as contextual querying (see e.g. [9]), ontological models
for (EPCIS) supply chains [13], logic-based event recognition [2] and stream reasoning [6], among

1See https://algorithm.data61.csiro.au/advancing-supply-chain-integrity-in-australian-agriculture-workshop/.

This research is supported by the Science and Industry Endowment Fund.

1

https://algorithm.data61.csiro.au/advancing-supply-chain-integrity-in-australian-agriculture-workshop/

Peter Baumgartner and Alexander Krumpholz

others. It contributes novel language features and reasoning capabilities, which we exploit in this
paper for a situational awareness case study.

2 SIMULATOR AND DATA
BeefLedger [1] specializes in providing a complete meat supply chain from producer to (interna-
tional) consumers. In our project we focus on a small segment of the chain, where boxed beef
products are transported within Brisbane, Queensland. Our situational awareness model (in Sec-
tion 4 below) requires as input corresponding transport parameters in the form of way points,
trip durations, cooling requirements and concrete transport sensor data. As concrete sensor data
collection was not available at the time of our developments, we wrote a simulator that synthesizes
reasonably realistic sensor data. In our experiments we used exclusively that data instead.
We wrote the simulator with flexibility in mind. It makes it easy to generate scenarios for

exercising several types of anomalies and under random perturbations for simulating real-world
sensor behaviour. It is controlled by parameters such as way points and number of boxes to be
transported, and commands for describing how the transport evolves in terms of box and truck
sensor data. In the following we describe the simulator and the generated data in some more detail.
See Figure 1 for reference.
The simulated data is based on a BeefLedger route from Morningside via Woolloongabba to

Annerley. The route is given in terms of warpaint latitudes and longitudes in the form of a Google
Earth kml-file. (It is easy to make with the help of the Google Earther route planner.) In the first
step, the kml-file is processed by a utility directions_2_csv, which is controlled by parameters to
set the start time and speed of the truck, a list of stopping times and the frequency of GPS location
events to be created. Based on this configuration directions_2_csv outputs a csv-file2 of randomized
events that match the specification.

In the second step, event files for a specified number of boxes are generated based on the trucks
event file and further configuration parameters. These event files are then manipulated to derive
specific scenarios. For that, we wrote (in Scala) a set of library programs, each providing a specific
functionality delivered through pipe-like input/output. (The library programs are listed at the
bottom of Figure 1.) In broad terms, the functionalities involve the manipulation of location and
temperature sensor data over time for given subsets of sensors, and the simulation of sensor
dropouts. The library programs are orchestrated by the Event Simulator Script (a shell script)
which creates box and truck event csv files for concrete transport scenarios.

User

Console

Google Earth

Locations

directions.kml Event
Simulator

Script

truck-directions-
to-trivial-box-

moves

create-parked-
records

append-event-
file

truck.csv

box1-n.csv Web GUI
Fusemate

directions_2_csv

kml
csv csv

remove-events
change-box-

mode
change-box-

temp
clean-event-file

Fig. 1. Data flow through the event simulator.

2csv: “comma separated values”

2

Anomaly Detection in a Boxed Beef Supply Chain

With the help of the simulator, we created four scenarios reflecting various anomalies:
Normal. This is the baseline scenario. Ten boxes are loaded onto the truck at the storage

site at Morningside. The truck moves to Woolloongabba where five boxes are delivered,
put into the local cool room and sensors switched off. The rest of the boxes continue to
the final destination at Annerley, where they are unloaded and put into the cool room.
The temperature events of the box sensors are considered “normal”: all boxes are properly
cooled in the truck; at Woolloongabba, the cargo doors are opened and all boxes slightly
rise in temperature; as the cargo doors are closed, the temperature of the boxes inside fall
again, but the temperature of the boxes at the loading dock rise further and faster until they
are placed in the cool room. Similar events can be observed at Annerley.

Latecool. In this scenario, the boxes unloaded at Woolloongabba are not immediately put
into the cool room and their temperature consequently raise too high.

Missingbox. In this scenario, the sensor of one box stops to send data and it never reaches
its destination.

Cabinbox. In this scenario one box’ temperature raises after the first stop at Woolloongabba
as it has been taken into the driver cabin. The box reaches Annerley, where it is cooled down
along with the other boxes after unloading. Figures 2 shows the change in temperature of
the different groups of boxes over time.

Fig. 2. Cabinbox scenario: In contrast to the normal scenario, one box is not cooled properly on the way to
Annerley (blue curve). Its temperature raises to 15ºC, which may indicate that it travelled in the driver cabin.
Once the truck arrives at the destination, the box temperature climbs as it is now outside together with the
other boxes. Once in the freezer room all temperatures fall again towards -20ºC.

3 FUSEMATE SITUATIONAL AWARENESS SYSTEM
We used our Fusemate situational awareness system [3] for domain modelling. At its core, Fusemate
is a logic programming system that provides the user with a knowledge representation formalism
for describing state transitions with if-then rules. It follows the answer-set paradigm [7] where
rules are processed in a bottom-up way for computing logical models of a given program and (in
our case time stamped) input data. Fusemate’s inference engine supports reasoning with erroneous
or incomplete data by maintaining multiple possible logical models at a time. The logical models
can be refined or revoked in light of new data arriving, by means of a belief revision operator [3].
Fusemate has (also) been designed with re-usability and strong external interfaceability in mind
(e.g., databases, XML/JSON, web servers) [4].

Specifically for situational awareness applications, Fusemate processes a stream of events and
proposes plausible explanations for the current state of the world (Fig 3). The explanations are
meant to be semantically rich and meaningful to a human decision maker. For that, Fusemate needs
to be equipped with a model that describes structural, causal and temporal relationships of the
domain under consideration.

3

Peter Baumgartner and Alexander Krumpholz

Fig. 3. Fusemate situational awareness system architecture.

In this project we instantiated Fusemate with a rule model for traceability and anomaly detection.
Each rule contributes a tiny fragment of domain knowledge. For example (if-then rules are of the
form conclusions :- conditions):

EnRouteToLoc(time, since, id, from, to) :-

Leg(from, to), TruckEvent(time, at id), LeftLoc(since < time, id, from),

NOT (EntersLoc(t, id, to), since < t ∧ t < time)

This rule roughly says: At any time “time”, if a given truck “id” has left most recently at time “since”
a location “from”, and there is a travel leg between “from” and “to” and the truck has not entered
location “to” in between “since” and “time”, then the truck is en route to location “to”.

4 FUSEMATE BEEFLEDGER MODEL
Developing the full rule model for the BeefLedger transport chain was a major activity and outcome
of this project. An in-depth description is beyond the scope of this paper, but we can provide an
overview in terms of five main categories:3

Rules category Summary description or example Nr of rules
Fixing the event stream Deal with sensor dropouts 9

Event Calculus
General
Domain specific

Framework for actions and their consequences
E.g. “loading” a box causes “on truck”

6
13

Adding actions in retrospect Provides explanations for observations
E.g., if box is no longer close to truck and truck is at
warehouse then action was “unload”

5

Domain specific notifications
Info
Warn
Anomaly

E.g., “truck left Morningside”
E.g., “box temperature high for one minute”
E.g., “box disappeared during transport from
Morningside to Annerley”

7
5
5

Domain agnostic anomaly E.g., “box 10 disappeared for 10 minutes” 2

Other 6

3The Fusemate system including the model and data sets described in this paper can be downloaded at https://bitbucket.
csiro.au/users/bau050/repos/fusemate/.

4

https://bitbucket.csiro.au/users/bau050/repos/fusemate/
https://bitbucket.csiro.au/users/bau050/repos/fusemate/

Anomaly Detection in a Boxed Beef Supply Chain

Rules for fixing the event stream. These rules retrospectively add events for recovering sensor
dropouts if context supports it. As an example, there is a rule for recovering the GPS location of
a box at time 𝑡 that applies if the box is known to be on the truck at time 𝑡1 shortly before 𝑡 and
time 𝑡2 shortly after 𝑡 . The rule then infers the GPS location of the box at time 𝑡 to be the same as
the truck location at that time 𝑡 (if available). The rationale is that nothing out of the ordinary can
have happened to the box between 𝑡1 and 𝑡2.

In our experiments we found that even if at a small rate, event recovery is important for avoiding
false positives, such as mistaking a brief sensor dropout for a box tampering event.

Event Calculus. The Event Calculus is a general logical language for representing and reasoning
about actions and their consequences [11]. We encoded it with Fusemate rules and applied it to our
domain objects of interest, such as trucks, boxes and named locations (warehouses). For example:

Initiates(time, Unload(boxId, truckId), BoxAtLoc(boxId, loc)) :-

Box(boxId), HoldsAt(time, AtLoc(truckId, loc))

This rule expresses the “obvious” fact that, if a box is unloaded (the action) from a truck that is
at a given location at a give time, then the box is at that location at that time (the consequence).
The Initiates predicate has the effect that the BoxAtLoc consequence becomes true if a concrete
event Happens(time, Unload(boxId, truckId)) happens (it remains true until a corresponding
“Terminates” invalidates it). The following table summarizes our specific Event Calculus rules:

Action Consequences Real-world event
Load(boxId, truckId)

Unload(boxId, truckId)

On(boxId, truckId)

BoxAtLoc(boxId, loc)

Box movements on/off a truck

LeftLoc(truckId)

EntersLoc(truckId)

EnRouteToLoc(truckId, from, to)

TruckAtLoc(truckId, loc)

Truck movements in terms of named
locations (warehouses)

SwitchOff(boxId)

HighTempOn(boxId)

HighTempOff(boxId)

SwitchedOff(boxId)

HighTemp(boxId)

Box sensors: switch on/off; high temperature
periods

The actions and their consequences in the table above are the main device for explaining
Fusemate’s plausible current state computation to the user. Such explanations become even more
relevant when actions are inferred by Fusemate rules, as per the following.

Rules for adding actions in retrospect. While Event Calculus actions can be part of an event
stream, none were part of the BeefLedger data sets. In order to keep the experiment self-contained
we defined rules for inferring such actions from the given events. These rules work similarly
to the “rules for fixing the event stream” above. A good example is a rule that concludes a
Happens(time, Unload(boxId, truckId)) action of a box from a truck if the GPS coordinates of a
box and a truck have become sufficiently distant while the box was Initiated to be on the truck.

Rules for domain specific notifications. Wewrote domain specific rules that summarize informative
findings, warnings and anomalies in an informal way. They build on the Event Calculus predicates
above. For example:

Anomaly(time, s"[MissingBox] Box $boxId is not known to be on Truck $truckId on

arrival at $toLoc, however truck left $fromLoc with

box $boxId on board at $prev") :-

Happens(time, EntersLoc(truckId, toLoc)),

Happens(prev < time, LeftLoc(truckId, fromLoc)),

Leg(fromLoc, toLoc), HoldsAt(prev, On(boxId, truckId)),

NOT(HoldsAt(time, On(boxId, truckId)))

5

Peter Baumgartner and Alexander Krumpholz

The anomaly-rule above applies if a truck completed travelling a certain leg that started with a
certain box loaded on it and ended at the destination without evidence of the box still on it. (That
could be explained by, e.g., an Unload action along the trip.)

Other rules under this heading deal with box temperature anomalies and box movement anom-
alies (see below for more details).

Rules for domain agnostic anomalies. These rules are generic and can be applied in many domains.
The idea is to identify clusters of “similar” objects and propose anomalies via cluster outliers. This
scheme is parameterized only in a similarity measure and a feature distance function. There are
two kinds of outliers:

Static outliers. Given a cluster of similar objects, a static outlier is one of these objects
that deviates from the majority of the objects with respect to certain feature values (a
nearest-neighborhood technique).
In our concrete case, we defined similarity of boxes by being close to each other at the
same time (all the boxes loaded on a truck at a given time, for instance). As a feature value
we used the box temperature. This is enough to identify the “cabinbox” scenario above as
anomalous.

Dynamic outliers. This notion of outlier detection monitors the development of clusters
over time. A dynamic outlier is, in the BeefLedger domain, a box disappearing from a
cluster that reappears in the same cluster sometime later. In practice, this could indicate
box tampering.

5 USER EXPERIENCE
Fusemate is a research prototype. The logic programs can be made with any text editor, and data
can be provided in CSV, XML or JSON. Input data can be provided in a bunch or streamed in
real-time (or faster) to a running Fusemate server. Providing and maintaining infrastructure around
Fusemate is straightforward, thanks to Fusemate being implemented as an embedding into a full
fledged programming language, Scala [10]. Fusemate’s output goes to the terminal, see Figure 4.
For this project, we implemented a web-based tool for the visualization of Fusemate runs and

state analysis, see Figure 5. To allow for events to be displayed immediately when they occur,
we designed the system as a Node.js web service that listens for event data, log messages and
other calls. Incoming data is then being passed on to a client running in the user’s web browser
and the visualization is thereby updated continuously as time progresses. The client uses a leaflet
map component and is implemented using the MERN stack. The interface is useful for visually
correlating the Fusemate output with the locations at which they occur.

6 EXPERIMENTAL RESULTS
We applied Fusemate with the rule set in Section 4 to our five data sets in Section 2 . The runtime
in each case is about 30sec. The purpose of our experiments was to evaluate if Fusemate is able to
compute the expected warnings and anomalies and without too many false positives/negatives.

Six types of anomalies. The Fusematemodel distinguishes between six different types of anomalies,
which are the following::

MissingBox: a box was loaded onto the truck on departure but did not arrive at a waypoint
or destination.

BoxHighTemp: the temperature of a box exceeds a threshold for a prolonged time.
BoxMove: a box is moved in an unexpected way, see “WP2.1 box movements” below.
GPSDead: a box ceases emitting GPS and temperature events.

6

Anomaly Detection in a Boxed Beef Supply Chain

Fig. 4. Fusemate log output for the synthetic ”missingbox” example. It shows most aspects of the Fusemate
modelling explained above, including the inferred actions as plausible explanations for the current system
state. The example is slightly abridged for readability, by omitting 7 of the 10 boxes. With the full set of 10
boxes, there are two false positive anomalies which are due to the “fixing the event stream rules” not being
effective.

7

Peter Baumgartner and Alexander Krumpholz

Fig. 5. Web-based visualisation of Fusemate for boxed meat transport experiments. Depicted is the truck
route (top left), box temperature graph (below map), Fusemate conclusions regarding the current position of
the truck and the boxes loaded (right), and a console log with updates on the current model over time in
terms of actions, warnings and alerts (bottom left).

BoxClusterDisappear: see “rules for domain agnostic anomaly detection” above.
BoxClusterTemp: see “rules for domain agnostic anomaly detection” above.

The following table lists how often these anomalies were issued. Each number given is the total
over all 10 boxes for a given anomaly type described in the first column Numbers in parenthesis
are the correct numbers.

Scenario Missi
ng

Box
Box

Hig
h

Tem
p Box

Move

GP
SDe

ad
Box

Clu
ste

r

Dis
app

ear Box
Clu

ste
r

Tem
p

Normal 0 (0) 0 (0) 0 (0) 0 (0) 2 (0) 0 (0)
Latecool 0 (0) 14 (14) 0 (0) 0 (0) 2 (0) 0 (0)
Cabinbox 0 (0) 13 (13) 4 (4) 0 (0) 3 (1) 6 (6)
Missingbox 1 (1) 0 (0) 0 (0) 0 (0) 2 (0) 0 (0)

The results confirm a strong correlation between the type of anomalies detected and the test case
designed to exercise them. The BoxClusterTemp anomaly in the cabinbox scenario is the expected
result, as the box heats up but is still in proximity to the other boxes on the truck.

8

Anomaly Detection in a Boxed Beef Supply Chain

The BoxClusterDisappear anomalies in the cabinbox scenario are false positives, with one
exception for the cabinbox scenario. These could be avoided by tuning parameters. No other false
positives were issued. In summary, of the 47 reported anomalies, 45 were correct (95%).

Box movement anomalies. Of particular interest to us was to integrate box movement events into
the Fusemate modelling. Here, a “box movement” is a spontaneous change of a box’s orientation,
which may happen due to, e.g., the box falling from a stack of boxes, or the box being moved around
by the driver.
Our interest is motivated by novel techniques developed in a neighbouring Data61 project for

detecting such movements. This capability is actually a side effect of utilizing piezo sensors for
harvesting electric energy from vibration movement. With machine learning techniques, sensor
movements are classified as anomalous (or not) by comparing transport trips with historical ones.

With Fusemate, we took a complementary approach which allows us to classify box movements
based on domain knowledge and the context conditions they occur in. This way we achieve differ-
entiated explanations of the movements that are difficult to achieve by history-based assessment.
For example, a box movement in the context of the box being unloaded from the truck is likely to
be innocuous; it may be even expected, instead of constituting an anomaly, proper.

We wrote Fusemate rules for analysing box movements in context of the BeefLedger scenarios.
These rules classify each box movement into a severity level “Info”, “Warn” or “Anomaly”. They
conclude one of the following four categories:

Case (1) - Info: DuringUnload: the box was moved during unloading at a known location
(e.g. warehouse)

Case (2) - Info: AtLoc: the box was moved at a known location
Case (3) - Warn: OnTruckAtLock: the box was moved while on the truck, and the truck was

at a known location.
Case (4) - Anomaly: Something else happened. The rationale is that movements during

transport should not happen. For example, a box fell down from a stack of boxes, or a box
was tampered with.

The log output in Figure 4 shows some concrete examples for cases (1) – (3).
We applied the box movement analysis to the test scenarios. The following table shows the

number of notifications in each category:

Scenario
Info
DuringUnload

Info
AtLoc

Warn
OnTruckAtLoc

Anomaly
None of the left

Normal 10 13 5 0
Latecool 10 13 5 0
Cabinbox 10 13 5 4
Missingbox 9 12 5 0

In sum, the data sets contain 114 box movements, which were classified by Fusemate into 90
Info, 20 Warn and 4 Anomaly notifications. This analysis fully corresponds to our expectations. In
particular, the only expected anomalies are the ones in the cabinbox scenario. In numerical terms,
the Fusemate analysis correctly eliminates 96% of all box movements as non-anomalous.

7 CONCLUSIONS
The main research question in this paper is of applied nature: how can we model complex depen-
dencies in a food supply chain in way that enables logical inference for situational awareness?
This is a non-trivial question, as realistically, modelling of a complex domain often needs to be a

9

Peter Baumgartner and Alexander Krumpholz

compromise because extracting all relevant aspects and their dependencies is not achievable in full
breadth and depth.

In this paper we proposed an approach based on logic programming. From a knowledge engineer’s
perspective, its purposewas to evaluate if ourmodelling language is expressive enough to adequately
model (certain) situational awareness tasks in the food supply chain. Correspondingly, the model
that we obtained was a major activity and outcome of this project. Thanks to the declarative nature
of logic programming, the model could be developed and tested in an incremental and modular way.
Moreover, with experiments on simulated data we were able to show that our model can detect the
defined anomalies with high accurracy.

Themodel could be improved for coverage, say, by integratingmore sensor outputs or “paperwork”
events stored in a database. Also its functionality could be improved, e.g., for quality assessment as
a function of actual transport temperature conditions, and pricing of the product as it arrives at the
final destination. With the experiences gained, these extensions would be routine exercises by now.

Next steps include advancing the modelling language capabilities of Fusemate. Of major interest
will be the development of a comprehensive “logical theory of situational awareness”. The provision
of the Event Calculus is already a good starting point, but it would be useful to include other
aspects as well, like reasoning on space (e.g., notions of neighbourhood or overlapping areas) and
argumentation frameworks (where rules can take priority over others).
A more general research question is how to enhance the developed software tool into a fully-

fledged method for situational awareness in supply chain and other applications. Ultimately, that
method should also make logical modelling accessible to supply chain experts and end users.

REFERENCES
[1] 2021. BeefLedger. https://beefledger.io/.
[2] A. Artikis, Anastasios Skarlatidis, François Portet, and G. Paliouras. 2012. Logic-based event recognition. Knowl. Eng.

Rev. 27 (2012), 469–506.
[3] Peter Baumgartner. 2020. Possible Models Computation and Revision – A Practical Approach. In International

Joint Conference on Automated Reasoning (LNAI, Vol. 12166), N. Peltier and V. Sofronie-Stokkermans (Eds.). Springer
International Publishing, Cham, 337–355. https://doi.org/10.1007/978-3-030-51074-9_19

[4] Peter Baumgartner. 2021. The Fusemate Logic Programming System (System Description). https://arxiv.org/abs/2103.
01395

[5] Peter Baumgartner and Patrik Haslum. 2021. Situational Awareness for Industrial Operations. In Data and Decision
Sciences in Action 2, Andreas T. Ernst, Simon Dunstall, Rodolfo García-Flores, Marthie Grobler, and David Marlow
(Eds.). Springer International Publishing, Cham, 125–137. ASOR-2018.pdf

[6] Harald Beck, Minh Dao-Tran, and Thomas Eiter. 2018. LARS: A Logic-based framework for Analytic Reasoning over
Streams. Artificial Intelligence 261 (08 2018), 16–70. https://doi.org/10.1016/j.artint.2018.04.003

[7] Wolfgang Faber. 2020. An Introduction to Answer Set Programming and Some of Its Extensions. In Reasoning Web.
Declarative Artificial Intelligence - 16th International Summer School 2020, Oslo, Norway, June 24-26, 2020, Tutorial
Lectures (Lecture Notes in Computer Science, Vol. 12258), Marco Manna and Andreas Pieris (Eds.). Springer, 149–185.
https://doi.org/10.1007/978-3-030-60067-9_6

[8] David McKinna and Catherine Wall. 2020. Commercial application of supply chain integrity and shelf life systems. Tech-
nical Report. Meat and Livestock Australia Limited, NORTH SYDNEY NSW 2059. https://www.mla.com.au/research-
and-development/reports/2020/commercial-application-of-supply-chain-integrity-and-shelf-life-systems/.

[9] A. Medvedev, A. Hassani, P. D. Haghighi, S. Ling, M. Indrawan-Santiago, A. Zaslavsky, U. Fastenrath, F. Mayer,
P. P. Jayaraman, and N. Kolbe. 2018. Situation Modelling, Representation, and Querying in Context-as-a-Service IoT
Platform. In 2018 Global Internet of Things Summit (GIoTS). 1–6. https://doi.org/10.1109/GIOTS.2018.8534571

[10] Scala [n.d.]. The Scala Programming Language. https://www.scala-lang.org.
[11] Murray Shanahan. 1999. The Event Calculus Explained. In Artificial Intelligence Today: Recent Trends and Developments,

Michael J. Wooldridge and Manuela Veloso (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 409–430.
[12] Dhananjay Singh, Gaurav Tripathi, and Antonio J. Jara. 2014. A Survey of Internet-of-Things: Future Vision, Architec-

ture, Challenges and Services. In 2014 IEEE World Forum on Internet of Things, WF-IoT 2014. IEEE.
[13] Monika Solanki and Christopher Brewster. 2014. Detecting EPCIS exceptions in linked traceability streams across

supply chain business processes. In SEMANTICS. ACM, 24–31.

10

https://beefledger.io/
https://doi.org/10.1007/978-3-030-51074-9_19
https://arxiv.org/abs/2103.01395
https://arxiv.org/abs/2103.01395
ASOR-2018.pdf
https://doi.org/10.1016/j.artint.2018.04.003
https://doi.org/10.1007/978-3-030-60067-9_6
https://www.mla.com.au/research-and-development/reports/2020/commercial-application-of-supply-chain-integrity-and-shelf-life-systems/
https://www.mla.com.au/research-and-development/reports/2020/commercial-application-of-supply-chain-integrity-and-shelf-life-systems/
https://doi.org/10.1109/GIOTS.2018.8534571
https://www.scala-lang.org

	Abstract
	1 Introduction
	2 Simulator and Data
	3 Fusemate Situational Awareness System
	4 Fusemate BeefLedger Model
	5 User Experience
	6 Experimental Results
	7 Conclusions
	References

