
Beagle – A Hierarchic Superposition Theorem Prover

Peter Baumgartner1, Joshua Bax1, and Uwe Waldmann2

1 NICTA? and Australian National University, Canberra, Australia
2 MPI für Informatik, Saarbrücken, Germany

Abstract. Beagle is an automated theorem prover for first-order logic modulo
built-in theories. It implements a refined version of the hierarchic superposition
calculus. This system description focuses on Beagle’s proof procedure, back-
ground reasoning facilities, implementation, and experimental results.

1 Introduction

This paper describes the automated theorem prover Beagle. Beagle implements hierar-
chic superposition [2,7], a calculus for automated reasoning in a hierarchic combination
of first-order logic and some background theory. Currently implemented background
theories are linear integer and linear rational arithmetics. Beagle features new simplifi-
cation rules for theory reasoning, and well-known ones used for non-theory reasoning.
Beagle also implements calculus improvements like weak abstraction [7] and determin-
ing (un)satisfiability w. r. t. quantification over finite integer domains [6].

Beagle is written in Scala, including its implementation of the background reasoners
from scratch. Existing SMT solvers can be coupled as background reasoners as well via
a textual SMT-LIB interface. Beagle accepts problem specifications written in the TFF
format (the typed version of the TPTP problem specification language) and in the SMT-
LIB format [4,16].

In this paper we describe the above features in more detail and report on Beagle’s
performance on the TPTP problem library [17] and SMT-LIB benchmarks [16].

2 Hierarchic Theorem Proving

Hierarchic superposition [2,7] is a calculus for automated reasoning in a hierarchic
combination of first-order logic and some background theory.3 We assume that we have
a background (“BG”) prover that accepts as input a set of clauses over a BG signa-
ture ΣB = (ΞB, ΩB), where ΞB is a set of BG sorts and ΩB is a set of BG operators.
Terms/clauses over ΣB and BG-sorted variables are called BG terms/clauses. The BG
prover decides the satisfiability of ΣB-clause sets w. r. t. a BG specification, that is, a
class of term-generated ΣB-interpretations (called BG models) that is closed under iso-
morphisms. The BG specification is usually some kind of arithmetic, so ΞB could for

? NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

3 Due to a lack of space, we can only give a brief overview of the calculus and of the semantics
of hierarchic specifications. We refer to [7] for the details.

instance be {int} and ΩB could contain the BG operators 0, 1,−1, 2,−2, . . . ,+,−, <,≤.
We assume thatΩB also contains infinitely many parameters α, β, . . . , that is, additional
constants that may be interpreted freely by arbitrary elements of the appropriate domain
in different models.

The foreground (“FG”) theorem prover accepts as input a set of clauses over an
extended signature Σ = (Ξ,Ω), where ΞB ⊆ Ξ and ΩB ⊆ Ω. The sorts in ΞF = Ξ \ ΞB
and the operator symbols in ΩF = Ω \ ΩB are called FG sorts and FG operators. For
instance, ΞF might be {list} and ΩF could then contain the operators empty :→ list,
cons : int list → list, and length : list → int. We use sans-serif letters to denote
FG operators. A Σ-term is an FG term if it is not a BG term, that is, if it contains at
least one FG operator or FG-sorted variable. We emphasize that for an FG operator
f : ξ1 . . . ξn → ξ0 in ΩF any of the ξi may be a BG sort. Consequently, a FG term like
length(cons(5, empty)) may have a BG sort. Every FG operator f with a BG range sort
ξ0 ∈ ΞB is called a free BG-sorted (FG) operator.

The intended semantics is that of conservative extensions of the BG specification,
i. e., Σ-interpretations whose restriction to ΣB is a model of the BG specification. In
the concrete example above, that means that we are only interested in models of the FG
clause set whose interpretation of the BG sort int is the same as in the given BG models;
the models may neither identify different elements of the interpretation of int, say 5 and
7, nor interpret BG-sorted FG term like length(cons(5, empty)) by some new element
that was not present before. We refer to satisfiability in this sense as B-satisfiability.

Hierarchic theorem proving requires “abstracting out” terms in preparation for in-
ference rule applications.4 Weak abstraction introduced in [7] abstracts out BG terms
other than number constants and variables that occur as subterms of FG terms, so for
instance the clause cons(α, cons(x, empty)) ≈ cons(3, cons(5 + 2, y)) is converted into

z1 0 α ∨ z2 0 5 + 2 ∨ cons(z1, cons(x, empty)) ≈ cons(3, cons(z2, y))

whereas length(cons(x, y)) ≈ length(y) + 1 is left unchanged. See [7] for a discussion of
the benefits of weak abstraction.

The FG prover saturates the set of Σ-clauses using the inference rules of hierarchic
superposition, such as, e. g.,

Negative superposition
l ≈ r ∨C s[u] 0 t ∨ D

abstr((s[r] 0 t ∨C ∨ D)σ)

where σ is an mgu of l and u, These inference rules inherit the ordering and selection
restrictions of the standard superposition inference rules [1]; in addition they have the
new restriction that only the FG parts of clauses are overlapped. Since the standard in-
ferences can destroy weak abstraction, it is furthermore necessary to apply an explicit
weak abstraction to the conclusion. The term ordering � needs to satisfy certain prop-
erties specific to the hierarchic case, e. g., any concrete number must be smaller than
any other ground term. The calculus includes the generic, semantically defined notion
of redundancy well-known from standard superposition.

4 Abstracting out a term t that occurs in a clause C[t] means replacing C[t] by x 0 t ∨ C[x] for
a new variable x.

2

Since the standard superposition inference rules are modified in such a way that
only the FG parts of clauses are overlapped, that means in particular that they are never
applied to BG clauses derived during the saturation. Such clauses are instead passed to
the BG prover. The BG prover implements an inference rule

Close
C1 · · · Cn

�

if C1, . . . ,Cn are BG clauses and {C1, . . . ,Cn} is
B-unsatisfiable.

As soon as one of the two provers derives the empty clause, the input clause set has
been shown to be B-unsatisfiable.

The Define rule. One of the requirements for the refutational completeness of hierar-
chic superposition is sufficient completeness, i. e., the property that every ground BG-
sorted FG term is equal to some BG term. Sufficient completeness of a set of Σ-clauses
is a property that is not even recursively enumerable. For certain classes of Σ-clause
sets, however, it is possible to establish a variant of sufficient completeness automati-
cally [11,7]: If all BG-sorted FG terms in the input are ground, it suffices to show that
each BG-sorted FG term in the input is equal to some BG term. This can be achieved
by adding a definition αt ≈ t for every BG-sorted FG term t occurring in a clause C[t],
where αt is a new parameter (BG constant); afterwards C[t] can be replaced by C[αt].
See [7] for the corresponding Define inference rule.

3 Background Reasoning

BG reasoning is represented in Beagle as theory specific modules, “solvers”, that im-
plement a specific interface. Every solver needs to provide a decision procedure for B-
satisfiability of sets of BG clauses. The syntactic fragment of these BG clauses depends
on whether free BG-sorted constants are declared as FG constants or as parameters.
The former case leads to the A-fragment, the latter case to the EA-fragment. Moreover,
if the solver also supports quantifier elimination (QE), the decision procedure receives
sets of ground clauses only.

In all examples we use linear integer arithmetic as the background theory.

Quantifier elimination. The solver interface supports specifying a quantifier elimination
procedure on BG formulas. It is used for eliminating variables that only occur in BG
literals. This way, e. g., the clause P(x) ∨ ¬(x < y) ∨ ¬(y < 3) becomes P(x) ∨ ¬(x < 2)
by QE of y from ¬(x < y) ∨ ¬(y < 3). Applying QE this way for clause simplification
may destroy refutational completeness, since in general the simplification result is pos-
sibly larger (under the clause ordering) than the clause being simplified. To avoid this
problem, Beagle uses QE for clause simplification only during preprocessing. It also
stores with each BG clause its ground version, which is sent to the decision procedure.

Splitting. Beagle optionally splits (in particular) BG clauses into variable disjoint sub-
clauses. If QE is available and Beagle is instructed to, a ground version of each BG
clause is added to the current clause set, which is split exhaustively into unit clauses by
Beagle’s splitting rule. As a consequence, the decision procedure receives sets of unit
clauses only, akin to SMT solvers.

3

Simplification. Beagle removes disequations of certain forms from clauses by unab-
straction. For example, if cautious simplification is chosen, literals of the form x 0 d
are removed by unabstraction only if d is a concrete number.

Aggressive simplification enables the unabstraction of any term, including FG terms.
It can possibly break completeness, since there is no guarantee that the unabstracted
clause C[t] is smaller than all possible instances of C[x] ∨ x 0 t. The simplification
level of FG clauses is controlled by Beagle. Typically only the results of cautious un-
abstraction are kept; aggressive unabstraction is used to derive unit clauses which may
demodulate other clauses, but the unit clauses resulting from unabstraction are not kept.

Beyond that, simplification of arithmetic terms is realized through an internal data
structure for simplification rules. The current simplification rules are hard-coded in Bea-
gle’s implementation language Scala. Hence they are not user-modifiable, but we might
change this in a future version. For each solver there are two sets of simplification rules:
cautious simplification rules, which are known to preserve both sufficient completeness
and refutational completeness, and aggressive simplification rules, which in general do
not preserve these properties. See below for examples.

Solvers. Beagle implements solvers for linear integer arithmetic (LIA) and linear ratio-
nal arithmetic (LRA). It also accepts linear real arithmetic but the differences are merely
syntactic. Alternatively to the built-in LIA solver, existing SMT solvers can be coupled
via a textual SMT-LIB interface.

3.1 Linear Integer Arithmetic

Quantifier elimination. The built-in LIA solver is based on Cooper’s quantifier elim-
ination algorithm and its improvements as introduced in [8]. It accepts arbitrary BG
formulas, in particular conjunctions of clauses. The code structure follows roughly the
algorithm described in [10]. The LIA solver is used for both deciding satisfiability of
sets of BG clauses and for the elimination of variables as described above.

We have integrated several improvements into Cooper’s algorithm to make it more
practical. For example, in conjunctions that contain the atomic formulas α < 5 and
α < 3 the former can be removed; a limited form of subsumption. Other simple and
cheap techniques include elimination of variables that admit unbounded solutions and
elimination of equations α ≈ t where α does not occur in t. Furthermore, if a conjunction
contains the atomic formulas s1 < α, . . . , sm < α and α < t1, . . . , α < tn, given that α
does not occur elsewhere, then α can be removed by exhaustive resolution. (Resolution
of s < α and α < t yields s + 1 < t.) If α does occur somewhere else, then this form
of resolution can still be used to prove unsatisfiability when s + 1 < t is false. This is
similar to the first step of the Omega test for deciding Presburger arithmetic [14].

The improvements mentioned above often help to solve problems much faster.5

However, some of them are effective only on conjunctions of literals. In support of
this, our algorithm deviates from the standard Cooper algorithm by multiplying out
disjunctions that arise from quantifier instantiation. This often avoids deeply structured

5 E.g., the GEG-problems in the TPTP problem library.

4

“or-and” formulas. As a special case, disjunctive normal form is preserved by solving
and multiplying out the conjunctions separately.

The final step of Cooper’s algorithm involves instantiation over representatives of
congruence classes of solutions for the target variable which quite often lead to pro-
hibitively large formulas. Using an improvement suggested in [10] Beagle occasionally
defers this instantiation (based on the expected number of instances) until a later round
of quantifier elimination. This is done by substituting a fresh variable and terms that de-
scribe the solution classes as occasionally a shorter proof of satisfiability/unsatisfiability
can be found using a different variable.

When the Close rule applies Beagle determines a minimal unsatisfiable subset of the
BG clauses passed to the decision procedure. This is advantageous for the main loop’s
dependency-directed backtracking since cases which only produce BG clauses that are
irrelevant for unsatisfiability do not need to be backtracked to. Currently, minimal un-
satisfiable subsets are determined by binary search on the whole clause set passed to
the (built-in) LIA solver, or by unsatisfiable cores returned by Z3 [12] as a solver.

Simplification and arithmetic terms normalization. The cautious simplification rules
for LIA comprise evaluation of arithmetic terms, e. g. 3 · 5, 3 < 5, α + 1 < α + 1
(equal lhs and rhs terms in inequations), and rules for TPTP-operators, e. g., $to rat(5),
$is int(3.5). For aggressive simplification, integer sorted subterms are brought into a
polynomial-like form and are evaluated as much as possible. For example, the term
5 ·α+ f(3+6, α ·4)−α ·3 becomes 2 ·α+ f(9, 4 ·α). These conversions exploit associativity
and commutativity of + and ·. Pure BG formulas always produce proper polynomials,
which can be used directly by the QE procedure without further conversions.

Aggressive simplification does not always preserve sufficient completeness. For ex-
ample, in the clause set N = {P(1+(2+f(x))), ¬P(1+(x+f(x)))} the first clause is aggres-
sively simplified, giving N′ = {P(3+ f(x)), ¬P(1+ (x+ f(x)))}. Notice that both N and N′

are LIA-unsatisfiable, sgi(N)∪GndTh(LIA) is unsatisfiable, but sgi(N′)∪GndTh(LIA)
is satisfiable. Thus, N is (trivially) sufficiently complete while N′ is not.

We have also implemented heuristics for normalizing equations and inequations for
aggressive simplification. Inequations are normalized by first eliminating the operators
>, ≥ and ≤ in terms of <. The QE procedure treats < as a primitive, so this is a natu-
ral choice. Then, the monomials of the lhs and rhs polynomials are moved around so
that only positive signs and only addition of monomials (not subtraction) results. The
rationale is to normalize terms by removing unnecessary operators. Similar heuristics
apply for equations, which also attempt to arrive at orientable equations. Normalizing
(in)equations may remove or install sufficient completeness and destroy refutational
completeness. Yet, in our experiments we found that aggressive simplification is far
superior to cautious simplification in practice, hence it is enabled by default.

3.2 Other Arithmetic Features

Linear Rational Arithmetics. The solver for LRA comprises a Fourier-Motzkin style
quantifier elimination procedure for eliminating BG variables as described in Section 3.
The decision procedure implements the Simplex algorithm extended to strict inequal-
ities [9]. The cautious simplification rules evaluate arithmetic subterms, and the ag-

5

gressive simplification rules rewrite sub-terms towards a flat structure by exploiting
AC-properties of the operators. Syntactic differences between concrete numbers aside,
linear real arithmetics is treated by additional lemmas that are valid in real arithmetics.
The LRA solver is not as far developed as the LIA solver.

Nonlinear Arithmetic. Beagle features a simplistic treatment of non-linear arithmetics.
During preprocessing, every occurrence of a non-linear multiplication subterm s · t is
replaced by nlpp(s, t), where nlpp is a dedicated foreground function symbol of the
proper arity. As soon as s or t in nlpp(s, t) is replaced by a concrete number, the resulting
nlpp is turned into a multiplication term again. In the LIA case, axioms for nlpp are added
that express multiplication in terms of repeated addition.

4 Proof Procedure

This section provides a summary of Beagle’s proof procedure. The proof procedure
follows by and large standard techniques, but treats BG formulas in a specific way on
some occasions.

Preprocessing. Beagle accepts its input formulas in two alternative syntaxes, TPTP-
TFF [19] and SMT-LIB (version 2) [4]. The SMT-LIB language is richer than the TPTP-
TFF language due to its support for polymorphic sorts and functions. The SMT-LIB also
features predefined theories such as arrays. Beagle automatically monomorphizes sorts
and function symbols, and it generates array axioms as needed.

Both TPTP-TFF and SMT-LIB provide syntax for full first-order logic (not just
clausal logic). Beagle has two translators into clause normal form (CNF), a standard one
and a Tseitin-style translator which introduces definitions for “complex” subformulas.
The default is the standard CNF translator, because it gave the better results overall over
the problems in the TPTP.

CNF transformation includes Skolemization of existentially quantified variables.
Beagle’s CNF transformation treats existentially quantified integer variables in a special
way, by removing them with QE instead of Skolemization, if possible. For example, the
input formula ∀x : Z P(x)∨∃y : Z y 0 x+1 becomes ∀x : Z P(x), whereas Skolemization
would have given ∀x : Z P(x) ∨ f(x) 0 x + 1. In particular, if the input formulas are all
BG formulas over the integers, no Skolem functions are introduced, and so Beagle is a
decision procedure for that class.

Main loop and simplification. Beagle’s main loop is the well-known “Discount loop”.
It maintains two clause sets, Old and New, where Old is initially empty and new is
initialized with the input clauses. On each round, a selected clause is removed from
New and simplified by the clauses from Old and New. The simplified selected clause
then is put into Old and all inferences between it and the clauses in Old are carried
out. The resulting clauses are simplified by the Old clauses and go into New again, this
way closing the loop. If a BG clause results, the solver is called with the thus extended
current set of all BG clauses.

Implemented simplification techniques include standard ones, like demodulation
by unit clauses, proper subsumption deletion, and removing a positive literal L from a

6

clause in presence of a unit clause that instantiates to the complement of L. All clauses
in Old are mutually simplified. Backward simplification is optional.

By default, a split rule is enabled that breaks clauses into variable-disjoint sub-
clauses and branches out correspondingly. Dependency-directed backtracking is used
to avoid exploring irrelevant cases.

The default term ordering is LPO if BG theories are present, otherwise it is KBO.
See [7] for properties of the LPO specific to hierarchic superposition.

Fairness. Fairness is achieved by a combination of clause weights and their derivation
age. This is controlled by a parameter “weight-age-ratio”, a non-negative number say-
ing how many lightest clauses are selected before an oldest clause is selected. Clause
weights are computed in such a way that selection based on weights only would be a
fair strategy. In our experiments we used a weight-age-ratio of five.

Auto mode. Beagle includes a simple auto mode. When on, Beagle first tries the default
flag setting. If there is no conclusive result within half of the given time limit, Beagle
starts again using a setting where BG variables in the input may be instantiated by
BG-sorted FG terms, rather than only by BG terms.

5 Implementation

Beagle implements support for both the TPTP-TFF and SMT-LIB input languages using
Scala’s parser combinator library. Beagle’s internal formula representation follows TFF,
so to support the SMT-LIB standard it must perform sort monomorphization and adding
axioms for predefined theories like arrays. This is done with the help of the separately
developed SMTtoTPTP library [5].

Beagle uses a simple term-indexing scheme which is essentially top symbol hash-
ing. This is used to retrieve term positions eligible for superposition or demodulation
within clauses.

Scala specific features. Beagle makes heavy use of many built in Scala datastructures,
primarily List, Vector and Map. Not only are the implementations well optimised but
they also provide powerful abstractions allowing for simple and maintainable code.

Scala’s declarative style encourages the use of immutable values, which minimizes
data duplication. Scala also provides a lazy evaluation feature, which we have found
extremely useful for caching data: e. g. the computation of maximal literals in a clause
can be deferred until the clause becomes eligible for an inference and it may never be
computed if the clause is simplified first. We found that the Scala REPL interpreter is
an invaluable tool for debugging: for example, one could take the (usually large) result
of an invalid derivation and programmatically investigate it using functional operators
like map or filter.

The simple structure of logic formulas is a good fit for property based testing li-
braries such as scalacheck6 which use grammars to generate random test data. These
data are used as input for properties given as universally quantified predicates.

6 http://scalacheck.org/

7

http://scalacheck.org/

6 Performance

TPTP. We tried Beagle on the first-order problems from the TPTP–v6.1.0 problem
library [17] that involve some form of arithmetic, including non-linear, rational and real
arithmetics. The experiments were carried out on a MacBook Pro with a 2.3 GHz Intel
Core i7 processor and 16 GB of main memory. The CPU time limit was 180 seconds.

Although Beagle detected countersatisfiabilty of some of the (73) non-theorem
problems, we discuss in the following the performance on the problems with a “the-
orem” or “unsatisfiable” status only. Of these 972 problems in total Beagle was able to
prove 781 using automatic strategy selection. The backup strategy was attempted a total
of 21 times and was successful in 15 cases, thereof 13 times in the TPTP DAT category.

Table 1 summarizes the results. Broken down by the TPTP problem category we see
that Beagle’s best performance was on ARI, DAT and NUM. These are characterized
by smaller problem sizes with an arithmetic reasoning component. On the other hand
performance was much worse on those problems which involve large problem sizes
such as SWW and SWV (translations of model-checking problems). Beagle failed to
solve any HWV problems (large EPR encodings of bounded model-checking) due to
the size of the formulas and emphasis on boolean reasoning. The remaining easy (rated
< 0.1) problems that Beagle failed to solve were all non-theorems, most involving mul-
tiplication operators. The two solvable problems with a rating of 1.0 are ARI536=2.p
and DAT086=1.p.

Category ARI DAT GEG HWV MSC NUM PUZ SEV SWV SWW SYN SYO
Total 539 103 5 88 2 43 1 6 2 177 1 3
Solved 531 98 5 0 2 41 1 2 2 97 0 2

Rating ≥ 0.0 ≥ 0.1 ≥ 0.2 ≥ 0.3 ≥ 0.4 ≥ 0.5 ≥ 0.6 ≥ 0.7 ≥ 0.8 ≥ 0.9 1.0
Total 972 853 771 527 391 343 253 180 129 97 97
Solved 781 666 584 340 210 162 85 29 12 2 2

Table 1: Beagle performance on the TPTP “theorem” or “unsatisfiable” problems. The
first table breaks down the number of solved problems by category. The second table
filters by problem rating. The column ≥ 0.6, for instance, means “all problems with a
rating 0.6 or higher.”

We have also coupled the SMT solver Z3 [12] as an alternative to the built-in LIA
solver. In our experiments we also tried a modified split rule that leaves BG subclauses
unsplit. In particular, BG clauses are never split then. The rationale is that letting the
SMT solver deal with (non-unit) BG clauses might be better than the default FG split-
ting into sets of unit clauses. As an alternative to the built-in LIA solver and using the
modified split rule or not hence gives four base configurations.

We ran Beagle in all four base configurations and several additional flag settings.
But, surprisingly, Z3 does not give better results than the built-in solver. We found that
the default split rule is superior to the modified one, both in conjunction with Z3 and
the built-in solver. Over all settings, however, almost exactly the same problems are

8

solvable with any of the two solvers and in roughly the same time. This finding might
not carry over to problems that require more complex BG reasoning than those in the
TPTP.

SMT-LIB. We tested Beagle on the 2014 release of SMT-LIB [16] focusing on the
logics with an arithmetic component. Specifically these were ALIA, AUFLIA, UFLIA,
UF IDL (integer difference logic) and the corresponding quantifier free problem sets,
including QF LIA. (The LIA category was ignored as it contains only problems from
the TPTP). We selected only those problems indicated as unsatisfiable in the problem
description and Beagle was run with automatic strategy selection (as described above).
We found a mix of results: Beagle was able to solve a few problems unsolved by SMT
solvers7 yet there were also quite a few problems that were marked as ‘trivial’ (all SMT
solvers in the SMT-Eval 2013 can solve them in under five seconds), which Beagle
could not solve. Overall Beagle solved the following problems by category (QF refers
to the quantifier free fragment of the logic to the left):

Logic ALIA QF AUFLIA QF UFLIA QF UFIDL QF QF IDL QF LIA
Total 41 72 4 516 6602 195 62 335 694 2610
Solved 31 40 4 205 1736 155 42 29 24 28

In total Beagle solved 89 problems not solved by SMT solvers and these were divided
among the following subcategories of ‘UFLIA/sledgehammer’:

Category Arrow Order FFT FTA Hoare StrongNorm TwoSquares
Solved 17 2 34 20 2 14

There were many problems which Beagle could not parse, as it is not optimized for
large problem sets. In total there were 1,391 trivial problems not solved by Beagle.

It was not possible to draw broad conclusions about which categories Beagle is
best suited to. For example, all of the hardest problems Beagle solved were among the
UFLIA benchmarks, but there were also at least 200 trivial problems from that category
were unsolved (in the ‘simplify’ and ‘simplify2’ subcategories). Also it was hypothe-
sised that Beagle would perform much worse in the quantifier free fragment, and that
was the case for QF IDL and QF LIA, but not so for QF UFLIA and QF AUFLIA.

CASC-J7. Most recently Beagle participated in the CASC-J7 competition [18]. in the
TFA division (Typed First-order Arithmetic theorems). For this division the problem
set consists of typed first-order problems with an arithmetic component over integers,
rationals, or reals, of which roughly half were previously unseen by competitors.

Other solvers entered in the TFA category were CVC4 [3], SPASS+T [13], Zip-
perposition (see [18]), and Princess [15]. In terms of overall problems solved Beagle
placed third equal with 173/200 solutions, only three fewer than the winning solver
CVC4. Beagle performed quite well in terms of mean efficiency (solutions per second
multiplied by number of solutions); it was outperformed by only CVC4 8.

7 For this we used the difficulty ratings given for SMT-Comp 2014.
8 For an explanation of how mean efficiency is computed see the CASC-J7 proceedings [18].

9

7 Availability

Beagle is available at https://bitbucket.org/peba123/beagle under a GNU Gen-
eral Public license. The distribution includes the Scala source code and a ready-to-
run Java jar-file. A more experimental version of Beagle is maintained at https:
//bitbucket.org/joshbax189/beagle.

References

1. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection
and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

2. L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for hierarchic
first-order theories. Appl. Algebra Eng. Commun. Comput, 5:193–212, 1994.

3. C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and
C. Tinelli. CVC4. In CAV, volume 6806 of LNCS 6806, pp. 171–177. Springer, 2011.

4. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In A. Gupta and
D. Kroening, eds., SMT Workshop, 2010.

5. P. Baumgartner. SMTtoTPTP – A Converter for Theorem Proving Formats. In A. Felty and
A. Middeldorp, eds., CADE-25, LNAI. Springer, 2015.

6. P. Baumgartner, J. Bax, and U. Waldmann. Finite Quantification in Hierarchic Theorem
Proving. In S. Demri, D. Kapur, and C. Weidenbach, eds., IJCAR 2014, LNAI 8562, pp.
152–167. Springer, 2014.

7. P. Baumgartner and U. Waldmann. Hierarchic Superposition With Weak Abstraction. In
M. P. Bonacina, editor, CADE-24, LNCS 7898, pp. 39–57. Springer, 2013.

8. D. C. Cooper. Theorem Proving in Arithmetic Without Multiplication. In Machine Intelli-
gence, volume 7, pages 91–99, New York, 1972. American Elsevier.

9. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In CAV, LNCS
4144, pp. 81–94, Springer, 2006.

10. J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University
Press, 2009.

11. E. Kruglov and C. Weidenbach. Superposition Decides the First-Order Logic Fragment Over
Ground Theories. Mathematics in Computer Science, pp. 1–30, 2012.

12. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and
J. Rehof, eds., TACAS, LNCS 4963, pp 337–340. Springer, 2008.

13. V. Prevosto and U. Waldmann. SPASS+T. In G. Sutcliffe, R. Schmidt, and S. Schulz, eds.,
ESCoR: Empirically Successful Computerized Reasoning, CEUR Workshop Proceedings,
pp. 18–33, Seattle, WA, USA, 2006.

14. W. Pugh. The Omega Test: A Fast and Practical Integer Programming Algorithm for Depen-
dence Analysis. In ACM/IEEE conference on Supercomputing, pp. 4–13. ACM, 1991.

15. P. Rümmer. A Constraint Sequent Calculus for First-Order Logic With Linear Integer Arith-
metic. In I. Cervesato, H. Veith, and A. Voronkov, eds., LPAR, LNCS 5330, pp. 274–289.
Springer, 2008.

16. SMT-LIB, The Satisfiability Modulo Theories Library. http://smt-lib.org/.
17. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF

Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.
18. G. Sutcliffe. The 7th IJCAR Automated Theorem Proving System Competition - CASC-J7.

AI Communications, 28:To appear, 2015.
19. G. Sutcliffe, S. Schulz, K. Claessen, and P. Baumgartner. The TPTP Typed First-order Form

with Arithmetic. In N. Bjørner and A. Voronkov, eds., LPAR-18, LNCS 7180. Springer, 2012.

10

https://bitbucket.org/peba123/beagle
https://bitbucket.org/joshbax189/beagle
https://bitbucket.org/joshbax189/beagle
http://smt-lib.org/

	Beagle – A Hierarchic Superposition Theorem Prover

