
FDPLL — A First-Order

Davis-Putnam-Logeman-Loveland Procedure

Peter Baumgartner

Institut für Informatik, Universität Koblenz-Landau, D-56073 Koblenz, Germany
Net: peter@uni-koblenz.de , http://www.uni-koblenz.de/~peter/

Abstract. FDPLL is a directly lifted version of the well-known Davis-
Putnam-Logeman-Loveland (DPLL) procedure. While DPLL is based on
a splitting rule for case analysis wrt. ground and complementary literals,
FDPLL uses a lifted splitting rule, i.e. the case analysis is made wrt.
non-ground and complementary literals now.
The motivation for this lifting is to bring together successful first-order
techniques like unification and subsumption to the propositionally suc-
cessful DPLL procedure.
At the heart of the method is a new technique to represent first-order
interpretations, where a literal specifies truth values for all its ground
instances, unless there is a more specific literal specifying opposite truth
values. Based on this idea, the FDPLL calculus is developed and proven
as strongly complete.

1 Introduction1

The well-known Davis-Putnam procedure, as it is usually called, was brought for-
ward in the early 60s by the researchers mentioned in the title [DP60,DLL62,D63].
Nowadays, the procedure is most successfully applied to decide propositional
problems, although it was originally conceived as a method for first-order the-
orem proving. To this end, successively increased sets of ground instances of
first-order clauses are enumerated and fed into the propositional part of the
procedure. This latter part is referred to as “propositional DPLL” in the sequel.

With the advent of the resolution calculus, the lifting of inference rules to the
first-order level is standard in virtually all calculi and efficient proof procedures
for first-order logic — except for Davis-Putnam-Logeman-Loveland methods.
Thus, the purpose of this paper is to present a lifted version that fills this gap.

On an abstract level, the advantage of the “lifted” methods compared to
the “propositional” methods stems from two sources: first, it is possible with a
lifted method to finitely represent infinitely many inferences of the corresponding
propositional methods, and, second, much more powerful redundancy elimina-
tion techniques are possible, e.g. based on subsumption. The motivation is to
bring these advantages to DPLL. The other way round, FDPLL instantiates to
propositional DPLL when applied to propositional logic.

1 For a long version of the paper see http://www.uni-koblenz.de/fb4/publikationen/
gelbereihe/.

Brief description of FDPLL. In order to describe the main idea of FDPLL,
it is helpful to refer to the widely-used presentation of propositional DPLL as
a calculus with a single splitting rule, which carries out a case analysis wrt.
a propositional variable A. More exactly, the current clause set S splits into
two cases: the one where A is “true”, and the other where A is “false”, which
give rise to simplifications based on the new information. DPLL proceeds by
considering different cases until success (some case is a model for S) or failure
(each considered case contradicts a clause in S).

The idea in FDPLL is to lift this splitting to the first-order level, i.e. to split
with complementary non-ground literals like P (x, y) and ¬P (x, y). The difficulty
here is that the “usual” way of reading the literals as universally quantified (i.e.
∀x, y P (x, y) and ∀x, y ¬P (x, y)) immediately leads to an unsound calculus.
Hence, a different reading is adopted: a bit simplified, a literal, say P (x, y),
stands by default for all its ground instances, say, P (a, a),P (a, b),P (b, a) and
P (b, b) (suppose here that only constants a and b are present). However, the
presence of a strictly more specific literal (wrt. the instantiation order) than
P (x, y) with complementary sign, say ¬P (x, b), gives rise to exceptions of the
default reading of P (x, y) by excluding all instances of P (x, b). Symmetrically,
¬P (x, b) stands by default for all its ground instances (with the possibility to
have exceptions again). So, the two literals P (x, y) and ¬P (x, b) together stand
for P (a, a),¬P (a, b),P (b, a) and ¬P (b, b), which in turn can be understood as an
interpretation I in the obvious way.

Now, a “case” in FDPLL is just a set of possibly non-ground literals, such that
an interpretation can be associated to, as just sketched. Based on this idea, the
purpose of the splitting rule of FDPLL can be explained as follows: suppose there
is an instance Cσ of a clause C that is “false” in the interpretation I associated
to the current case (σ is computed by most general unification). Then, a split is
attempted with a literal L ∈ Cσ in order to “repair” I towards an interpretation
that assigns “true” to L, and hence to Cσ as well2. If this is not possible because
of some elementary contradiction between Cσ and the current case, the current
case is refuted (“closed”). Otherwise, two new cases come up, the one extending
the current case with L, and the other with L.

Continuing the example above, suppose the current case is {P (x, y), ¬P (x, b)},
hence I = {P (a, a), ¬P (a, b), P (b, a),¬P (b, b)}, and suppose that there is a
clause C = P (x, y) ∨ ¬P (x, a). The clause instance Cσ = P (x, b) ∨ ¬P (x, a) is
“false” in I, where σ = {y/b} is computed by most general unification of the
literals of C and complements of literals of I. Regarding the two literals P (x, b)
and ¬P (x, a) in Cσ, only ¬P (x, a) is a candidate for splitting, because P (x, b)
is an elementary contradiction to ¬P (x, b) of the current case.

The procedure repeatedly carries out splits in this way and stops if every
case is refuted (and reports “unsatisfiable”), or if no clause instance Cσ of the
mentioned kind exists (and reports the current case as a model representation)3.

2 Actually, this is a bit simplified, but it serves well to illustrate the idea.
3 There is a second variant of the splitting rule called “Commit” with the purpose to

achieve that I is indeed consistent.

An improvement of this “basic” procedure recovers for certain branch literals
the above mentioned universally quantified reading (cf. Section 5). It lifts to
the first-order level the well-known propositional DPLL rule for propagating
unit clauses. In resolution terminology, the improvement realizes unit-resulting
resolution. Fortunately, only minor modifications of the “basic” calculus are
necessary for this.

Properties of FDPLL. Propositional DPLL has certain desirable features: its
conceptual simplicity, space efficiency (“one branch at a time”), few inference
rules (one is sufficient), efficient and adaptable implementations (the most effi-
cient systematical propositional methods are based on DPLL, e.g. NTAB [CA96]
and SATO [Zha97]), existence of non-clausal versions [BBOS98], and, the pos-
sibility to immediately extract a model in case that no refutation exists. A goal
of this work is to keep these features for the lifted version FDPLL.

FDPLL is in particular space efficient, proof confluent and convergent (i.e. a
strong completeness theorem holds). While these properties go without a saying
for propositional DPLL, they are an issue for certain first-order methods, e.g.
tableau and connection calculi (but see [BEF99] for a proof confluent strongly
complete connection calculus). Beyond this, FDPLL is known to be a decision
procedure for the Bernays-Schönfinkel class, i.e. clause logic without function
symbols but constants. This is a non-trivial class, in the sense that most resolu-
tion and tableau systems cannot decide it, except in a trivial way by using the
finite set of ground clauses.

Structure of the paper. After stating some preliminaries, the model represen-
tation technique is introduced. Based on it, the calculus is developed. Then
soundness and and completeness is turned to, followed by a sketch of the men-
tioned “universal literal” improvement. The subsequent proof procedure proves
the existence of a concrete, fair strategy. Finally, some conclusions are drawn,
including related work.

2 Preliminaries

The usual notions of first-order logic are applied in a way consistent to [CL73]. A
literal is an atom or a negated atom. The letters K and L are reserved to denote
literals. The complement of a literal L is L = A, if L = ¬A for some atom A, or
else L = ¬L; by |L| the atom of L is denoted, i.e. |A| = A and |¬A| = A for any
atom A. A clause is a finite, possibly empty multiset {L1, . . . , Ln} of literals,
usually written as a disjunction L1 ∨ · · · ∨Ln. By a clause set always a finite set
of clauses is meant. The letters C and D are reserved to denote clauses.

An interpretation I for a given signature Σ is a set of ground Σ-literals such
that either A ∈ I or ¬A ∈ I for every ground Σ-atom A. The signature Σ
is always given implicitly by the input clause set under consideration, and the
prefix “Σ−” usually is not written. All the results below hold wrt. such Herbrand
interpretations; it only has to be assumed that Σ contains at least one constant
symbol (if none is there, some constant a is added artificially).

A ground literal L and a ground clause C is evaluated wrt. an interpretation
I as expected, i.e. I(L) = true iff L ∈ I and I(C) = true iff I(L) = true
for some L ∈ C. Furthermore, as expected, for a non-ground clause C define
I(C) = true iff I(C′) = true for every ground instance C′ of C. As usual,
I |= X means I(X) = true where X is a literal, clause or clause set (interpreted
conjunctively).

A unifier for a set Q of terms (or literals) is a substitution δ such that Qδ is
a singleton. The notion of most general unifier (MGU) is used in the usual sense
[CL73, e.g.], and a respective unification algorithm unify is assumed as given.
The notation σ = unify(Q) means that an MGU σ of Q exists and is computed
by unify applied to Q.

Quite frequently, a simultaneous unifier for a set {Q1, . . . , Qn} of unifica-
tion problems is to be computed, which is a substitution δ that is a unifier for
every Q1, . . . , Qn. The notion of a most general unifier can be defined in the
standard way in the simultaneous case as well. Further, a simultaneous most
general unifier (simply called MGU as well) can be computed by iterative ap-
plication of unify to Q1, . . . , Qn. See [Ede85] for a thorough treatment. Thus,
we may suppose as given a simultaneous unification algorithm s-unify and write
σ = s-unify({Q1, . . . , Qn}) in analogy to σ = unify(Q) above.

For literals K and L define K & L, K is more general than L, iff there is a
substitution σK such that KσK = L; K and L are variants , written as K ∼ L,
iff K & L and L & K; K is strictly more general than L, K > L, iff K & L and
not K ∼ L. L is also said to be a strict , or proper instance of K then. If neither
K & L nor L & K then K and L are incomparable. Finally, define L ∈∼ N iff
L ∼ K for some K ∈ N , where N is a set of literals.

3 Basic Concepts Related to Literal Sets

As mentioned, interpretations shall be represented by literal sets. This section
contains the respective definitions. In the sequel N always denotes a possibly
infinite literal set.

Definition 1 (Most Specific Generalization). A literal K is called a most
specific generalization (MSG) of a literal L wrt. N iff K & L and there is no
K ′ ∈ N such that K > K ′ & L.

Notice that nothing is said whether K, L ∈ N or not.

Example 1. Consider4 N1 = {P (a, y, u), P (x, b, u)}. Then both P (a, y, u) and
P (x, b, u) are MSGs of P (a, b, c) wrt. N . This shows that MSGs need not be
unique. The literal P (x, y) is not a MSG of P (y, f(x)) wrt. {P (x, f(y))}, because
P (x, y) > P (x, f(y)) & P (y, f(x)).

An MSG K ∈ N of L wrt. N is a “potential reason” for L to be true in the
interpretation associated to N , because K & L (as said in the introduction).

4 Here and below, the letters P, Q, R, . . . denote predicate symbols, a, b, c, . . . denote
constants, f, g, h, . . . denote non-constant function symbols, and x, y, z, . . . denote
variables.

For efficiency reasons in FDPLL it is desirable to have as few such “reasons” as
possible. Therefore, most specific generalizations are used.

Definition 2 (Productivity). A literal K produces L wrt. N iff K is a MSG
of L wrt. N and there is no K ′ ∈ N such that K > K ′ & L. For a clause C,
K produces C wrt. N iff K produces some literal L ∈ C wrt. N . The set N
produces L (resp. C) iff some K ∈ N produces L (resp. C) wrt. N .

Referring again to the introduction and above, this definition realizes the pos-
sibility to prevent an MSG K of L wrt. N to assign true to L, if there is a
complementary literal in between (wrt. &) K and L, as stated. An equivalent,
more compact definition of “K produces L wrt. N” is that K & L and there is
no literal K ′ ∈ N such that |K| > |K ′| & |L|.

Example 2. Let N2 = {P (a, y, u), ¬P (x, b, u), P (a, b, u)}. Then, P (a, b, u) pro-
duces the literal P (a, b, f(u)) wrt. N2. However, P (a, y, u) does not produce
P (a, b, f(u)) wrt. N2 because P (a, y, u) is not an MSG of P (a, b, f(u)) wrt. N2.
(since P (a, b, u) < P (a, y, u) is an MSG of P (a, b, f(u)) wrt. N2). The literal
¬P (x, b, u) produces ¬P (b, b, f(u)) wrt. N2 but does not produce ¬P (a, b, f(u))
(since ¬P (x, b, u) > K ′ & ¬P (a, b, f(u)), where K ′ = P (a, b, u) ∈ N2).

Definition 3 (Ground expansion). Define the ground expansion of N as
[[N]] = {L | L is a ground literal and N produces L}

The plan is to identify for a literal set N constructed by FDPLL its ground
expansion [[N]] with an interpretation I. Recall from Section 2 that an inter-
pretation is a set of ground literals such that either A ∈ I or ¬A ∈ I for
every ground atom A. However, there is in general no reason for [[N]] to be an
interpretation. For instance:

Example 3. The set N3 = {P (a, y, u), ¬P (x, b, u)} produces both P (a, b, c) and
¬P (a, b, c). Hence, [[N3]] is not an interpretation.

Note 1 (Completeness of N). Beyond this inconsistency problem, a complete-
ness problem arises as well: for instance, N = {} does not produce a single
literal. The completeness problem can be solved by adding to N an expression
¬x, where x is a variable; the “literal” ¬x ∈ N then acts as a default case to
assign false to positive literals. Thus, for instance, [[{¬x, P (a)}]] produces every
negative literal except ¬P (a) and thus assigns false to every positive literal,
except P (a)5.

The following definition formalizes these concepts.

Definition 4 (Contradictory, Consistent, Complete). A literal set N is
called contradictory iff there are literals L, K ∈ N such that L ∼ K. The term
“non-contradictory” means “not contradictory”. N is called consistent wrt. a
literal L iff N does not produce both L and L; N is called consistent iff N is

5 Of course, instead of “¬x”, “x” could be taken as well, which would emphasize the
use of negative clauses (“goals”) in the calculus.

consistent wrt. every literal L. The term inconsistent means “not consistent”. N
is called complete iff for every literal L, N produces L or L. The term incomplete
means “not complete”.

Example 4. For instance, N3 from Example 3 is non-contradictory and inconsis-
tent wrt. P (a, b, u) (and hence wrt. ¬P (a, b, u) as well). Adding either P (a, b, u)
or ¬P (a, b, u) renders the set consistent (and hence non-contradictory, as is eas-
ily seen), and adding both renders the set contradictory and inconsistent wrt.
P (a, b, u) again. Each of these sets is incomplete, and adding ¬x achieves com-
pleteness.

With these definitions, the intuition so far can be made precise:

Proposition 1 (Interpretation). If ¬x ∈ N then N is complete. If N is
consistent and complete, then [[N]] is an interpretation.

It can be noted that “productivity” and “modelship” are not related on the
non-ground level. For instance, take N = {¬x, ¬P (a), P (b), Q(a), ¬Q(b)} and
C = P (x) ∨ Q(x). Then [[N]] |= C but there is no L ∈ N such that L produces
C wrt. N . Conversely, N = {¬x, P (a)} produces ¬P (x) but [[N]] 6|= ¬P (x).

As mentioned in the introduction, model candidates shall be given up when
being “elementary contradictory” to an (instance of) an input clause. The fol-
lowing definition makes this precise (preliminarily):

Definition 5 (Closed, open). A literal set N is closed by a clause C and
substitution δ iff L ∈∼ N for every L ∈ Cδ; N is closed by C iff N is closed by
C and some substitution δ. Finally, N is closed by a clause set S iff N is closed
by some clause C ∈ S. The term “open” means “not closed”, and “N is open
wrt. S” means “N is not closed by S”.

For instance, N = {P (x, y), Q(a)} is closed by C = ¬P (x, y)∨¬P (y, x)∨¬Q(z)
and δ = {z/a}, because for every literal in Cδ there is a complementary variant
in N .

Again, as mentioned in the introduction, substitutions shall be computed by
FDPLL as most general substitutions. This holds in particular for the substitu-
tions δ that allow to close a literal set. This motivates the following definition.

Definition 6 (Branch unifier). Let C = L1 ∨ · · · ∨ Ln be a clause. A substi-
tution σ is called a branch unifier of C against N iff there are pairwise variable
disjoint literals K1, . . . , Kn ∈∼ N , each variable disjoint from C, and such that
the following holds:

(i) σ = s-unify({{L1, K1}, . . . , {Ln, Kn}}), and
(ii) Ki produces Liσ wrt. N , for 1 ≤ i ≤ n.

If N is closed by C and σ, then σ is called a closing branch unifier, otherwise σ
is called a falsifying branch unifier.

Item (i) realizes that substitutions are computed at a most general level. Item
(ii) acts as a further relevancy filter, by excluding those branch literals Ki that
unify with Li but do not produce Liσ.

Example 5. Let N4 = {P (a, y, u), ¬P (x, b, u), P (a, b, u)} and C = ¬P (a, c, z)∨
P (z, v, z). Take K1 = P (a, y, u) ∈∼ N4 and K2 = ¬P (x, b, u′) ∈∼ N4. Observe
that σ = {u/z, u′/z, v/b, x/z, y/c} is a branch unifier of C against N4, since σ
is a simultaneous MGU for {{P (a, c, z), P (a, y, u)}, {¬P (z, v, z),¬P (x, b, u′)}},
and K1 = P (a, y, u) produces P (a, c, z)σ = P (a, c, z) wrt. N4, and furthermore
K2 = ¬P (x, b, u′) produces ¬P (z, v, z)σ = ¬P (z, b, z). Further observe that σ is
a falsifying branch unifier (i.e. N4 is not closed by C and σ).

As a negative example, there is no branch unifier of P (a, b, c) against N4,
because although item (i) in Def. 6 is satisfied by taking K1 = ¬P (x, b, u) and
σ = {x/a, u/c}, item (ii) is violated, because ¬P (x, b, u) does not produce
¬P (a, b, c) wrt. N4.

Branch unifiers are a purely syntactical concept, and existence of branch unifiers
for finite literal sets N obviously is decidable. The following lemma then, read
in the contrapositive direction, guarantees that N is a model for the given clause
if no branch unifier exists (provided that N is consistent).

Lemma 1. Let N be consistent and complete, and C be a clause. If [[N]] 6|= C
then there is a branch unifier σ of C against N .

Unfortunately, the converse of Lemma 1 does not hold: take N = {¬x, P (a)},
and observe that σ = {x/P (y)} is a branch unifier of P (y) against N , but
[[N]] |= P (y) (supposing that a is the sole ground term). As a consequence, the
calculus occasionally computes branch unifiers, although there is no need to.

In order to take advantage of the previous lemma, consistency has to be
achieved (there is a respective inference rule in FDPLL). Fortunately, consistency
is also a syntactical property, and is decidable in the finite case as well. For the
purposes here, the following lemma is sufficient (it can be strengthened):

Lemma 2. Let N be a non-contradictory literal set. If N is inconsistent then
there is a pair of variable disjoint, non-comparable literals K, L ∈∼ N with
opposite sign (i.e. neither K & L nor L & K) such that (i) K and L are unifiable,
i.e. σ = unify({K, L}) exists, and (ii) neither Kσ ∈∼ N nor Lσ ∈∼ N .

4 The FDPLL Calculus

In this section the inference rules based on branch unifiers are introduced. Recall
from the previous section that branch unifiers are either “falsifying” or “closing”.
However, to close literal sets earlier, hence find shorter refutations, the FDPLL
calculus uses a different notion of “closure”:

Definition 7 (a-closed, a-open). Let a be any constant from the signature
under consideration (or a “new” constant if none is supplied). By Na denote
the literal set obtained from N by replacing in every literal every occurrence of
every variable by a. More formally6, La = Lγ, where γ = {x/a | x ∈ var (L)},
and Na = {La | L ∈ N}.

6 The function var returns the set of variables occurring in its argument.

The literal set N is a-closed by C and δ iff L ∈ Na, for every L ∈ Cδ. The
derived forms, as well as the term “a-open” are defined analogously to “closed”
(Def. 5).

So, determing whether N is a-closed by C is a question of simultaneously match-
ing all literals of C to complementary literals in Na.

Note 2 (“a-closed” closes more branches). It is not too difficult to see that when-
ever N is closed by C then N is a-closed by C as well. The converse, however, is
not true: for instance, {¬P (x, y)} is a-closed by P (x, y)∨P (x, x), but not closed
by P (x, y) ∨ P (x, x) (because ¬P (x, x) cannot be instantiated to a variant of
¬P (x, y)).

Thus, by contraposition, if N is a-open wrt. C, N is open wrt. C as well.

In the sequel, S always denotes a finite clause set.

Definition 8 (Branch, branch set, selection functions). A branch p is a
possibly empty, finite set of literals. A branch set P consists of a finite set of
branches. The branch set P is closed (by C, by S) iff every p ∈ P is closed (by
C, by S). The term “open” means “not closed”. Define P as a-closed (a-open)
in the expected way by using the a-versions instead.

Assume as given a branch selection function sel which maps any a-open
branch set P wrt. S to one of its a-open branches. This branch is referred to as
the selected branch in P. On a-closed branch sets, sel may be undefined.

Finally, assume as given a literal selection function litsel(C, p) that maps a
clause C and a branch p that is a-open wrt. C to some literal L ∈ C such that
neither L ∈∼ p nor L ∈∼ p, provided such a literal exists, and may be undefined
otherwise.

Notice that the empty branch set is closed (and hence a-closed) wrt. every S, and
that the branch set {{}} is a-open (and hence open) wrt. S, unless S contains
the empty clause. The same holds for {{¬x}}, as no clause contains a “literal”
x.

The purpose of the two selection functions will become clear soon. Next, the
two inference rules of FDPLL are defined.

Definition 9 (Split Inference Rule). The following inference rule Split trans-
forms a branch p, a clause C such that p is a-open wrt. C, and a substitution σ
into two new branches:

Split(C,σ)
p

p ∪ {L} p ∪ {L}
if

�����
����

(i) σ is a branch-unifier of C against p, and

(ii) for some L ∈ Cσ, neither L ∈∼ p nor
L ∈∼ p, and

(iii) L = litsel(Cσ, p)

If for given p, C and σ the conditions (i) and (ii) hold, it is said that the Split

inference rule is applicable to p, C and σ, and the result as the set {p∪{L}, p∪
{L}} is denoted by Split(p, C, σ). The literal L in (iii) is called the literal split
on.

Note 3 (Purpose of Split). Assume that whenever Split is applied to a branch p,
then p is consistent (that this can be achieved is argued for below). By Propo-
sition 1 then, [[p]] is an interpretation. Now, the intuition behind Split is to find
a clause C and a branch unifier σ of C against p, such that at least one ground
instance of Cσ is false in [[p]]. If no such σ exists, by Lemma 1 we can be sure that
with [[p]] a model for the clause set has been found. Otherwise, Split is applicable
to p, C and some branch unifier σ by the following line of reasoning: since p
is a-open, hence open (cf. Note 2), σ must be a falsifying branch unifier. But
then, condition (ii) must be satisfied. For, if (ii) would not be satisfied, for every
literal L ∈ Cσ it would hold (a) L ∈∼ p or (b) L ∈∼ p. It is impossible that
L ∈∼ p for any L ∈ Cσ because then p would produce both L (because L ∈∼ p)
and L (because σ is a branch unifier of C against p, and so p produces L), and
thus p would be inconsistent. Hence case (b) applies for every L ∈ Cσ, and so σ
would be a closing branch unifier of C against p, but we know that σ must be a
falsifying branch unifier. Hence, with this contradiction condition (ii) holds. As
a consequence, the literal selection function litsel is defined on Cσ and returns
some arbitrarily (i.e. don’t-care nondeterministically) selected literal from Cσ
which is used for splitting p into the two new cases as stated.

Since the use of branch unifiers is insisted upon, Split is applicable in a
very restricted way only. For instance, referring back to Example 5, Split is not
applicable to the branch N4 and the clause P (a, b, c). Non-applicability of Split

realizes a search-space reduction.

As said at the beginning of Note 3, it has to be made sure that p is consistent
before Split is applied. This is the purpose of the following Commit inference rule
(as the branch N3 in Example 4 shows, consistency does not hold automatically).

Definition 10 (Commit). The following inference rule Commit transforms a
branch p, a literal L from p and a substitution σ into two new branches:

Commit(L, σ)
p

p ∪ {Lσ} p ∪ {Lσ}
if

�������
������

(i) L ∈ p, and

(ii) σ = unify({L, K}), for some
K ∈∼ p, variable disjoint from L,
and

(iii) neither Lσ ∈∼ p nor Lσ ∈∼ p.

If for given p, L and σ the conditions (i) – (iii) hold, it is said that the Commit

inference rule is applicable to p, L and σ, and the result as the set {p∪{Lσ}, {p∪
{Lσ}} is denoted by Commit(p, L, σ). The literal Lσ is called the literal split on.

Note 4 (Purpose of Commit). Lemma 2 states (almost directly) that Commit

is applicable to p, for some L and σ, whenever p is inconsistent. Thus, by the
contrapositive direction, by repeated application of Commit one arrives at a
consistent branch eventually.

The converse of Lemma 2 is not true: {P (x, a, u), ¬P (b, y, a), ¬P (b, a, u)} is
consistent but Commit is applicable (consider the first two literals). This shows
that Commit is possibly applied more often than necessary. As an improvement,

condition (iii) in Commit can be replaced by “L produces Lσ wrt. p and K
produces Lσ wrt. p.”

Definition 11 (Derivation). A derivation D (from a clause set S) is a (possi-
bly infinite) sequence of branch sets D = (P0 = {{¬x}}),P1, . . . ,Pn, . . . , such
that for i ≥ 0,

(i) Pi+1 = (Pi \ {pi}) ∪ Split(pi, C, σ) for some clause C ∈ S and substitution
σ, or

(ii) Pi+1 = (Pi \ {pi}) ∪ Commit(pi, L, σ) for some literal L and substitution σ,

where in both cases Pi is a-open wrt. S and pi = sel(Pi) is the selected (hence
a-open) branch in Pi. A derivation is called a refutation (of S) iff some Pi is
a-closed (by S). A derivation of Pn is a finite derivation that ends in Pn.

Both Split and Commit are applied to a-open branches only. Thus, if some Pi is
a-closed, then Pi contains no single a-open branch and the derivation stops as a
refutation.

Example 6 (Derivation). The figure below shows in tree notation a sample deriva-
tion from the clause set S consisting of the clauses C1 = P (a, y) and C2 =
P (x, b) ∨ ¬P (z, y) ∨ Q(x, y, z).

P1: P2: P3: P4:

P (a, y) ¬P (a, y)

¬x

?

p2p1

P (a, y) ¬P (a, y)

¬x

P (x, b) ¬P (x, b)

?

p3 p4

P (a, y) ¬P (a, y)

¬x

P (x, b) ¬P (x, b)

P (a, b) ¬P (a, b)

?

p6p5

P (a, y) ¬P (a, y)

¬x

P (x, b) ¬P (x, b)

P (a, b) ¬P (a, b)

Q(x, y, a) ¬Q(x, y, a)

?

?

p8p7

The branch set P0 = {{¬x}} is not depicted; a-closed branches are marked
with a “?”. P1 is obtained from P0 by a applying Split to {{¬x}} and C1 (and
the empty substitution); the branch p2 is a-closed (even closed) due to C1; P2

is obtained from P1 by applying Split to p1 and C2 (and some σ not made
explicit). Neither Split nor Commit is applicable to p3, so [[p3]] is an interpretation
(cf. Note 4) and [[p3]] |= S (cf. Note 3). To continue the example suppose that
the branch p4 is selected in P2. The Commit rule is applicable to p4, which
derives the branches p5 and p6. Applying Split to p5 and C2 yields p7 and p8 (as
branch literals in the computation of the branch unifier use variants of P (a, y)
and ¬P (x, b)).The branch p8 is a-closed by C2, and to p7, neither Commit nor
Split is applicable (in particular, the instance P (x, b) ∨ ¬P (a, b) ∨ Q(x, b, a) of
C2 which can be obtained by simultaneous unifying away the P -literals of C2

against P (a, b) and ¬P (x′, b) is produced by Q(x, y, a)). Thus, [[p7]] |= S. The
derivation can continue with P4 at the branch called p6 in P3, which is not shown
here.

Note 5 (Regularity). For both inference rules, when applied to a branch p, the
literal L split on is “new” to p in the sense that neither L nor L is contained in
p, not even as a variant. In Split, a respective condition in litsel , and in Commit

condition (iii) is responsible for this. In other words, a stronger form of “regu-
larity” than the identity-based one used in rigid variable calculi holds; also, it is
impossible to derive a contradictory branch (cf. Def 4). Thus, from the complete-
ness of FDPLL (Theorem 2) it follows immediately that FDPLL is a decision
procedure for Bernays-Schönfinkel logic (no function symbols except constants),
a class that cannot be decided easily by resolution or tableau methods.

This section is concluded with optimizations concerning Split, in particular
the literal selection function litsel (Def. 8). The basis is the following lemma:

Lemma 3 (Open Branch Literal Selection). Let p be an a-open branch wrt.
S, C ∈ S be a clause and σ be a branch unifier of C against p. Then, all of the
following hold:

(i) Split is applicable to p, C and σ.
(ii) The set L = {L ∈ Cσ | La /∈ pa} is non-empty.
(iii) L /∈∼ p, for every L ∈ L.
(iv) If p is consistent, then L /∈

∼
p, for every L ∈ Cσ.

It is clear from the definition of “derivation” that Split is applied to a branch
p only if p is a-open. So, this precondition of the lemma is satisfied whenever
Split is attempted. Now assume that C and σ exist as required in the lemma
statement, and thus that items (i) – (iv) hold.

Item (i) summarizes what was sketched at the beginning of Note 3.
Suppose that Commit applications are preferred to Split applications (as is

realized in the proof procedure in Section 7 below). Then, the branch p is consis-
tent (cf. Note 4), and item (iv) shows that the condition (ii) in the Split inference
rule may be equivalently replaced by “for some L ∈ Cσ, L /∈

∼
p” (since by item

(iv) L /∈
∼

p holds for all literals L ∈ Cσ). Item (iv) is proven as follows: we
are given that σ is a branch-unifier of C against p. This means in particular
that each literal L, where L ∈ Cσ, is produced by some literal K ∈∼ p. Now, if
L ∈∼ p would hold, then p would produce L as well. By consistency, however, p
cannot produce L.

Next, sensible literal selection by litsel is turned to. Concretely, litsel (Cσ, p)
should return an element L from the (non-empty) set L defined in item (ii).
Observe that splitting on this literal L is indeed possible, because by item (iii)
the modified applicability condition of Split explained in the previous paragraph
is satisfied for L. Now, item (ii) expresses that one need not select a literal from
Cσ that is solved in the sense that it contributes to a-close p. For instance, if
p = {¬x, P (x, y)}, C = ¬P (x, x) ∨ ¬P (x, b) and σ = ε, then L = {¬P (x, b)}.

It is more sensible to select ¬P (x, b) for splitting, because the thus upcom-
ing branch {¬x, P (x, y), P (x, b)} is a-closed, whereas splitting with ¬P (x, x)
leaves the upcoming branch {¬x, P (x, y), P (x, x)} a-open; with respect to clos-
ing branches, P (x, y) and P (x, x) are the same. Selecting literals from L yields
shorter refutations.

5 Universal Literals

In this section, an optional inference rule for an improved treatment of unit
clauses is discussed. The improvement allows to read, under certain circum-
stances, a literal in a branch, say, P (x, y), as universally quantified, i.e. as
∀x, y P (x, y). In the terminology used here, such a universally quantified lit-
eral ∀L occuring in a branch p then produces all instances of L wrt. p – without
exception –, and any extension of p also containing a literal K with L > K can
be considered as closed, without any explicit refutation. Thus, many inferences
can be saved by closing branches earlier.

One application of universal literals is to simulate resolution strategies like
unit-resulting resolution and hyper-resolution for Horn clause sets (with sub-
sumption pruning). To this end, the possibility to split, on the basis of variable-
disjointness, a clause in one of its literals and the rest clause is exploited. For
instance, suppose that the current clause set S contains the clause P (x)∨Q(y)∨
R(y). Then, P (x) and Q(y) ∨ R(y) are variable disjoint and S is split into the
two cases S ∪ {P (x)} and S ∪ {Q(y) ∨ R(y)}.

While the inference rules underlying these strategies could certainly be added
to the FDPLL calculus, there is a reason not to do so: they add clauses to the
current clause set. The control mechanism of a proof procedure would be more
complicated then; a “current clause set” would have to be maintained, which
would be enlarged by the inference rules and shrunk again when backtracking
to an open case after the current case has been refuted.

Fortunately, the reasoning with split off literals can be integrated in FDPLL
in a much smoother way by the following atomic cut inference rule7:

Cut(L)
p

p ∪ {∀L} p ∪ {Lδ}
if

�������
������

(i) δ is a Skolemizing substitution for L
(see text), and

(ii) no literal in p stems from a previous Cut

application of the form Cut(K), where
K ∼ L

Here, ∀L denotes the universal closure of the literal L, and ∀L is called a uni-
versal literal in p ∪ {∀L}. The Skolemizing substitution δ in condition (i) is any
substitution of the form δ = {x1/c1, . . . , xn/cn}, where the xi’s are all the vari-
ables occuring in L, and the ci’s are pairwise different and new constants (wrt.
the constants occuring in p). Observe that Cut just branches on the tautology
∀L ∨ ¬∀L, followed by Skolemizing the right branch.

Condition (ii) is needed to control Cut. Any precaution to avoid unbound
Cut applications along a branch in the same way would do.
7 Well-known from the tableaux world.

The modifications to reason with universal literals are sketched next 8.

The starting point is a strictly stronger condition (than a-closed) to close
branches: assume that a set of universal literals in p, Univ(p) ⊆ p, has already
been determined. It is reasonable (and sound) to include in Univ(p) the ground
literals of p, too. Now let C be a clause. The branch p is said to be closed? by C
iff C can be partitioned as C = C1∪C2 such that (i) there is a simultaneous most
general unifier σ of every L ∈ C1 with some literal K s.t. K ∈∼ Univ(p) (use a
new variant), and (ii) there is a substitution δ such that Lδ ∈ (p \Univ(p))a for
every L ∈ C2σ (in particular, if C2σ = {} then δ = ε exists trivially). In other
words, condition (ii) is the same as saying that p \Univ(p) has to be a-closed by
C2σ.

Now, if (i) holds but (ii) does not hold for the considered clause C = C1∪C2

and branch p, then, as said, p \ Univ(p) is not a-closed by C2σ, and there is no
closing branch unifier of C2σ against p\Univ(p). But it is still possible that there
is a falsifying branch unifier σ′ of C2σ against p \ Univ(p). In order to describe
how universal literals are derived, assume that this is the case. If furthermore
there is a literal L ∈ C2σσ′ such that neither L ∈ p nor L ∈ p (as is also
required in the Split rule) and var (L) ∩ var (C2σσ′ \ {L}) = {}, then Cut(L) is
applied to p (instead of Split, which is also applicable).

Carrying out Cut(L) just in case that C2σσ = {L} (i.e. all but one literal in
C are resolved away by universal or ground branch literals) suffices to simulate
the abovementioned resolution strategies (observe that the right branch closes
immediately then).

It should be emphasized that the model construction technique is not changed:
to determine the interpretation [[p]] for a branch p containing universal literals,
each universal literal ∀L in p is taken as if it were not universally quantified,
i.e. the quantifier is forgotten, and hence Definition 3 applies as without uni-
versal literals. However, possibly a non-Herbrand interpretation results due to
Skolemization.

Fortunately, adding the described reasoning with universal literals requires
only minor modifications. It is enough to attach boolean labels to the literals
in branches to indicate their “universal” status, and to generalize “a-closed”
towards “closed?” as described above. In particular, Split need not be changed,
and further improvements are expressed as a sharpened selection function litsel .
For instance, it can be achieved that if Split is applicable to an open? branch p,
C and σ, always a literal L ∈ Cσ exists such that neither L nor L is subsumed
by a universal literal in p (Formally, Lemma 3 can be strictly strengthened). In
other words, instances of universal literals (or their complements) need never be
added by a Split. This mirrors “subsumption by a unit clause” in resolution.

6 Soundness and Completeness

Theorem 1 (Soundness of FDPLL). Let S be a clause set and D be a refu-
tation of S. Then S is unsatisfiable.

8 The long version of the paper contains a full account.

Proof sketch: consider the last element P in D, every branch of which is a-closed.
Its ground instantiation Pa = {pa | p ∈ P} can be seen as a usual semantic tree T
made up of splits with complementary ground literals (cf. [CL73]). Furthermore,
the (finite) set of all those (ground) clauses Cδ that are used for closing the
branches in Pa show that every leaf in T is a failure node. Now apply the
soundness result for usual semantic trees.

Next we turn to completeness. The FDPLL calculus proceeds by further
modifying one single branch set, and never “backtracks” to a previously derived
branch set. This notion of derivation indicates that to obtain a completeness
result, fairness is to be defined as an exhaustive process (up to redundancy) of
inference rule applications.

Before going into the details, a general note on this topic can be made: the
notion of “derivation” in Def. 11 can be adapted to virtually every confluent
rigid variable method. For these methods, the real challenge is to define fairness
as just mentioned in such a way that it can be turned into an effective proof
procedure. Only few attempts in this direction have been made [BEF99,Bec98].
Coming from the FDPLL side, it seems possible to bring the technique here to
e.g. clausal tableaux calculi (by branching on clauses instead of complementary
literals).

Definition 12 (Path). Let D be a derivation that is not a refutation, written
as in Definition 11. Let P∞ =

⋃
j≥0

Pj, the set of all branches ever constructed
in D. A path (of D) is a possibly infinite sequence I = (p0 = {¬x}) ⊂ p1 ⊂ · · · ⊂
pm ⊂ · · · of branches in P∞ such that for every i ≥ 0

(i) pi = sel(Psi
) is the selected (a-open) branch in some branch set Psi

in D,
and

(ii) pi+1 = pi ∪ {Li}, for some literal Li, and
(iii) if in D the Commit or the Split inference rule is applied to pi, then I contains

a successor element pi+1.

Finally, define the chain limit ∪I =
⋃

i≥0
pi.

The limit ∪I thus is an “infinitely long” branch, obtained by tracing some branch
that is extended infinitely often and remains a-open. As an important property,
∪I is a-open, because if ∪I were a-closed, there is a clause C a-closing ∪I. Since
clauses are finite and ∪I is the limit of a chain, some finite pj ⊂ ∪I would
be a-closed by C, contradicting item (i) in the definition. It is only noted here
without proof that for every derivation D that is not a refutation a path of D
exists.

Definition 13 (Finishedness, Fairness). Let D be a derivation that is not
a refutation and I be a path of D, written as in Definition 12. The path I is
finished iff for every i ≥ 0 the following holds:

(i) if the Split inference rule is applicable to pi and some clause C ∈ S and
substitution σ, then Cσ is produced by pj (Def. 2) for some j ≥ i.

(ii) if the Commit inference rule is applicable to pi and some literal L ∈ pi and
substitution σ, then pj is consistent wrt. Lσ, for some j ≥ i.

D is fair iff (i) D is a refutation or (ii) some path of D is finished.

The purpose of condition (ii) in Definition 13 is to achieve that ∪I is consistent
wrt. any literal Lσ identified by a possible Commit application at time point
i; similarly, the purpose of condition (i) in Definition 13 is to achieve that ∪I
produces the clause instance Cσ identified via a possible Split application at time
point i.

That these purposes can be satisfied is a consequence of having a ∪I as a
chain limit (roughly, compactness wrt. the required properties holds then) and
that Split and Commit applications achieve (i) and (ii), respectively, whenever
violated (cf. Notes 4 and 3 again). However, actually carrying out the inferences
is only the last resort: it suffices that their effect is achieved, namely (in case of
Split, e.g.) that the clause Cσ is produced eventually. Indeed, a Split application
might cause a former possible Split application to be impossible. For instance,
when a clause C3 = ¬P (a, b) ∨ R(a) is added to the clause set in Example 6,
then Split is applicable to p1 and C3 (with σ = {x/R(a), y/b}), but Split is no
longer applicable to C3 and p6 (due to ¬P (a, b) ∈ p6).

These considerations shall serve as a proof sketch for the first main result:

Theorem 2 (Completeness of FDPLL). Let S be a clause set and D be a fair
derivation from S. If D is not a refutation then S is satisfiable. More specifically,
for every finished path I of D, [[∪I]] is an interpretation and [[∪I]] |= S.

Notice that in the contrapositive direction, the theorem is just a refutational
completeness result.

A final remark: the calculus is asymmetric wrt. the rôle of branches. Consider
e.g. a branch p = {¬x, P (x), ¬P (a)}. To determine closure, pa is used, and to
extract a model [[p]] is used; inconsistency of pa (as in the example) is not relevant
for model extraction – P (a) is simply false in [[p]]9. For Theorem 2 to hold there
is no need to go beyond the Herbrand interpretations as stated in Section 2.

7 Proof Procedure

So far, fair derivations are purely abstract mathematical objects, and it still has
to be demonstrated that an effective fair strategy exists. In essence, to guarantee
fairness, a maximal term depth bound is used, which all literals to be split on in
Split applications have to obey; starting with a small natural number, the value
of this bound is increased only after having exhausted Split within the current
value. This inner loop exhaustion always terminates, essentially because variants
of literals already present in a branch are never added. Fortunately, Commit need
not be subject to such a term depth bound check — it finitely exhausts on any
(finite) literal set.

9 The calculus can be slightly improved by considering p as closed if pa is contradictory
(as in the example), although p is a-open.

These are the essential ingredients of the following concrete proof procedure.

1 funct FDPLL(S) ≡
3 var I; % for the model representation
5 funct Satisfiable(p, bound) ≡
6 % p: the current branch. bound : non-negative integer, the maximal term
7 % depth admissible in literals for splitting
8 if

a-Closed(p,S)
9 then return false

10 else % Try a Commit. First, collect all candidate literals in L:

11 var L := {Lσ | L ∈ p, ∃K ∈ p : σ = unify({L, new (K)}) 6=

12 undefined ∧ Lσ /∈∼ p ∧ Lσ /∈∼ p};
13 if L 6= {}
14 then % Commit is applicable
15 var Lc := η L ∈ L : true ; % Select any candidate
16 if Satisfiable(p ∪ {Lc}, bound) % Left branch extension
17 then return true

18 else return Satisfiable(p ∪ {Lc}, bound) % Right branch
19 fi

20 else % Commit not applicable - try Split. Collect all candidates:
21 var L := {L | ∃C ∈ S , σ ∈ BranchUnify(C, p) :
22 L = litsel(Cσ, p)}
23 if L = {}
24 then I := p; % Split is not applicable – got a model in p.
25 return true

26 else % L 6= {}, so Split is applicable
27 var Ls := η L′ ∈ L : ‖L′‖ ≤ bound ;
28 % Select any candidate within depth bound.
29 % However, it might not exist:
30 if Ls 6= undefined

31 then % Candidate within depth bound exists
32 if Satisfiable(p ∪ {Ls}, bound)
33 then return true

34 else return Satisfiable(p ∪ {Ls}, bound)
35 fi

36 else % Hit depth bound – try with higher one:
37 return Satisfiable(p, bound + 1)
38 fi fi fi fi.

40 % Body of FDPLL:
41 if Satisfiable({¬x}, 0)
42 then return I
43 else return false

44 fi.

Some functions remain unspecified: a call of a-Closed(p,S) is supposed to re-
turn true iff p is a-closed by S (cf. Def 5); new(L) is supposed to return a “fresh”
variant of L, containing no variables used so far. A call of BranchUnify(C, p) is
supposed to return a possibly empty, finite and complete set of branch unifiers of

C against p10. Finally, ‖L‖ denotes the depth of |L| as a tree. All these functions
can be effectively implemented.

Some comments on the structure of the procedure: FDPLL is a wrapper
around Satisfiable. The p parameter of Satisfiable is the currently selected branch
in an implicitly constructed derivation. The branch selection realized in Satisfiable
is implicitly a left-to-right depth-first strategy.

The counterpart of a-closed branches in the definition of “derivation” is a
return value of false in Satisfiable; thus, closed branches are not kept in memory,
and so Satisfiable realizes a space efficient one-branch-at-a-time approach.

If every incarnation of Satisfiable returns false, then FDPLL returns false
as well, indicating unsatisfiability of S. FDPLL returns a model I only if some
incarnation of Satisfiable returns true on line 25, because a return value of true
in Satisfiable is immediately propagated to its caller. This happens only if neither
Commit nor Split are applicable to p. That I |= S holds then follows directly
from Notes 3 and 4.

Now some more specific comments on Satisfiable: the set comprehension for-
mula on line 11 is just the applicability condition of Commit. An η-expression
η L ∈ L : ϕ(L) (as on lines 15 and 27) returns any L ∈ L such that ϕ(L) holds,
if such an L exists, and returns undefined else. The set L on line 21 is assigned
a finite set of literals such that whenever Split is applicable to some C ∈ S and σ
then litsel(Cσ, p) ∈∼ L. When reaching line 21, p is known to be a-open (because
Line 9 was not reached) and consistent (Note 3 account for this fact). Hence, all
of Lemma 3 is applicable, and the improvements for litsel discussed there can
be taken advantage of.

The bound parameter of Satisfiable realizes a depth bound, which all literals
to be split on in Split applications have to obey. The fairness of the procedure is
guaranteed by only increasing bound (on line 37) after exhaustion of Split on the
currently given value of bound . However, Commit need not be subject to such a
depth bound check — it finitely exhausts on any finite literal set.

In order to save space and concentrate on the most essential issues to be
contributed here, the FDPLL procedure just described does not use universal
literals (cf. Section 5). The long version of the paper contains a procedure with
universal literals in full detail, which also realizes the restrictions of Commit and
Split mentioned at the end of Section 5. A further built-in improvement is to
remove a split rule application from a derivation if in the left derived branch
p ∪ {L} the literal L is not needed in the refutation of p ∪ {L}. Hence the
right branch p ∪ {L} need not be considered. This well-known improvement11

realizes (but is more powerful than) the purity rule of propositional DPLL.
The implementation mentioned in Section 1 refers to the version with these
improvements.

The procedure is correct: soundness and completeness holds in a similar way
as stated for the calculus. Beyond this, the procedure constructs a fair derivation.
For space reasons, the proof is omitted here.

10 I.e. it contains modulo renaming every branch unifier of C against p.
11 Also known as “dependency directed backtracking”, “level cut”, “condensing” etc.

8 Conclusions

A directly lifted, confluent and strongly complete version of the DPLL proce-
dure has been presented. As the theoretical concepts (in particular the model
representation) are new, emphasis was put on these rather than on experimental
studies.

Related work. Already in [CL73] a lifted DPLL calculus can be found. It uses
the device of “pseudosemantic trees”, which, like FDPLL, realizes splits at the
non-ground level. Nethertheless, the pseudosemantic tree method is very differ-
ent: in sharp contrast to FDPLL, a variable is treated rigidly there, i.e. as a
placeholder for a (one) not-yet-known term. As a consequence, like in all rigid
variable methods, only a very weak regularity condition can be used (cf. Note 5
below). Furthermore, only a weak completeness result is known, which translates
into a heavily backtracking oriented proof procedure only.

When FDPLL reports “satisfiable”, a model representation has been com-
puted without further processing. This does neither hold for the mentioned
method in [CL73], nor for the resolution based methods for model computation
in [FL93,FL96]. Typically, the latter attempt to compute a model by enumerat-
ing all true ground literals, thereby interleaving this enumeration with calls to
the resolution procedure again in order to determine the “next” ground literal.

The probably most advanced first-order tableau system tailored for model
computation is Ramcet [Pel99], which is a successor of Peltier’s and his co-
workers resolution calculus and previous tableaux calculi (see e.g. [CP95]). As
a drawback, Ramcet needs additional inference rules for model computation.
In particular, the “model explosion” rule seems problematic, as it branches out
wrt. the whole signature of the formula set under consideration. FDPLL does
not need such a rule. Furthermore, unlike for FDPLL, strong completeness for
Ramcet is still unsolved (while proof confluence is trivial), in the sense that
no effective fair strategy is known except a trivial one, which needs exponential
space — a widespread problem of tableaux calculi.

In the literature several methods are described that are related to FDPLL
in the sense that variables are treated in a similar way (cf. “description of FD-
PLL” in Section 1). FDPLL was influenced and is intended as a successor of the
hyper tableau calculus [Bau98] (which in turn is a successor of the calculus in
[BFN96], a calculus in the tradition of Satchmo[MB88]). Among other things,
FDPLL improves on this calculus by not needing to store instances of clauses
as the derivation proceeds – only the “current interpretation” needs to be kept.
Beyond this, FDPLL is conceptually different: like any tableaux calculus, hy-
per tableau branches on (sub-)formulas, whereas FDPLL branches in a binary
way on complementary literals, i.e. uses “cut” as the single inference rule. The
latter is more general and “builds in” standard improvements like factorization
automatically.

What was said about hyper tableau applies equally to the disconnection
method [Bil96]. Also, no model computation result was given for this calculus.

Also related are Plaisted’s hyper-linking calculi: the semantic hyper-linking
calculus (SHL) [LP92] proceeds by searching in a guided way for (not necessarily
ground) instances of input clauses, which are tested for unsatisfiability by a
propositional DPLL procedure. Much of what was said about hyper tableau
above applies to this calculus as well. In particular, unlike SHL, FDPLL does not
interleave two processes “clause instance generation” and “propositional DPLL”.
The former process occurs in FDPLL only “locally” within the splitting rule,
and derived clause instances need not be kept. It seems worth to investigate
combinations of SHL and FDPLL, e.g. by replacing propositional DPLL in SHL
by FDPLL, or picking up the idea of guided instance generation in SHL to
improve FDPLL. However, this is future work.

Quite different is the ordered semantic hyper linking (OSHL) calculus [PZ97].
OSHL has many interesting features, for instance “semantical guidance”. In the
intersection with FDPLL, it can be described as a calculus that applies unit-
resulting resolution as long as possible, and then splits with a ground literal in
order to begin the next round. The main motivation for FDPLL however was to
get rid of such ground splits. Therefore, it seems realistic to possibly improve on
OSHL by bringing in the non-ground splitting technique of FDPLL.

Future work. A part of my FDPLL research plan is an efficient implementation.
So far, only a slow and prototypical implementation in Prolog exists (available
from my home page). Although it lacks such crucial features like term index-
ing, the performance seems promising, in particular for satisfiable or non-Horn
problems without equality (there is no built-in equality treatment yet). In the
respective subdivisions SAT and NNE of the CASC-16 system competition 1999,
FDPLL scored rank 4 of 6 and rank 4 of 10, respectively. From the TPTP li-
brary [SSY94], FDPLL can also solve some difficult unsatisfiable problems quite
quickly (e.g. ANA002-4, the intermediate value theorem, in 3 seconds). The over-
all success rate is about 40% (Otter: 52%) for a time limit of 10 minutes.

Other sources for future work are combinations of the techniques described
here with hyper-linking calculi, equality treatment and improved termination
behavior to name a few. On the theoretical level, the relationship between the
model representation capabilities in FDPLL and the atomic model representa-
tions [GP98] used in the resolution and tableau world should be clarified.

Acknowledgments. I am grateful to the members of our group for discussions
about FDPLL. David Plaisted, Mark Stickel and Ryuzo Hasegawa read the paper
in depth and helped to clarify concepts. Three referees gave valuable comments
and suggestions, in particular concerning improvements of the Commit rule.

References

[Bau98] Peter Baumgartner. Hyper Tableaux — The Next Generation. In Harry
de Swaart, editor, Tableaux-98, LNAI 1397. Springer, 1998.

[Bec98] Bernhard Beckert. Integration und Uniformierung von Methoden des
tableaubasierten Theorembeweisens. Dissertation, University of Karlsruhe,
1998.

[BBOS98] Wolfgang Bibel, Stefan Brüning, Jens Otten, and Thorsten Schaub. Volume
I, Chapter 5: Compressions and Extensions. In Wolfgang Bibel and Peter H.
Schmitt, editors, Automated Deduction. A Basis for Applications, pp. 133–
179. Kluwer Academic Publishers, 1998.

[BEF99] Peter Baumgartner, Norbert Eisinger, and Ulrich Furbach. A confluent con-
nection calculus. In Harald Ganzinger, editor, CADE-16, LNAI 1632, pp.
329–343, Trento, Italy, 1999. Springer.

[BFN96] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper Tableaux.
In JELIA 96, LNAI 1126. Springer, 1996.

[Bil96] Jean-Paul Billon. The Disconnection Method. In P. Miglioli, U. Moscato,
D. Mundici, and M. Ornaghi, editors, Tableaux-96, LNAI 1071, pp. 110–126.
Springer, 1996.

[CA96] J.M. Crawford and L.D. Auton. Experimental results on the crossover point
in random 3sat. Artificial Intelligence, 81, 1996.

[CL73] C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

[CP95] Ricardo Caferra and Nicolas Peltier. Decision Procedures using Model Build-
ing techniques. In Computer Science Logic (CSL ’95), 1995.

[D63] Martin Davis. Eliminating the irrelevant from mechanical proofs. In Pro-
ceedings of Symposia in Applied Mathematics – Experimental Arithmetic,
High Speed Computing and Mathematics, volume XV, pp. 15–30. American
Mathematical Society, 1963.

[DLL62] M. Davis, G. Logeman, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7), 1962.

[DP60] M. Davis and H. Putnam. A Computing Procedure for Quantification The-
ory. Journal of the ACM, 7:201–215, 1960.

[Ede85] Elmar Eder. Properties of Substitutions and Unifications. Journal of Sym-
bolic Computation, 1(1), March 1985.

[FL93] Christian Fermüller and Alexander Leitsch. Model building by resolution.
In E. Börger, G. Jäger, H. Kleine-Büning, S. Martini, and M.M. Richter,
editors, Computer Science Logic – CSL’92, LNCS 702, pp. 134–148. Springer,
1993.

[FL96] Christian Fermüller and Alexander Leitsch. Hyperresolution and automated
model building. Journal of Logic and Computation, 6(2):173–230, 1996.

[GP98] Georg Gottlob and Reinhard Pichler. Working with Arms: Complexity Re-
sults on Atomic Representations of Herbrand Models. In Proceedings of the
14th Symposium on Logic in Computer Science, IEEE, 1998.

[LP92] S.-J. Lee and D. Plaisted. Eliminating Duplicates with the Hyper-Linking
Strategy. Journal of Automated Reasoning, 9:25–42, 1992.

[MB88] Rainer Manthey and François Bry. SATCHMO: a theorem prover imple-
mented in Prolog. In Ewing Lusk and Ross Overbeek, editors, CADE 9,
LNCS 310, pp. 415–434. Springer, 1988.

[Pel99] N. Peltier. Pruning the search space and extracting more models in tableaux.
Logic Journal of the IGPL, 7(2):217–251, 1999.

[PZ97] David A. Plaisted and Yunshan Zhu. Ordered Semantic Hyper Linking. In
Proceedings AAAI-97, 1997.

[SSY94] G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In
Alan Bundy, editor, CADE 12, LNAI 814, pp. 192–206, Nancy, France, June
1994. Springer.

[Zha97] Hantao Zhang. SATO: An Efficient Propositional Theorem Prover. In
W. McCune, editor, CADE 14, LNAI 1249, pp. 272–275, Springer.

