Situational Awareness for Industrial Operations

Peter Baumgartner and Patrik Haslum™
CSIRO/Data61 and Australian National University

Abstract

The smooth operation of industrial or business enterprises rests on constantly
monitoring, evaluating and projecting their current state into the near future. Such
situational awareness problems are not well supported by today’s software solutions,
which often lack higher-level analytic capabilities. To address these issues we propose
a modular and re-usable system architecture for monitoring systems in terms of their
state evolution. As a main novelty, states are represented explicitly and are amenable
to external analysis. Moreover, different state trajectories can be derived and analyzed
simultaneously, for dealing with incomplete or noisy input data. In the paper we
describe the system architecture and our implementation of a core component, the
state inference engine, through a shallow embedding in Scala. The implementation of
our modeling language as an embedded domain-specific language grants the modeler
expressive power and flexibility, yet allows us to abstract a significant part of the
complexity of the model’s execution into the common inference engine core.

1 Introduction

The smooth operation of industrial or business enterprises like supply chains, assembly
lines or warehouses, critically depends on maintaining situational awareness. In our
context, situational awareness is the problem of gathering changes in the operation’s
environment, aggregating them for deriving the current state of the operation at a
semantically high level, projecting the current state into the near future, alerting the
user of potential problems, and proposing corrective action if required.

Situational awareness in this sense currently lacks software tool support. While
database systems and ERPs can help human operators gain situational awareness, they
do not offer a complete solution with integrated analytic capabilities. In this paper
we address this issue by proposing an architecture for a novel situational awareness
software platform.

This architecture has its origin in a situational awareness and scheduling system
for the factory floor of an industrial client, which we generalize to be applicable in
a variety of domains, ranging from local operations, such as factory floor assembly
lines or warehouse management, to large scale and distributed operations, such as

*This research is supported by the science and industry endowment fund.

national or international supply chains or the Array of Things [AoTl]. We also describe
a concrete realization of one core component, the state inference engine.

The state inference engine maintains a current state which is updated whenever an
external event comes in. In the current implementation, state update is described in
terms of rules that are triggered by such events. It offers a modeling paradigm that
assigns rule sets to (parallel) processes, one process for each entity of interest, and
message channels connecting these processes. The execution of the processes’ rules
enables inference about aspects of the state that are not directly observable, including
disjunctive reasoning about alternative states and execution histories.

While the model is domain-dependent, the interpreter is universal. Itis, in essence,
a forward-chaining rule engine and is realized via a shallow embedding in Scala. The
main advantage of this design is that it gives access to the full power of the Scala lan-
guage to represent process states and express conditions, functions and transformations
on them. It provides expressive power and flexibility, at little implementation cost. It
is this modeling language and inference engine implementation that we put forward as
the main contribution of this paper. Due to its modular design, our architecture allows
for transparently substituting another method of state inference, e.g., conflict-directed
diagnosis [[GHT12], with its associated modeling formalism.

We emphasize that we do not intend to replace existing systems, e.g., ERPs or
tailored scheduling systems. Instead we want to capitalize on their functionality
by integrating and augmenting them with inference capabilities for the purpose of
gaining a more holistic view. An important feature of our system is the explicit and
externally analyzable state representation, enabling it to simultaneously represent and
explore different state trajectories, for example to assess their plausibilities and what-if
reasoning. This ability is essential to deal with noisy or unreliable data sources.

2 Related Work

Supply chains have become complex networks with automated transitions to manage
the manufacturing and flow of goods. Techniques like service oriented architectures
(SOAs) and business process modeling (BPM) [van13|] are instrumental for automating
and optimizing supply chains with respect to life cycle management, procurement,
logistics, and order management. BPM comprises methods for making business
operations explicit, such as BPMN [OMG13]], which is intended mainly for manual
use. Such explicit models are typically not designed from the ground up for situational
awareness, but they may well inform models for situational awareness. Software
designs like SOAs or model-driven architectures do not lead to situational awareness
by themselves, but may integrate situational awareness capabilities.

The basic principle of Industry 4.0 is to connect machines, work pieces and business
management systems in intelligent networks for controlling each other autonomously.
Examples are machines that can predict failures and trigger maintenance processes
autonomously, or self-organized logistics which react to unexpected changes in pro-
duction [Indl]. Companies like Oracle and SAP have proposed to go further and leverage
the new technologies for situational awareness. The underlying observation is that
automation is not enough, the overall system should be conscious and knowledgeable
of its surroundings [Obel’/]]. Indeed, some commercial “business intelligence” infor-
mation systems [SAP17] offer event management functionality that allows users to

monitor and measure supply chain activities. However, existing systems lack the capa-
bility to perform deeper inference, for instance about unobserved events or completion
of missing data.

Derigent and Thomas [DT17] expressed the need for situational awareness in the
context of the Internet of Things (IoT). They propose a corresponding architecture and
identify key functionalities. Similar proposals were made by Lee, Ardakani, Yang and
Bagheri [LAYB15], and by Singh and Tripathi [STJ14]]. They all remain somewhat
inconcrete regarding the realization of their proposals. Ghimire, Luis-Ferreira, Nodehi
and Jardim-Goncalves [GLFNJG17] go further and mention a situational awareness
module that makes use of formal knowledge representation and semantic web tech-
nologies such as OWL (Ontology Web Language). From their description, however, it
seems that the module is currently under implementation and no instantiation of their
architecture is yet available.

One of the key uses of formalized business models is monitoring their execution
for conformance to the model. Cook and Wolf [CW99] developed techniques for
uncovering and measuring the discrepancies between models and executions. They
utilize rather high-level metrics for that. In contrast, and closer to our work, Chesani,
Mello, Montali, Riguzzi, Sebastianis and Storari [CMM™*08|| propose a framework
for performing conformance checking of process execution traces w.r.t. expressive
reactive business rules. Rules are mapped to Logic Programming, using Prolog to
classify execution traces as compliant/non-compliant. Our approach is rule-based as
well but additionally offers processes and channels as a modeling paradigm. DeGia-
como, Maggi, Marella and Sardina [DMMS16] also address conformance checking,
by modelling process rules in the declarative Planning Domain Definition Language
(PDDL) and applying an off-the-shelf automated planner. They also attempt to iden-
tify which are the missing or superfluous activities in non-conformant traces, which
is a special case of the general problem of diagnosis of discrete dynamical systems
[CT94] McI94].

Formal modeling languages, such as Petri nets or the Promela language used by the
Spin model checker [Hol97], are used for modeling business processes or workflows
as well as concurrent processes in (embedded) computer systems. However, these
languages do not support modeling processes whose internal state or messages are
made up of complex data types.

In the runtime verification area, Kauffman, Havelund and Joshi [KHJ16] propose
a more specialized Scala DSL for monitoring event streams over Allen’s temporal
interval logic [[AlI83]]. For a different application, Havelund and Joshi [HJ17] propose
a Scala DSL based on hierarchical state machines. These approaches overlap with our
approach in terms of implementation (Scala DSL) but differ conceptually. In particular,
our approach supports explicit candidate model computation via disjunctive rules and
backtracking.

QOutline of the paper. The rest of this paper is structured as follows: in Section
we present an overview of our system architecture. This is needed to provide context
for our process modeling language and how it is executed. The former is the subject of
Section[d]and the latter is explained in Section[5|on the inference engine. We conclude
in Section [6] with a brief summary and future work.

3 System Architecture

The system architecture is depicted in Figure [} Its components may run in parallel,
and may be distributed across sites. We use the term “message” for the information
flowing between the components.

!.Fi
Reports Scheduler / T

Operator
Sensor Message Inference State
Output Handling Engine Maintenance
Forecasting Alarrr.1
Generation

Figure 1: System architecture.

Reports, sensor output and message handling The situational awareness system
is driven by and reacts to external events. These may come from sensors, such as RFID
and video (e.g., on a factory floor) or they may be reports filed by humans (e.g., orders
and dockets in a sales business).

We do not assume that the environment provides complete information, e.g., sensors
can fail and workers forget to report, or report incorrectly. However, we assume an
abstraction mechanism, the “Message Handler” which preprocesses input messages
into a uniform message format. It may also carry out other operations, such as adding
a timestamp, sorting, or filtering.

Inference engine In addition to sensor and report input being unreliable, one cannot
expect a complete model of the world under consideration. It is the task of the inference
engine to use the information at a given time to derive a more complete description
of the current overall state. This may involve inferring missing information, what-if
reasoning and auto-correction.

The inference engine is general and needs to be equipped with a concrete model.
In our current realization, the model is given by processes connected via message
channels. Execution is stateful, with user-supplied rules governing state transitions.
We describe this in detail in Section E] below. For now, it suffices to say that the
inference engine receives a windowed sequence of message, and, as a result, derives
one or more plausible current states. Analyzing this state or states in context with the
state history is the responsibility of the state maintenance module. Figure 2] gives an
overview of these dynamic aspects of the inference engine and the state maintenance
module.

State maintenance The state maintenance module manages a set of execution paths,
or just paths. A path is a time-finite sequence of states obtained by successive runs of

So
Events .. .& a @ C& /\
C, -
O® A A
Sy Si Ss Se
Inference Engine State Maintenance

Figure 2: Inference engine and state maintenance. Events are coming in from the channel
Co- The inference engine has processes Py, P, P3 and internal channels Cy, Cy, C3. The
channels Cj, and Coy connect the two components for exchanging states. The state
maintenance module maintains possible execution paths in terms of states derived by the
inference engine.

the inference engine (details in Section [5|below). The set of execution paths naturally
forms an execution tree, cf. again Figure[2] The execution tree is meant to represent
possible executions of the modeled system. The state maintenance constructs the
execution tree based on new states coming in from the inference engine, and it informs
the inference engine by telling it a next state to continue with. We emphasize that this
next state does not have to be among the input states, it could be any state derived from
the execution tree so far.

The full generality of execution trees may not be needed in all applications. Some
immediate special cases and variations come to mind:

* Markovian: no histories; every branch is a singleton, the most recent state.
* Deterministic: the tree has only one branch.

» Focused: only some branches, e.g., the most plausible states, are kept.

* Probabilistic: assign each state a probability distribution over its children.

While state maintenance could in principle be done by the inference engine, there are
arguments to keep it separate. Because the nodes along a path are temporally ordered,
execution trees can be analyzed with temporal logic. One would express (un)desirable
properties with logics such as linear temporal logic (LTL), computational tree logic
(CTL) and apply verification methods to them. (See [BKOS]| for a textbook on temporal
verification.) Particularly relevant are runtime verification methods capable of handling
structured data like those developed by Havelund and Peled [HP18]. For instance, one
could formulate a temporal LTL safety constraint for monitoring travel times between
waypoints for fresh goods and raise an alarm if violated. Also, techniques for log
analysis seem applicable. For instance, Brandt et. al. [BKR™ 18] propose an expressive
ontology-based framework on top of metric temporal logic.

Scheduler The scheduler provides the timeline for future events so that a mission
can be accomplished. In a supply chain domain it could be route planning, among
others (we consider the term “Scheduler” loosely).

Forecasting The components described so far are backwards-looking in time. The
forecasting module is concerned with projecting the current state into the near or
medium future, and thus requires additional information, e.g., the current schedule

stored in a database. Even a simple approximate prediction can be useful in practice.
In a supply chain domain, for instance, forecasting may combine current vehicle
locations with the routes yet to be traveled.

Alarm generation Generating alarms or notifying the user of deviations of the
expected state is a core functionality of situational awareness systems. In our current
implementation, this functionality is provided by the inference engine, which is poised
for doing this as it has at its disposal (a) the current state, (b) the current schedule, and (c)
the forecast. Incoherencies between (a), (b) and (c) are thus detectable. Conceptually,
however, alarm generation is a different activity from state inference, as it involves a
judgment about whether the state merits human attention, and not only what the state
is.

Operator The operator receives notifications from the system, in particular alarms,
and interacts with the state maintenance system to achieve faithful state representation.
The operator invokes scheduling when needed, e.g., in case of alarms.

4 The Process Modeling Language

The main rationale behind our modeling language is to provide a natural framework for
mapping actors in the real world — physical or conceptual ones, like schedules — to cor-
responding modeling entities. Our modeling approach supports object-oriented design
principles like abstraction, polymorphism, encapsulation and inheritance. The main
entities are processes, which run (conceptually) in parallel and exchange information
through messages. The message passing paradigm was inspired in part by the Spin
model checker and its modeling language Promela [Hol97]. Spin is geared towards
model checking, i.e., the problem of proving or disproving that all possible runs of
the system satisfy some property. Unlike Spin, our system is tailored towards situa-
tional awareness, which analyzes one run (the “reality’) and it supports object-oriented
design principles.

Processes Processes are models of the entities of the system at hand. The entities
could be physical entities, such as machines producing goods and workers scheduled
for work, or abstract entities, such as schedules and rosters. Processes can be created
and scheduled for execution dynamically, and they can be stopped and destroyed
dynamically. Processes are stateful, where a process’ state is given by a user-declarable
set of local variables and their current values. It is the collection of the states of all
processes that is sent to the the state maintenance component at certain times.

The computation inside a process is described by a set of rules. A rule is an if-then
statement whose condition may involve reading a channel. If a message is available at
the time and the rule’s condition is met then the rule is executable. Otherwise the rule
fails. The conclusion of a rule typically modifies local variables and/or sends data to
other processes. The conclusion can be disjunctive, which allows for branching into
alternative possible states that may be consistent with the current, incomplete state.
The details of process execution are below in Section 3]

Messages and channels Channels are used for sending messages into and out of
processes. Messages can be of any type as long as they can be serialized. We distinguish
between internal and external channels. Internal channels connect processes, while

external channels connect processes with the outside world[T] External channels can
be frozen, which means that incoming data is deferred into a buffer until the channel
is unfrozen again. Channels are lossless and can be used for m-to-n communication.
Any number of processes can subscribe to a channel. This has the effect that incoming
messages are duplicated to all subscribers, so that multiple processes can receive and
deplete the channel individually without interfering with each other, cf. Figure 3]

C.subscribe() : blocked if frozen

a 4—{ b ‘ c ‘ C ' C buffer
C..subscribe() e d | ¢ f
ab+—c] |

Figure 3: The channel subscription model. In this example, an external channel C has
already received data items a, b and ¢. Then C was frozen and incoming data d was put
into the buffer for now while ¢ and f have not arrived yet. The data a, b and ¢ already
received is actually copied and forwarded to all subscribing channels. In the example,
the upper subscribing channel has a being read from, and the lower subscribing channel
has a and b being read from.

4.1 Illustrative Example

As an example, we consider a highly simplified food supply chain, which we model the
supply as a set of interacting processes. A process may correspond to an actor in the
supply chain (such as a distributor), or an actor may be modeled as several interacting
processes (for example, a distributor may be decomposed into inventory, transportation
and contracting processes). Itis also possible for processes to model interfaces between
actors (such as a shipment). Processes act according to their internal logic, which is
codified in the model, and interact via message channels. The channel mechanism is
necessary to model the synchronization of processes (e.g., between a delivery and an
inventory process).

Processes There are goods (apples and oranges) of specific origin (Riverina and
Batlow) which are transported between warehouses (Sydney, Goulburn, Canberra) by
trucks (TruckA, TruckB and TruckC). “Truck” and “Warehouse” are process classes
in our model, and each truck and each warehouse is an instance of its class [

Messages and channels Occasionally, waypoints for the trucks are available (say
by GPS) in terms of time and location. There are dockets for goods and their origins,
and the goods are loaded on trucks at a warehouse. These events are sent as messages
into an external input channel and then dispatched into internal channels typed for
“waypoint” notifications and “loading” activities.

Process rules The process logic supports that waypoints are not noticed and that
occasionally the origin of goods is not recorded. That is, not all events find their way
into the system, or some remain partially specified . In general, the system should

IExternal channels must be equipped with deserialization for their message type.
2As an object-oriented language, Scala gives us the class/instance paradigm for free.

try its best to complete missing information or deal with it in another reasonable way.
This is obviously a domain-dependent task. For the sake of illustration, we use the
following rules for trucks:

1. If a current waypoint message specifies a location L for truck T then L is recorded
as T’s current location.

2. If a current loading message specifies that goods have been loaded on truck T
at location L and the current location recorded with T is different to L then a
waypoint message is broadcast, specifying that T is at L.

3. Ifacurrent loading message specifies that goods have been loaded on truck 7' with
“unknown” origin then (a) that loading message with “unknown” is replaced by
“Riverina” or (b) that loading message with “unknown” is replaced by “Batlow”
through broadcasts.

Rule (1) is the normal way of recording locations of trucks. Rule (2) infers a missing
waypoint message. Notice that Rule (2) does not simply set the current location
of T to L but sends a message instead. This allows other processes listening for
waypoint messages (the warehouse processes, in our example) to also be informed
about the inferred waypoint. Rule (3) branches into alternatives for resolving the
missing information by making it concrete. Each case will be investigated in a separate
strand of computation and may trigger further consequences (“what-if”” reasoning).

4.2 Shallow Embedding in Scala

Our approach to process modeling is implemented in Scala [Sca]]. Scala is a modern
high-level programming language that combines object-oriented and functional pro-
gramming styles. Scala comes with a comprehensive library (e.g., for container data
structures) and runs on the Java virtual machine, allowing Scala code to use existing
Java libraries in a straightforward way.

Scala has functions as first-class objects and supports user-definable pre-, post- and
infix syntax. With these features, Scala is suitable as a host language for embedding
domain-specific languages (DSLs). (See, e.g., [HJ17] for a Scala DSL for runtime
verification.) In our case, we embed a DSL for modeling the processes and channels
from above. The embedding is shallow, i.e., the source constructs of the DSL are actual
Scala code with DSL-specific classes and methods, which then needs to be compiled
by the Scala compiler to be executable. Scala’s (optional) call-by-name parameter
passing style enables us to take statements as data and, hence, to explicitly invoke
their execution, or not. This feature was instrumental for implementing rules as partial
functions, where rule applicability reduces to partial function definedness and rule
execution reduces to statement execution.

As a drawback, the shallow embedding approach makes it harder to analyze DSL
expressions, e.g., for errors, and statements are executed as “black boxes”. We found the
advantages outweigh the drawbacks though. The DSL includes the full host language,
meaning we can use Scala objects and classes without compromising efficiency. By
contrast, a deep embedding would require us to write an interpreter for the full DSL.
Instead of going into the details of the implementation we illustrate with some DSL
source code.

Listings[T} [2Jand3]show concrete excerpts of our food supply chain example written
in our DSL. A shallow embedding, it is comprised mostly of standard Scala. The DSL
specific language constructs are underlined.

Listing 1: Channels and message types. package and include declarations are not shown.
Here and below, the dots indicate “glue code” for serialization and deserialization.

// Waypoint: observed time and location of a specific truck
case class Waypoint(time: LocalDateTime, truck: String, location: String)
object WaypointChannel extends Channel[Waypoint]("Waypoint") { ... }

// Loading: time and location of goods from a specific origin loaded on a truck
case class Loading(time: LocalDateTime, truck: String, location: String,

goods: String, origin: String)
object LoadingChannel extends Channel[Loading]("Loading") { ... }

O N N AW =

S

// Input: sole external channel for receiving messages in Json
11 object Input extends Channel[JsObject]("Input", withinputPort = 5554, window = 1)

Listing [T] defines the main message types — Waypoint and Loading — and corresponding
internal channels. The message types are ordinary Scala case classes. Input is an
external channel whose messages are deserialized and dispatched into the other two
channels. We use JSON as the format of external messages, but any other format
can be used in its place. The declaration withinputPort=5554 specifies that the channel’s
messages are received over TCP. The window size says how many messages are taken
from the input queue for the next round of processing.

Listing 2: The Truck processes, one for each truck.

1 class Truck(ld: String) extends Process("Truck") {

// Keeps track of the current location and load of this truck

var location = "unknown"

var load = Set.empty[(String, String)] / ltems on this truck, as (goods, origin)

stateVar("location", ..., ..) // The Process state is comprised of location and load
stateVar("load", ..., ..)

O N N AW N

val waypointChannel = WaypointChannel.subscribe() // Channel subscriptions
10 val loadingChannel = LoadingChannel.subscribe()

—_

12 rules (

13 waypointChannel ——> {

14 case Waypoint(_, Id, loc) if location !=loc =>

15 location = loc // Update current location

16 case _=> () / All other cases ignored

17 2

18 loadingChannel ——> {

19 case p @ Loading(time, Id, loc, _, _) if location !=loc =>

20 /" Infer waypoint from this Loading message and inform all processes
21 WaypointChannel <—— Waypoint(time, Id, loc)

22 LoadingChannel <—— p // Send Loading message again in order not to loose it
23 case Loading(time, Id, loc, goods, origin) if origin != "unknown" =>
24 // Fully specified loading

25 load += ((goods, origin)) // Add to current load

26 case Loading(time, Id, loc, goods, origin) if origin == "unknown" =>

9

27 // Partially specified loading

28 // Branch out into two cases, replacing unknown origin by concrete places
29 or (LoadingChannel <—— Loading(time, Id, location, goods, "Riverina"),

30 LoadingChannel <—— Loading(time, Id, location, goods, "Batlow"))

31 case _=>()

32 }

33)

34}

Listing[2]defines the Truck process class. The main program (not shown here) schedules
instances by statements like Scheduler.schedule(new Truck("TruckA"). A truck’s state is
given by its location and current load. Lines 3 and 4 are the local variables, lines 6
and 7 declare them as the process’ externally visible state. Lines 9 and 10 subscribe to
the two channels of interest for the process. The rules-statement in line 12 defines two
rules.

The first rule reads the WaypointChannel via the ——> method. A case statement defines
a partial function by pattern matching. The first case sets the current location to the
location given by the Waypoint message. The second case is a catch-all to make sure
that the channel will not be blocked if the first case does not apply.

The second rule deals with Loading messages. The first case infers a (possibly
missing) Waypoint message from the Loading message and sends it to the Waypoint channel.
It will be picked up later by the first rule and processed as described above. The second
case applies to complete Loading messages, and updates the load variable. The third
case applies when the origin of the goods is "unknown". By its disjunctive conclusion,
the or-statement, state generation branches out by replacing "unknown" with concrete
alternatives.

Listing 3: The Warehouse processes, one for each warehouse.

1 class Warehouse(Location: String) extends Process("Warehouse") {

2 // Keeps track of the set of trucks currently at this warehouse
3 var trucks = Set.empty[String]

4 stateVar("trucks", ...,

5

6 val waypointChannel = WaypointChannel.subscribe()

7 rules (

8 waypointChannel ——> {

9 case Waypoint(time, truck, Location) if

10 (! (trucks contains truck)) => trucks +=truck

11 case Waypoint(time, truck, loc) if loc != Location &&
12 (trucks contains truck) => trucks —= truck

13 case _=>()

Finally, Listing 3] shows a second process class that subscribes to the Waypoint channel.
A Warehouse process instance reads Waypoint messages to track which trucks are currently
at the warehouse. Note that this process will also see Waypoint messages inferred by a
Truck process.

10

S Inference Engine

The inference engine executes the models written in our language. This is done in
rounds of scheduling and running its processes. Figure [4] shows the implemented
algorithm as pseudo-code.

At the beginning of each round, all external channels are frozen, so that incoming
messages are temporarily buffered, cf. Figure [3| The scheduler then selects in a fair
way the next process for execution among the scheduled processes. This process is
executed by trying its rules, once, in the given order. A failed rule application has no
effect, i.e., it never modifies a state or consumes channel messages. The conclusion
of the first executable rule is executed. If the conclusion is a disjunction, the first
alternative is executed and the second alternative is put away together with the current
state, and later restored for execution. That is, disjunctions require maintaining a tree of
execution sequences over saved states and channel data. The execution of a conclusion
(case) may also explicitly fail’| In this case process and channel states are restored to
what they were before.

In each round, this selection of processes is repeated until all channels are depleted
or a user-defined cutoff number of rule executions has been reached. This results in
one or more derived states. These are sent, via dedicated external channel, to the state
maintenance module, whose task is to derive from them some state that is sent back to
the inference engine as the new current state for the next round. Finally, the external
channels are unfrozen so that messages arrived in the meantime become available, and
the next round starts.

6 Conclusions

We introduced a novel architecture for situational awareness for industrial operations.
As our main contribution in this paper, we presented a design and implementation of one
core component, the inference engine and its associated process modeling language,
via a domain-specific embedding into Scala. We illustrated our approach with a small
example from the food supply chain domain. Our implemented system runs this
example as described in the main part of the paper, but we did not include a log here
for space reasons. We have also been gathering experience with our system on more
elaborate food supply chain, factory floor, and data cleaning applications. In each of
these, we have found our modeling approach of processes, rules and channels confirmed
to be viable in practice. Notwithstanding this promising experience, we need to further
mature our system as a prerequisite for wider impact. We envisage a number of things:
enriching the modeling language by an ontological component, e.g., a description
logic, for added declarative domain modeling and reasoning; employing a declarative,
temporal-logic based system for state maintenance as indicated in Section [3} model-
checking the process models (this will be possibly only for controlled subsets of Scala);
and probabilistic reasoning based on distributions for conclusions of disjunctive rules.

3Similar to Prolog’s fail statement.

11

References

[All83]

[AoT]
[BKO8]
[BKR"18]

[CMM™*08]

[CT94]

[CW99]

[DMMS16]

[DT17]

[GHT12]

[GLFNJG17]

[HI17]

[Hol97]

[HP18]

[Ind]

James F. Allen. Maintaining knowledge about temporal intervals. Com-
mun. ACM, 26(11):832-843, November 1983.

The Array of Things. https://arrayofthings.github.io/.
C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

Sebastian Brandt, Elem Guezel Kalayci, Vladislav Ryzhikov, Guohui
Xiao, and Michael Zakharyaschev. Querying Log Data with Metric
Temporal Logic. Journal of Artificial Intelligence Research, 62(5):829—
877, August 2018.

Federico Chesani, Paola Mello, Marco Montali, Fabrizio Riguzzi, Mau-
rizio Sebastianis, and Sergio Storari. Checking compliance of execution
traces to business rules. In International Conference on Business Pro-
cess Management, Springer, 2008.

M.O. Cordier and S. Thiébaux. Event-based diagnosis for evolutive
systems. In Proc. 5th Int’l Workshop on Principles of Diagnosis, 1994.

J. E. Cook and A. L. Wolf. Software process validation: Quantita-
tively measuring the correspondence of a process to a model. ACM
Transactions on Software Engineering Methodology, 8(2), 1999.

Giuseppe De Giacomo, Fabrizio Maria Maggi, Andrea Marrella, and
Sebastian Sardina. Computing trace alignment against declarative pro-
cess models through planning. In Proc. ICAPS, 2016.

William Derigent and André Thomas. Situation awareness in product
lifecycle information systems. In Service Orientation in Holonic and
Multi-Agent Manufacturing - Proceedings of SOHOMA 2017, Springer,
2017.

Alban Grastien, Patrik Haslum, and Sylvie Thiébaux. Conflict-based
diagnosis of discrete event systems: Theory and practice. In Proc.
KR’12,2012.

Sudeep Ghimire, Fernando Luis-Ferreira, Tahereh Nodehi, and Ricardo
Jardim-Goncalves. Iot based situational awareness framework for real-
time project management. International Journal of Computer Integrated
Manufacturing, 30(1), 2017.

Klaus Havelund and Rajeev Joshi. Modeling rover communication using
hierarchical state machines with scala. In Computer Safety, Reliability,
and Security - SAFECOMP 2017 Workshops, LNCS 10489, Springer,
2017.

Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng.,
23(5):279-295, May 1997.

Klaus Havelund and Doron Peled. Efficient runtime verification of
first-order temporal properties. In Model Checking Software - 25th
International Symposium, SPIN 2018, LNCS 10869, Springer, 2018.

Industry 4.0. https://en.wikipedia.org/wiki/Industry_|
4.0l

12

https://arrayofthings.github.io/
https://en.wikipedia.org/wiki/Industry_4.0
https://en.wikipedia.org/wiki/Industry_4.0

[KHJ16]

[LAYB15]

[McI94]

[Obel7]

[OMG13]

[SAP17]
[Sca]

[STJ14]

[van13]

Sean Kauffman, Klaus Havelund, and Rajeev Joshi. nfer - A notation and
system for inferring event stream abstractions. In Runtime Verification -
16th International Conference, RV 2016, LNCS 10012, Springer, 2016.
Jay Lee, Hossein Davari Ardakani, Shanhu Yang, and Behrad Bagheri.
Industrial big data analytics and cyber-physical systems for future main-
tenance & service innovation. Procedia CIRP, 38:3 — 7, 2015.

S. Mcllraith. Toward a theory of diagnosis, testing and repair. In Proc.
Sth Int’l Workshop on Principles of Diagnosis, 1994.

Supreet Oberoi. Situational =~ Awareness for the Fac-
tory Floor, 2017. https://blogs.oracle.com/iot/
situational-awareness—for-the-factory-floor.

OMG. BPMN 2.0: Specification,2013.|www .omg.org/spec/BPMN/.
SAP Event Management 9.2, 1.8 edition, July 2017.

The Scala Programming Language. https://www.scala-lang.
ord.
Dhananjay Singh, Gaurav Tripathi, and Antonio J. Jara. A survey of
internet-of-things: Future vision, architecture, challenges and services.
In 2014 IEEE World Forum on Internet of Things, WF-1oT 2014. IEEE,
2014.

Wil MLP. van der Aalst. Business process management: A comprehen-
sive survey. ISRN Software Engineering, 2013.

13

https://blogs.oracle.com/iot/situational-awareness-for-the-factory-floor
https://blogs.oracle.com/iot/situational-awareness-for-the-factory-floor
www.omg.org/spec/BPMN/
https://www.scala-lang.org
https://www.scala-lang.org

T - N N

Figure 4: Pseudo-code of the inference engine. Some details are left out, e.g., forced
termination of the inner while-loop and statements that dynamically create or destroy
processes. The definedness test on line 15 and code execution on line 19 is possible
thanks to Scala’s higher-order features.

procedure inferenceEngine

function save() = "a snapshot of all current states and channels"
procedure restore(s) "restore states and channels from a saved() snapshot s"

var btp := {} // set of pairs (snapshot,statement) "backtrack points"
while true do
freeze all external channels
var res := {} // set of snapshots computed in current round
while some channel is non-empty do
let proc = chose process among scheduled processes
// Find first executable rule and execute it
for (p < proc.rules) do
let (ch — pf) = p // channel ch and partial function pf
if (ch.nonEmpty) A pf(ch.first) is defined then
let s = save() // needed if pf(ch.first) fails
let d = ch.dequeue() // destructively remove first element
try
execute pf(d)
// if pf(d) executes or(stmtl,stmt2) then

// btp := btp U { (save(),stmt2)}
// execute stmtl
// endif

break // for-loop
catch case Fail =>restore(s)
end // if
end // for
end // while
res := res U { save() } // All channels are empty now,have a new state
if btp.nonEmpty then
remove some (s,stmt) from btp; restore(s); execute stmt
else
// No more backtrack points
send res to state maintenance
let s = set of states returned from state maintenance
restore(s)
unfreeze all external channels and put their data into subscribed channels
freeze all external channels
end // if
end // while

14

	Introduction
	Related Work
	System Architecture
	The Process Modeling Language
	Illustrative Example
	Shallow Embedding in Scala

	Inference Engine
	Conclusions

