The Model Evolution Calculus

Peter Baumgartnéand Cesare Tinefli

1 nstitut fur Informatik, Universitat Koblenz-Landapet er @ini - kobl enz. de
2 Department of Computer Science, The University of lowayel | i @s. ui owa. edu

Abstract. The DPLL procedure is the basis of some of the most successful
propositional satisfiability solvers to date. Althoughgimally devised as a proof-
procedure for first-order logic, it has been used almostusialy for proposi-
tional logic so far because of its highly inefficient treatihef quantifiers, based
on instantiation into ground formulas. The recent FDPLIcahls by Baumgart-
ner was the first successful attempt to lift the procedurééofirst-order level
without resorting to ground instantiations. FDPLL liftsttee first-order case the
core of the DPLL procedure, the splitting rule, but ignoréseo aspects of the
procedure that, although not necessary for completenessracial for its ef-
fectiveness in practice. In this paper, we present a newkealdoosely based on
FDPLL that lifts these aspects as well. In addition to beimgaae faithful lifting

of the DPLL procedure, the new calculus contains a more syaie treatment

of universal literals one of FDPLL's optimizations, and so has the potential of
leading to much faster implementations.

1 Introduction

In propositional satisfiability the DPLL procedure, naméeiits authors: Davis, Put-
nam, Logemann, and Loveland [8, 7], is the dominant methoddidding (complete)
SAT solvers. Its popularity is due to its simplicity, its ppbmial space requirements,
and the fact that, as a search procedure, it is amenable terpdwut also relatively
inexpensive heuristics for reducing the search space.kehanthese heuristics and to
very careful engineering, the best SAT solvers today canessfully attack real-world
problems with hundreds of thousands of variables and ofelsu

Interestingly, the DPLL procedure was actually devisedigio as a proof-procedure
for first-order logic. Its treatment of quantifiers is higlimefficient, however, because
it is based on enumerating all possible ground instances a@ffgut formula’s clause
form, and checking the propositional satisfiability of eaxftthese ground instances
one at a time. Given the great success of DPLL-based SAT rsaleday, two natural
research questions arise. One is whether the DPLL procedurde properly lifted
to the first-order level—in the sense first-order resolulifd® propositional resolution,
say. The other is whether those powerful search heuristidsake DPLL so effective
at the propositional level can be successfully adaptecdetdittst-order case. We answer
the first of these two questions affirmatively in this papeoypding a complete lifting
of the DPLL procedure to first-order clausal logic by meana néw sequent-style cal-
culus, theModel Evolutioncalculus, oM E for short. We believe that the(E calculus

can be used to answer the second question affirmatively dsaltebugh that will be
the subject of our future work.

The recent FDPLL calculus by Baumgartner [3] was the firstessful attempt
to lift the DPLL procedure to the first-order level withousoeting to ground instan-
tiations. FDPLL lifts the core of the DPLL procedure, theitiplg rule, but ignores
another major aspeathit propagation[18], that although not necessary for its com-
pleteness is absolutely crucial to its effectiveness iripra. The calculus described in
this paper lifts this aspect as well. While thé€ calculus borrows many fundamental
ideas from FDPLL and generalizes it, it is not an extensioRBPLL proper but of
DPLL [16], a simple propositional calculus modeling the maintdeas of the DPLL
procedure.

A very useful feature of the DPLL procedure and, by extensifrthe DPLL cal-
culus is its ability to provide a (Herbrand) model of the ihfarmula whenever that
formula is satisfiable. The procedure generates this madedinentally as it goes. The
ME calculus can be seen as lifting this model generation psdodbe first-order level.
Its goal is to construct a Herbrand model of a given®eif clauses, if any such model
exists. To do that, during a derivation the calculus mamgaicontext/, a finite set of
(possibly non-ground) literals. The conteéxis a finite—and compact—representation
of a Herbrand interpretatiolp, serving as a candidate model for The induced inter-
pretationl, might not be a model of because it does not satisfy some clause®.in
The purpose of the main rules of the calculus is to detecsthiation and eitherepair
Ia, by modifying/\, so that it becomes a model®f or recognize thaty is unrepairable
and fail. In addition to these rules, the calculus containgraber of simplification rules
whose purpose is, again like BPLL, to simplify the clause set and, as a consequence,
to speed up the computation.

TheME calculus starts with a default candidate model, one thfigst no positive
literals, and “evolves it” as needed until it becomes anaanodel of the input clause
set®, or until it is clear thai® has no models at all. An important by-product of this
evolution process is that all terminating derivations oatisfiable clause sd produce
a context whose induced interpretation is indeed a modél dhis makes the calculus
well suited for all applications in which it is important ttsa provide counter-examples
to invalid statements, as opposed to simply proving themlidity.

The calculus is refutationally sound and complete: an icfause se® is unsatis-
fiable if and only if the calculus (finitely) fails to find a mdder ®. While the calculus
is obviously non-terminating for arbitrary input sets,dtterminating for the class of
ground clauses (of course), and for the class of clausekingsfitom the translation of
conjunctions of Bernays-Schodnfinkel formulas into clafosen.

As mentioned, thé/(€& calculus is already a significant improvement over FDPLL
because it is a more faithful lifting of the DPLL procedurayving additional rules
for simplifying the current clause set and the current cant¬her advantage over
FPDLL is that it contains a more systematic and generalrtreat ofuniversal literals
one of FDPLL's optimizations. As we will see, adding uniaigterals to a contextim-
poses strong restrictions on future modifications of thatext, with the consequence
of greatly reducing the non-determinism of the calculus.

This paper is organized as follows. After some formal pralamies, given below,
we describe in Section 2 thHePLL calculus, a declarative version of the DPLL pro-
cedure. We then define and discuss the Model Evolution agddul Section 3 as a
first-order extension dbPLL. We sketch a proof of correctness for the calculus in Sec-
tion 41 Then we show in Section 5 how the calculus compares to ottarlca related
work, and we conclude the paper with directions for furttesearch.

Formal Preliminaries. Most of the notions and notation we use in this paper are the
standard ones in the field. We report here only notable éiffees and additions.

We will use two disjoint, infinite sets of variables: a $€of universalvariables,
which we will refer to just as variables, and anothernsetvhich we will always refer
to asparametersWe will useu,v to denote elements &f andx,y to denote elements
of X. We fix a signaturez throughout the paper and denote Bf° the expansion
of 2 obtained by adding t& an infinite number of fresh (Skolem) constants. Unless
otherwise specified, when we say term we will m&&ff-term. Ift is a term we denote
by Var(t) the set oft’s variables and byPar(t) the set ott's parameters. A terrhis
groundiff Var(t) = Par(t) = 0. All of the above is extended to literals and clauses in
the obvious way.

A substitutionp is arenaming on WC (V U X) iff its restriction toW is a bijection
of W onto itself;p is simply arenamingif it is a renaming orVV U X. A substitutiono
is p-preservingshort for parameter preserving) if it is a renaming\anf s andt are
two terms, we writes > t, iff there is a substitutiow such thaso = t. We say thasis
avariant of t and writes~ t, iff s>t andt > sor, equivalently, iff there is a renaming
p such thasp =t. We writes 2 t if s> t butsst We writes >t and say that is a p-
instance of sff there is a p-preserving substitutiansuch thato =t. We say thasis a
p-variant of t and writes~t, iff s>t andt > s; equivalently, iff there is a p-preserving
renamingp such thatsp = t.We writes >t if s>t buts#t. Again, all of the above is
extended from terms to literals in the obvious way.

We denote literals by the letteks L. We denote by the complement of a literal
L, and byLSk° the result of replacing each variableloby a fresh Skolem constant in
¥sko\ 3 We denote clauses by the lett€andD, and the empty clause ty. We will
write L vV C to denote a clause obtained as the disjunction of a (possibpty) clause
C and a literalL. When convenient, we will treat a clause as the set of itsalise A
(Herbrand) interpretation lis a set of groun@s®-literals that contains either or L,
but not both, for every grountk°-literal L. Satisfiability/validity of literals and clauses
in a Herbrand interpretation is defined as usual.

2 The DPLL Calculus

The DPLL procedure [7] can be used to decide the satisfigloififinite sets of ground
(or propositional) clauses. Following [16], the essencefprocedure can be captured
by a sequent-style calculus, tb@LL calculus, consisting of the derivation rules given
below. The calculus manipulates sequents of the farm®, whereA, the contextof
the sequent, is a finite set of ground literals anid a finite (multi)set of ground clauses.

1 A complete and detailed proof can be found in the long versfahis paper [4].

st AF®,LVC [c#O,
P ALF® LVC ALF®, LVC LA CéA
A Fo L . [LéA, A LF® LVC
Assert —————— if { _ Subsume — 1 ———
ALF®, L LA ALF®
AR O ALFO® LVC
Empty ——— if ®#0 Resolve ——————
AFO ALF®C

The intended goal of the calculus is to derive a sequent ofcitm A - 0 from an
initial sequen® F &y, wheredy is a clause set to be checked for satisfiability. If that is
possible, thenbg is satisfiable; otherwisabg is unsatisfiable. Informally, the purpose
of the context\ is to store incrementally a set afserted literalsi.e., a set of literals
in dg that must or can be true f@bg to be satisfiable. When - 0 is derivable from
0O+ dp, the contexi\ determines a (Herbrand) model ®§: one that satisfies an atom
pin @q iff p occurs positively im\.

The context is grown by thassert and theSplit rules. TheSplit rule corresponds to
the decomposition in smaller subproblems of the DPLL pracedThe unit propaga-
tion process of the DPLL procedure (see, e.g., [18]) is mexibly theAssert, Resolve
andSubsume rules. TheResolve rule can be used to remove from a clause all literals
whose complement has been asserted, where&sibisame rule can be used to remove
from a clause set all clauses containing an asserted literal

The DPLL calculus is easily proven sound, complete and terminatingan be
shown [16] that the calculus maintains its completenesa évilae Split rule is con-
strained to split on positive literals only. Another chatigg does not alter the calculus
in any fundamental way is the replacement of Enepty rule by the more powerful rule

AE®, L1V---VL (o))
Close 1 Dt 7# (1”>O’
O C1,....LneA

which reduces to thEmpty rule given earlier whem = 0 and, in turn, can be simu-
lated byn applications ofResolve followed by one application oEmpty. The Model
Evolution calculus, described next, is a lifting of the wensof DPLL that applies the
positive-literal restriction oisplit and use€lose in place ofEmpty.

3 The Model Evolution Calculus

The Model Evolution calculus works with sequents of the fokm @, similarly to
DPLL. This time, however/ is a finite set of literals possibly with variables or with
parameters, called again a context, @nds a set of clauses possibly with variables.
The defining feature of the calculus, modeled after FDPLIthéswayDPLL contexts
are extended to the first-order case, and the role they pldyiving the derivation and
the model generation process.

Definition 3.1 (Context).A contextis a set of the fornr{—v} US where eV and S is
a finite set of literals each of which is parameter-free orighte-free.

WherelL is a literal and\ a context, we writd. €. A if L is a p-variant of a literal
in A, and writeL €= Aif L is a p-instance of a literal in.

Definition 3.2 (Contradictory). A literal L is contradictory witha context\ iff Lo =
Ko for some Ke.. A and some p-preserving substitutionA context\ is contradictory
iff it contains a literal that is contradictory witt.

Example 3.3.Let A := {—v, p(x1,Y1), —q(v1)}. Then—p(h(x),u), =p(v,u), andq(y)
are all contradictory with\. However,q(f(v)) andr(x), say, are not. (Recall that
X,X1,Yy1 are variables while, vy, u are parameters.)

We will work only with non-contradictory contexts. Thanksthe next two notions,
such contexts can be used as finite denotations of (certairreind interpretations.

Definition 3.4 (Most Specific Generalization)Let L be a literal andA a context. A
literal K is a most specific generalization (msg) lofin A iff K > L and there is no
K’ e A such that K K’ > L.

Definition 3.5 (Productivity). Let L be a literal, C a clause, anfl a context. A literal
K produced. in A iff (i) K is an msg of L inA\, and (i) there is no Ke> A such that
K 2 K’ Z L. The context\ produces. iff it contains a literal K that produces L in.

Example 3.6.Let A :={-v, p(v1,9(u1)), =p(v1,9(v1)), q(h(u),v), =q(u,g(v))}. The
literals —p(v,u), p(v,g(u)), p(x,a(a)), —-p(a,g(a)) are all produced by, specifically
by =v, p(v1,9(u1)), p(vi,9(u1)), =p(v1,g(v1)), respectively. On the other hand, the
literals p(v,u), =p(v,g(u)), =p(x,9(a)), p(a,g(a)) are not produced by\. Note that,
however, botlg(h(u),g(v)) and—q(h(u),g (v)) are produced bx\.

A consequence of the presence of the pseudo-literah every context\ is that
N produced or L for every literalL. We can use this fact to associate/t@ unique
Herbrand interpretation.

Definition 3.7 (Induced interpretation). Let A be a non-contradictory context. The
interpretation induced bi, denoted by, is the Herbrand interpretation that satisfies
a positive ground literal L iff L is produced b.

Note that since it is possible for a contéxto produce both a ground literhland
its complement, the above definition is asymmetric, becaligealways chooses to
satisfyL overL if L is positive. Contrapositively, this means thatjfsatisfies a ground
literal L andL is positive, therl. and possibly als& are produced by\. If on the other
handL is negative, theih but notL is produced by\.

It should be clear now that the purpose of the pseudo-litevah a context\ is to
provide adefaulttruth-value to those ground literals whose value is notrdgiteed by
the rest of the context. In fact, consider a ground litéralich that neithek norL is
produced by\ \ {-v}. If L is positive, then it is false ity because it is not produced
by A at all. If L is negative, then it is true i, because it is produced by.

For a given sequemt - @ the interpretation induced by the contéximay falsify a
clause ofp. This situation is detectable through the computatiooaitext unifiers

Definition 3.8 (Context Unifier). Let A be a contextand & L1V ---VLnV- - VL
a parameter-free clause, whee< m < n. A substitutiorno is a context unifier ofC
against\ with remaindet 10V --- vV Lyo if there are fresh K ... K, €~ A such that

1. ois a most general simultaneous unifier{&;,L;},...,{Kn,Ln},
2. (Par(Kj))oCV fori=1,....m and(Par(K))o ZV fori=m+1,...,n.

We say, in addition, thad is productiveif Ki producedjoin Aforalli =1,....n. We
say thato is admissible (fosplit) if for all distincti,j = m+1,...,n, Ljo is parameter-
or variable-free andVar(L;o) N Var(Ljo) = 0.

Note that each context unifier has a unique remainderisfa context unifier with
remaindeiD we call each literal oD a remainder literalof o.

Example 3.9.Let A := {—v, p(v1,u1), =p(X1,9(X1)), q(v2,9(v2))} and letCy :=r(x) v
—p(x,Y). The substitutionsy := {Vi— r(X), v1 — X, U1 — Y} andoz ;= {Vi—r(v1), X+—
vi, U1 — Yy} are both context unifiers @; against\ with respective remaindersx) vV
=p(x,y) andr(vi) vV —p(v1,y). While they are both productive, neither of them is ad-
missible; the former because its remainder literals arevaonable-disjoint, the latter
because its remainder contains both variables and paremete
By contrast, the substitutiasg := {v r(vy), X+— vi, y+— U } is a context unifier of
Cy against\, with remainder (v1) vV —p(vy, U1), that is both productive and admissible.
Consider now the clausg; = —p(x,y) V —q(x,y). The substitutioros := {v; —
vz, Ug — g(Uz), X+— V2, y — g(U2)} is a context unifier o€, against\ with remainder
—p(v2,g(v2)). Itis admissible, but it is not productive because theaitefvy,u;) of A
chosen to unify with-p(x,y) does not producep(x,y)os = p(vz,g(V2)).

Admissible context unifiers are fundamental in the Modell&tion calculus. With
a context\ and a claus€, the existence of an admissible context unifie€afgainst\
is a sign that the induced interpretatipnmight not be a model of. The discovery of
an admissible context unifier of C against the current conteAtprompts the calculus
to add a literal ofCo to A, with the goal of makingC valid in the newls. This literal
is chosen only among the remainder literal&phon-remainder literals can be ignored
with no loss of completeness. Note that while the existeriGndmissible context
unifier o of C against\ is necessary for the unsatisfiability©fin 15, it is not sufficient
unlesso is also productive. For completeness then, the calculudsieeconsider only
remainder literals of admissible unifiers that are also petite.?

Productivity issues aside, note that although contextensifor a given clausé and
contextA are easily computable (they are just simultaneous mostrgkumgfiers), they
are not unigue and may not be admissible. Nevertheless allalgs does not need
to search for admissible context unifiers: any context unda be composed with
a renaming substitution, determined deterministicallghsthat the resulting context
unifier is admissible. The completeness of the calculus isaffected by computing
admissible contexts unifiers this way.

2 But see [4] for a discussion on the usefulness of considerimgproductive context unifiers
as well.
3 Again, see [4] for more details.

Parameters vs. VariablesBefore moving to describe the rules of the Model Evolution
calculus, it is important to clarify the respective roleattparameters and variables play
in the calculus. Each derivation in the calculus starts witequent of the formv @y,
where®q contain only standard clauses, i.e. clauses with no passietut possibly
with variables. Similarly, all sequents generated durirdeavation contain standard
clauses only. Variables then can appear both in clausears@is contexts. Parameters
instead can appear only in contexts. The rdle of variabiésinva clause is the usual
one. In contrast, the role of variables and parametersméticontext is to constrain, in
different ways, how a candidate model can be repaired.

Now, given a sequemt - @, the interpretatiotmy needs repairing only if it falsifies
a clauseC in @. In that case there is an admissible context undief C againstA. If
every instance df falsified byl is also an instance @o, to makeC valid in |, it is
enough to modify\ so thatls satisfiesCo. One way to do that is to pick froif8o a
literal Lo that is not contradictory with\, andassertit by adding it toA. The idea is to
make the unit clauses valid in 15, which then make€o valid as well. Now recall that,
sinceo is admissible, the added literal will not contain both pagéens and variables.

If Lo is a parameter-free literal, aniversal literalin FDPLL's terminology, the
assertion ofLo cannot be retracted. No repairs that involve making ingaraf Lo
false in the induced interpretation will be allowed fromttpaint on.

If Lo is variable-free instead, the assertionLaf expresses simply the conjecture
that there is a model @o satisfying all ground instances bé. This conjecture can be
partially revised later if evidence against it is found. § hiight happen if the calculus
later adds to the current contekt a literal Lo’, for some context unifieo’, andCo’
is an instance o€o. After the addition, the induced interpretation satisfietydhe
instances olo that are not an instance &b’. At that point,Co may not be valid
anymore because its instarée’ may now be falsified. If so, the calculus will detect it
and will try to makeCa’ valid (thereby restoring the validity @o) by looking inCao’
for a literal other tha.g’ that can be added to the context, as explained earlidrdor

Derivation Rules. The Model Evolution calculus lifts thBPLL calculus to the first-
order level by providing a first-order version DPLL’s rules—Split with the positive
literal restriction Assert, Subsume, Resolve andClose—and adding one new simplifi-
cation rule Compact, specific to the first-order case.

In [4] we show that, except for the presence of the pseudaalit-v in its contexts,
the Model Evolution calculus reduces precisel\D@LL when the input clause set is
ground. We refer the interested reader to [4] for more detailwhy this is the case. In
brief, the reason is that in the ground c&senpact never applies, and the other rules
reduce exactly to their namesakeDRLL.

A definition and a brief explanation f(E’s rules follows next.

N RO L
Assert ALFO.L if K>LfornoK €A, andL is not contradictory with\

))

As in DPLL, theAssert rule is extremely useful in reducing the non-determinisrthef
calculus. Every candidate model of a clause®et {L} mustmakeL valid in order
to become a model apU {L}. The Assert rule achieves just that by addirgto the
context. Note that sindeis parameter-free, its addition to the context is not re¢atale.

Also note that the rule does not apply if the (permanentylitgliof L has been already
established. This is the case whemrontains a—necessarily parameter-free—Ilit&ral
such thaK > L. The rule does not apply alsolifis contradictory withA. In that case,
however, the candidate model is unrepairable. Tlee rule will detect that.

C#£0O,
o is an admissible context
Spii AF® CVL i unifier ofC v L againstA

A LoF®,CVL A, ([0)™°F®,CvL with remainder literalLo,
neitherLo nor (Co)*is

contradictory withA

As in DPLL, Split is the only flon’t-know non-deterministic rule of the calculuSplit

is the rule that discovers when the current candidate madigfies one of the clauses
in the current clause set. It does so by computing a contdiieun with non-empty
remainder for a clause with at least two literals. Once itdimdt attempts to repair the
model by selecting a remainder litetad and adding eithdto or its complement to the
context. Adding the complement bb in alternative td_c is necessary for soundness,
as the current clause set may have no models that satisff course, the addition
of La’s complement to the context will not make the selected d&ugL valid in the
new candidate model. But it will make sure that no contexfieno’ of Cv L hasLo’

in its remainder, forcing the calculus to select other ditetto makeC Vv L valid. Note
thatSplit does not quite add the complementaf. whenLo is parameter-free it adds
a Skolemized version dfa.* This is in accordance to our treatment of parameter-free
literals in contexts as universal sentences.

',
Subsume M if K>L.
AKE®

The purpose asubsume is the same as iBPLL: to get rid of clauses that are valid in the
current candidate model—and are guaranteed to stay soe @hesxactly those clauses
containing a p-instanck of a—necessarily parameter-free—litekalin the current
context. AlthoughSubsume is not needed for completeness, it is useful in practice
because it reduces the size of the current clause set.

AKFO,LVC .
Resolve ———— if K> L.
AKE®,C

The Close rule is in essence the dual 8fibsume, and likeSubsume it is not needed
for completeness. Its main goal is to generate unit clawggish can then be added to
the context byAssert as parameter-free literals.

NKLED |
Compact ——— if K>L
ANK HO

4 WhenLao is variable-free the Skolemization step is vacuous.

The Compact rule as well is unnecessary for completeness but usefuldotige. To
understand the rule’s rationale it is important to know thié way the calculus is
defined Compact’s precondition holds only iK is a parameter-free literal. As discussed
in a previous section, parameter-free context literalsdstar all their instances, with
no exception. This means that when a parameter-free likeialadded to a context,
all literals in the context that are an instancekobecome superfluous. The purpose of
Compact is to eliminate these superfluous literals.

Close AE® C it d£0orC#£0,
O C has a context unifier again&twith an empty remainder

The idea behinclose is that when its precondition holds there is no way to reper t
current candidate model to make it sati€fyThe replacement of the current close set
by the empty clause signals that the calculus has given upatic&andidate model. Note
that, because dtesolve, it is possible for the calculus to generate a sequent aantai
an empty clause among other clauses. These rule recognizes such sequents and
applies to them as well. To see that it is enough to obserteftiraany context\, the
empty substitution is a context unifier @fagainst\ with an empty remainder.

A Derivation Example. We show a simple example of a derivation of an unsatisfiable
clause set. We sketch the construction of only one brancheofimal derivation tree,

as the other branches are constructed similarly. Condigefollowing initial sequent
(where we use the usual mathematical notation for greadeitygl:

~(X=y)V(y=2)V(x>2), (x=0)V(0>x), [x >0,0> x|,
~(x=0) V(X =x), 7(0=>x) V(|x| = x), (|| = ¢) V=(|e| = —[c])
Each unit clause in the clause set can be moved into the ddnjtexeans ofssert,
and then removed from the set by meanSafsume. This results in the sequent:
S(XZY) VY22V (X2 2), (x=0)V (0= X),
v, x| > 0,0> —[x| - ~(x>0) V(x| >X), ~(0=x)V (x| >X),
~(lef = ¢) v=(lef = —[c])

By considering the fresh p-variants| > 0,0 > —|x2|, —v1 of context literals, the
substitutiono = {X— |x1|, y+— 0, z— —|Xo|, V1 — |X1| > —|x2|} is an admissible con-
text unifier of ~(x >y) vV =(y > 2) V (x > 2) with residue|x;| > —|x2|. Since neither
|x1] > —|x2| nor its complement is contradictory with the context, we ead it the
context by one application d&plit. With |x1| > —|X2| in the context, we can then sim-
plify =(jc| > ¢) v =(|c| > —|c]) to =(|c| > ¢) with Resolve, and then moves(|c| > ¢)
to the context by means @ksert andSubsume, obtaining

=V, x| >0, 0> —[x] ~(xzy)Vo(y=2)V(x=>2), (x=0)V(0=Xx),
Xt = =[xef, ~(lcf = ¢) =(x=0) V(X = %), =(0=x) V(X =X),
Using—v and—(|c| > c) we can applysplit to ~(x > 0) V (|x| > X) with remainder
=(]c| > 0), and then to-(0 > x) V (|x| > x) with remainder-(0 > |c|), and obtain:
.oy =(je] = 0), 2(0>c)) F ..., x=0)V(0>X), ...
At this point we can apply th€lose rule because, with the context literal§|c| > 0)

and—(0 > |c|), the substitutioro = {x — |c|} is a context unifier ofx > 0) v (0 > X)
with an empty remainder.

V

4 Correctness of the Calculus

In this section, we sketch a proof of soundness and compssdior the Model Evolu-
tion calculus. For that first we need a proper notion of dé¢iova

Derivations in the Model Evolution calculus are defined imrte ofderivation trees
where each node corresponds to a particular applicatiordefigation rule, and each
of the node’s children corresponds to one of the conclusibtige rule. More precisely,
a derivation tree in th&(& calculus is a labeled tree inductively defined as follows.

A one-node tree is a derivation tree iff its root is labelethvei sequent of the form
A+ ®, whereA is a context andb is a clause set. A tre¥ is a derivation tree iff it is
obtained from a derivation trek by adding to a leaf nodd in T new children nodes
N1, ...,Nn so that the sequents labeliMg, . . ., Ny, can be derived by applying a rule of
the calculus to the sequent labeliNgin this case, we say that is derived fronil. We
say that a derivation trek is aderivation tree of a clause sét iff its root node tree is
labeled with—v - @.

We say that a branch in a derivation treeligsedif its leaf is labeled by a sequent
of the formA I O; otherwise, the branch spen A derivation tree iglosedif each of
its branches is closed, and itdpenotherwise. We say that a derivation tree (of a clause
set®) is arefutation tree (ofd) iff it is closed.

In the rest of the paper, the lettewill denote an ordinal smaller than or equal to
the first infinite ordinal.

Definition 4.1 (Derivation). A derivation (inM¢) is a possibly infinite sequence of
derivation treegT;)i<k, such that for all i with0 < i < K, T; is derived fromT;_1.

We say that a derivatio® = (Ti)i<« is aderivation of a clause sab iff Tq is a
one-node tree with labghv} - ®. We say thatD is arefutation ofd iff D is finite and
ends with a refutation tree @.

We show in the next sections that for all sétg of Z-clauses with no parameters,
dq is unsatisfiable ifflbg has a refutation in the calculus.

SoundnessTo prove the calculus sound we use the fact that its derivatiles preserve
a particular notion of satisfiability which we caltsatisfiability after [3].

Let us fix a constara from the signatur&s®\ 3. Given a literalL, we denote by
L@ the result or replacing every parameterdby a. Similarly, given a contexf\, we
denote by\? the set ofunit clauseobtained from\ by removing the pseudo-literalv
and replacing each literalof A with the unit claus&.2. We say that a sequeft- @ is
a-(un)satisfiableff the clause sef\®U @ is (un)satisfiable in the standard sense—that
is, has no (Herbrand) model.

Lemma 4.2. For each rule of thév(€ calculus, if the premise of the rule is a-satisfiable,
then one of its conclusions is a-satisfiable as well.

Proposition 4.3 (Soundness)ror all sets®q of parameter-fre&-clauses, if®g has
a refutation tre€l , then®y is unsatisfiable.

Fairness. As customary, we prove the completeness of the calculus nggpect to
fair derivations The specific notion of fairness that we adopt is defined fdynzes

follows. For that, it will be convenient to describe a trees the pairN,E), where
N is the set of the nodes &f andE is the set of the edges @f. Each derivation
D = (Ti)ick = ((Ni, Ei))i<k iIn ME determines dimit tree T := (Uj -« Ni,Ui<« Ei). It
is easy to show that a limit tree of a derivatignis indeed a tree. But note that it will
not be a derivation tree unlegsis finite.

Definition 4.4 (Persistency)Let T be the limit tree of some derivation, and Bt=
(Ni)i<k be a branch inT with k nodes. Lef\; - ®; be the sequent labeling node, for
alli < k. We define theersistent context literalsf B asAg := Ui« Ni<j<«/\j, and
thepersistent clausesf B as®g = Ui« Ni<j<x Pj-

Although, strictly speaking/\g is not a context because it may be infinite, for the
purpose of the completeness proof we treat it as one. Thisiilple because all relevant
definitions (Definitions 3.1 to 3.8) can be applied withouaiche ta/\g as well.

Fair derivations in thé(¢ calculus are defined in terms ekhausted branches

Definition 4.5 (Exhausted branch).Let T be a limit tree, and leB = (N)i<«x be a
branch inT with K nodes. For all i K, letAj - ®; be the sequent labeling node Nlhe
branchB is exhaustedff for all i < k all of the following hold:

(i) ForallC € ®g, if Splitis applicable toA; - ®; with selected clause C and produc-
tive context unifieo, then there is a remainder literal L @fand a j> i with j <k
such thatA\j produces L but does not produte

(ii) For all unit clauses Le ®g, if Assert is applicable toA; - @; with selected unit
clause L, then there is a3 i with j <k such that Le> A;j.

(iii) ForallC € dg, Close is not applicable to\; - ®; with selected clause C.

(iv) & # {0},

Definition 4.6 (Fairness).A limit tree of a derivation idair iff it is a refutation tree or
it has an exhausted branch. A derivatiorfag iff its limit tree is fair.

We point out that fair derivations in the sense above exidizaa computable for any set
of (parameter-freed-clauses. A proof of this fact can be given by adapting a tegtn
used in [3] to show the computability of fair derivations iDIFLL.

CompletenessFor the rest of this section, I be a set of parameter-fréeclauses
and assume tha? is a fair derivation ofp that is not a refutation. Observe thas limit
tree must have at least one exhausted branch. We denoteahishibyB = (N;)i<k.
Then, byA; - ®;, we will always mean the sequent labeling the ndién B, for all
i <K. (As a consequence, we will also have that= {-v} and®g = ®.)

The following proposition is the main result for proving tbelculus complete.

Proposition 4.7. If O ¢ ®g, then h; is a model ofPg.

Proof. (Sketch) Suppose ad absurdum tthgt does not contain the empty clause, but
Ing is not a model ofbg. This means that there is a ground insta@gef a clauseC =
LyV---VLywithn>1 from®g that is not satisfied b, . This is to say that the literals
Lay,...,Layare all satisfied byp, . It can be shown thatg produced.yy, ..., Lyy then.

We distinguish two complementary cases, depending on whetk 1 orn > 1, and
show that they both lead to a contradiction.

(n=1) C consists of the single liter&l;. Given that\g produces yy, it can be shown
that there is & € ®g andi such that for allj > i with j < k, K € Aj; andK produces
Liyin Aj. SinceL; is a (unit) clause fron®bg, there is ari’ such that_; € ®;, for all
j’ > i’. Without loss of generality assume that i’. By Definition 4.5-(iii), Close is not
applicable to\; - @; with selected clauske;. Sincel; € @, this entails that all context
unifiers ofL; against\; have a non-empty remainder. With the result above alidut
can be shown thatssert is applicable to\; - @; with selected unit clause;.
According to Definition 4.5-(ii) then, there is p> i with j < k and anL € A;
such thatlL > L;. It is not difficult to see that with.; being parameter-fre&, must be
parameter-free as well. From this and the fact that L1y we can then show thalt;
produced 1y but notLyy, which contradicts the assertion above that for some litéra
and allj > i, K € Aj produced.y.

(n > 1) By a suitable lifting lemma, there exist fresh p-varialts ..., K, €~ A\g
and a substitutiow such that (i)o is a most general simultaneous unifier{éf,L; },
ooy {Kn,Ln}, (i) forall k=1,...,n, Ly > Lo = Lyy, and (iii) for allk = 1,...,n, K¢
produced o in Ag. By Definition 3.8,0 is a productive context unifier 6f against\g
with some remainddD. Itis not difficult to prove that then an admissible contexifier
of C againstAg can be obtained as' = ap, for some renaming. Letk € {1,...,n}
and observe that a literll produces a literdl in a context\ iff K produces a variant
of L in A. From the fact thaky produced o in Ag, we have thakKy produced (o’ in
A as well. Similarly to the case= 1, it can be proven that there is asuch that for
allk=1,...,nand allj > i with j <k, Kx € Aj andKj produced «o’. By assumption,
Cis a clause ofbg. Hence, there is & such thaC € @ for all j’ > i’. Without loss of
generality suppose that> i’. By Definition 4.5-(iii), Close is not applicable ta\; - ®;
with selected claus€. Hence, all context unifiers &2 againstA\; must have a non-
empty remainder. By the abow;, produced o’ fork=1,...,n, and so, in particular,
A produces all remainder literals of. It can be shown then, thapilit is applicable to
A F @; with selected clausé and productive context unifier'. By Definition 4.5-(i),
there is then a remainder literlab’ of o’ and aj > i such that\; produced.c’ but not
Lo’. This contradicts the conclusion above that forka# 1,...,n, K¢ € Aj produces
Lo’ in Aj. O

The completeness of the calculus is a consequence of Ptiopo$i7. We state it
here in contrapositive form to underline the model compoitebilities of M E.

Theorem 4.8 (Completeness).et D be a fair derivation of® with limit treeT. If T

is not a refutation tree, thed is satisfiable; more precisely, for every exhausted branch

B of T, Ia, is @ model ofp.

When the brancB in Theorem 4.8 is finite/\g coincides with the context, say,
in B's leaf. From a model computation perspective, this is a iportant fact because
it means that a model of the original clause set—or rathenit fiepresentation of it,
A\n—is readily available at the end of the derivation; it does mave to be computed
from the branch, as in other model generation calculi.

The calculus is proof confluent [5]: any derivation of an uiz$@ble clause set ex-
tends to a refutation. In fact, because of the strong corapésts result in Theorem 4.8,
the calculus satisfies an even stronger property, as #iiestrby the corollary below.
In practical terms, the corollary implies that as long as @vdgon strategy guarantees
fairness, the order of application of the rules of the calsus irrelevant for proving
an input clause set unsatisfiable, giving to #é calculus the same kind of flexibility
enjoyed by thedPLL calculus at the propositional level.

Corollary 4.9 (Proof Convergence)Let® be a a parameter-free clause set over the
signatureZ. If @ is unsatisfiable, then every fair derivation®fis a refutation.

5 Conclusions

In this paper we have introduced the Model Evolutidfi€) calculus. ThéV(E calculus
extends the propositional part of the DPLL procedure to-firgier clause logic by
supplying unification-based, first-order versions of DRLikiference rules. Compared
to its mostimmediate predecessor, FDPLL [8]¢ is a more faithful lifting of DPLL, as
it also includes first-order versions of the unit propagatigdes, which are not present
in FDPLL. Two additional improvements &€ over FDPLL, both leading to a smaller
search space, are the absence of a rule like FDRLd/smit, and the ability ofSplit to
generate universal literals more often than in FDPLL.

Related work. Besides the FDPLL calculu3/¢ is related to the family oinstance-
based methodsProof search in instance-based methods relies on mainggénset of
instances of input clauses and analyzing it for satisfigtuintil completion M€ is not
an instance-based method in this sense, as clause instmecesed only temporarily
within the Split inference rule and can be forgotten after the split has basied out.
The contemporary stream of research on instance-baseddsettas initiated with
the Hyperlinking calculus [11], whose current success@ridered Semantic Hyper-
linking (OSHL) [14]. OSHL has many interesting features pog¢sent inM¢E. In the
intersection withM &, OSHL can be described as a calculus that grows a set of ground
clauses, based on the detection of input clause instaniségefhby a current interpre-
tation and a repair operation roughly comparabl@®, however at the ground level.
Some instance-based calculi have been formulated witkicthusal) tableau frame-
work. The initial work in this direction is Billon’s discomttion method [6]. The calcu-
lus described in [2] relates to the disconnection methodmiilke the hyper resolution
calculus relates to the resolution calculus. The discammemethod has been picked
up by Letz and Stenz for further improvements, which incladdedicated inference
rule for deriving unit clauses [13]. Comparedtéc, tableau calculi branch on subfor-
mulas (or, the literals of a clause in the clausal logic caseppposed to complementary
literals like M & does. For the propositional case it is easy to see that birajoh com-
plementary literals is more general than branching on elaus fact, each branching
on a clause with literals can be simulated by splits with complementary literals.

5 The detailed discussion in [3] on FDPLL's related work exteo MéE as well. The points
made there will not be repeated here in detail. However, lsedong version of the present
paper [4] for an extended section on this related work.

Furthermore, some improvements like factoring (see [1&})aaitomaticallyrealized
by the branching on complementary literals approach. Aesyatic investigation on
how this fact exactly carries over to the first-order case—N¢E vs. certain clausal
tableau calculi—is left for future work.

Two variants of an instance-based method are described bidtet al. [10]. One
of them, the “Primal Approach” seems to be very similar todisonnection method
(see above) although, unfortunately, the relation witk théthod is not made explicitin
[10]. The other variant, the “Dual Approach”, differs frotretformer by the presence of
auxiliary clauses of the forr{ — L generated during the proof search, whig€el) is a
connection of literals occurring in the current clause Netsimplification mechanisms
have been described, like for instance those based on wpagation rules. Finally, a
rather abstract framework for instance-based calculi vhiso admits simplification
techniques is described in [9].

A significant difference between the instance based metivedsre aware of and
theME calculus is that the former maintain a growing set of instgnaf inputclauses
while ME does maintain a growing set of instances of irlftatals: the current context.
Since contexts grow more slowly than sets of clause insgrtbés may lead to an
(at least) exponential advantage € regarding space consumption. As a drastic
example, consider a claug€eof the formPy(x1) V- -- V Py(Xq) and assume a signature
that includesn constants. There are clearly more thdhdifferent instances of, and
there seems to be no principled way to avoid including thatyraf them in the set
of instances of input clauses (by nature of instance-bastlads, clause subsumption
cannot be used). IME in contrast, since contexts never contain p-variants of#mee
literal, the number of instances Bfliterals is at most 8- (m+ 2).

Further Work. Our immediate goal is to implement tBé€ calculus and evaluate its
potential in practice. In addition to that, various direas for further work are conceiv-
able. We list some below, referring the interested readpt]timr more details.

The inference rules of tHe(€ calculus make sure that only literals that are parameter-
free or variable-free are inserted into contexts. “Mixedrals with parameters and
variables presently occur INE only temporarily, during the computation of branch
unifiers. A possible improvement would involve admittingxend literals in contexts,
allowing then individual variables to be singled out as emsal, as opposed to entire
literals as it is now.

The ME& calculus is proof convergent (cf. Corollary 4.9), and sodhger of rule
applications does not matter. Thisn't-carenondeterminism can be exploited to have
the calculus stepwise simulate certain other calculi ssck.g., the propositional logic
oriented OSHT calculus [17] or the Hyper Tableaux calcuiuyg].

The most significant search heuristics for improving thefqgrarance of DPLL-
based solvers arearning (i.e. the addition of dynamically generated lemmas to the
input clause set) ardtelligent backtrackingf split choices. While the latter is straight-
forward to achieve withidM(&, the former is not. In particular, a number of alternatives
seem possible which need further theorical investigatimhexperimental evaluation.

As presented here, the calculus always starts with an imgtiion that assigns false
to all ground atoms. By simply replacing the pseudo-literalby v, it is possible to
have the calculus start instead with a complementary liitiarpretation. The kind of

semantic guidance achieved in OSHL [14] by means of a udaredkinitial interpre-
tation, is trivially achievable ilM & when this interpretation is denotable by a context:
one simply starts the derivation with that context. More kvisrneeded to allovME

to start with arbitrary interpretations, in particular,esrthat cannot be encoded into a
(finite) context.

In many theorem proving applications, a proper treatmeetoftional theories or
equality is mandatory. In principle, there seems to be mgtligainst a modern treat-
ment of equality ifME by means of a superposition-style inference rule and of Isimp
fication rules based on rewriting [1].

References

1. L. Bachmair and H. Ganzinger. Chapter 11: Equational ®eag in Saturation-Based The-
orem Proving. In W. Bibel and P. H. Schmitt, editofgjtomated Deduction. A Basis for
Applications volume I. Kluwer, 1998.

2. P. Baumgartner. Hyper Tableaux—The Next Generation. .ldeHSwaart, editoRroc. of
TABLEAUX'98 volume 1397 oL NAI, pages 60-76. Springer, 1998.

3. P. Baumgartner. FDPLL—A First-Order Davis-Putham-Lroge-Loveland Procedure. In
D. McAllester, editorProc. of CADE-17volume 1831 of NAI, Springer, 2000.

4. P. Baumgartner and C. Tinelli. The Model Evolution Calsul Fachberichte Informatik
1-2003, Universitat Koblenz-Landau, 2003.

5. W. Bibel. Automated Theorem Provinyieweg, 1982.

6. J.-P. Billon. The Disconnection Method. In P. Miglioliadt, editorsProc of TABLEAUX'96
volume 1071 oLNAI, pages 110-126. Springer, 1996.

7. M Davis, G. Logemann, and D. Loveland. A machine progranttfeorem proving.Com-
munications of the ACMb(7):394-397, July 1962.

8. M. Davis and H. Putnam. A computing procedure for quartiion theory.Journal of the
ACM, 7(3):201-215, July 1960.

9. Harald Ganzinger and Konstantin Korovin. New directiongstance-based theorem prov-
ing. INLICS - Logics in Computer Scienc2003. To appear.

10. J. N. Hooker, G. Rago, V. Chandru, and A. ShrivastavatidPénstantiation Methods for
Inference in First Order LogicJournal of Automated Reasonir28:371-396, 2002.

11. S.-J. Lee and D. Plaisted. Eliminating Duplicates whith ilyper-Linking StrategyJournal
of Automated Reasoning:25-42, 1992.

12. R. Letz, K. Mayr, and C. Goller. Controlled Integratiasfsthe Cut Rule into Connection
Tableau CalculiJournal of Automated Reasonintf3, 1994.

13. R. Letz and G. Stenz. Proof and Model Generation with @isection Tableaux. In
R. Nieuwenhuis and A. Voronkov, editor&roc. of LPAR’01 volume 2250 ofLNAL
Springer, 2001.

14. D. A. Plaisted and Y. Zhu. Ordered Semantic Hyper Linkifmurnal of Automated Reason-
ing, 25(3):167-217, 2000.

15. G. Stenz. DCTP 1.2 - System Abstract. In U. Egly and C. GnE#er, editors,Proc. of
TABLEAUX'02 volume 2381 of NAI, pages 335—-340. Springer, 2002.

16. C. Tinelli. A DPLL-based calculus for ground satisfigtgimodulo theories. In G. lanni and
S. Flesca, editor®roc. of JELIA'02 volume 2424 of NAI. Springer, 2002.

17. A. Yahya and D. A. Plaisted. Ordered Semantic Hyper&alt. Journal of Automated
Reasoning29(1):17-57, 2002.

18. H. Zhang and M. E. Stickel. An efficient algorithm for upitopagation. InProc. of Al-
MATH'96, 1996.

